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Byzantine Fault Tolerance (BFT) Replication

System Model

• Asynchronous system
• Unreliable channels

Service
• Byzantine clients
• Up to 𝑓 Byzantine servers
• 𝑛 > 3𝑓 total servers

Crypto
• Public/private key pairs
• Signatures
• Collision-resistant hashes

System Goals
• Always safe
• Live during periods of 

synchrony

2[Adapted from EECS 591 Lecture 12 Slide 20]



PBFT Review
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PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

• Client sends message 
to primary

Three-phase commit:
1. Pre-prepare
2. Prepare
3. Commit

• Replicas execute and
send reply to client
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PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

The three-phase commit 
protocol is expensive.
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Introducing…Zyzzyva
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Zyzzyva: tropical weevil 
and last word in dictionary

• Novel contribution: replicas 
speculatively execute requests 
without 3-phase commit 
• Correct replicas may be 

inconsistent
• Replicas may send different 

responses to clients
• Clients use history and replies to 

detect inconsistencies
• Clients wait until history and 

speculative reply are stable to 
complete request

https://www.usatoday.com/story/news/nation-now/2017/06/27/zyzzyva-newest-
last-word-oxford-english-dictionary-explained/431203001/



Why Zyzzyva?

• State-of-the-art BFT protocols
• Practical Byzantine Fault Tolerance (PBFT) [Castro and Liskov, 1999] 
• Query/Update (Q/U) [Abd-El-Malek et al., 2005]
• Hybrid-Quorum replication (HQ) [ Cowling et al., 2006]

• HQ replication paper => best technique depends on workload
• How does Zyzzyva solve this issue?
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PBFT Q/U HQ Zyzzyva

Cost
Total replicas
Reps w/ app 

state

3f+1
2f+1

5f+1
5f+1

3f+1
3f+1

3f+1
2f+1

Throughput 
MAC ops at 
bottleneck 

server
2+(8f+1)/b 2+8f 4+4f 2+3f/b

Latency
Critical path 
NW 1-way 
latencies

4 2 4 3

BFT State-of-the-Art Comparison

12[Adapted from Table 1]

**Gray/bold = best



Zyzzyva Overview

• One primary, 3f replicas
• Execution proceeds as a sequence of views
• Design challenges
• Conditions for client request completion
• Defining subprotocols to ensure correctness    

• Subprotocols: 
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- Agreement Orders requests for replica execution

- Checkpoint Limits state replicas must store and reduces cost of 
view changes

- View Change Coordinates new primary election if current is faulty or 
system is running slowly



Node State &
Checkpoint Subprotocol
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Node State & Checkpoint Subprotocol 

• Test
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Agreement Subprotocol
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Agreement Subprotocol

1

Client

Primary

Replica 1

Replica 2

Replica 3

1. Client sends request to 
the primary.
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⟨𝑅𝐸𝑄𝑈𝐸𝑆𝑇, 𝑜, 𝑡, 𝑐⟩!!



Agreement Subprotocol

1 2

Client

Primary

Replica 1

Replica 2

Replica 3

2. 
• Primary receives 

request
• Assigns sequence 

number
• Forwards ordered 

request to replicas
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⟨⟨𝑂𝑅𝐷𝐸𝑅 − 𝑅𝐸𝑄, 𝑣, 𝑛, ℎ", 𝑑, 𝑁𝐷⟩!" , 𝑚⟩



Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

3. 
• Replica receives 

ordered request
• Speculatively 

executes request
• Responds to the client
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⟨⟨𝑆𝑃𝐸𝐶 − 𝑅𝐸𝑆𝑃𝑂𝑁𝑆𝐸, 𝑣, 𝑛, ℎ", 𝐻 𝑟 , 𝑐, 𝑡⟩!# , 𝑖, 𝑟, 𝑂𝑅⟩
𝑂𝑅 = ⟨𝑂𝑅𝐷𝐸𝑅 − 𝑅𝐸𝑄, 𝑣, 𝑛, ℎ$, 𝑑, 𝑁𝐷⟩%!



Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

4. Client gathers 
speculative responses
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Client Completion Summary

If client receives…

21

Exactly 
3𝑓 + 1 speculative 
response messages



Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

4a. If client receives 
exactly 𝟑𝒇 + 𝟏
matching responses:
• Client completes the 

request.

22

Application
4a



Client Completion Summary

If client receives…
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Exactly 
3𝑓 + 1 speculative 
response messages

Between 2𝑓 + 1 and 
3𝑓 matching 

responses

Complete 
request



Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

4b. If client receives 
between 𝟐𝒇 + 𝟏 and 𝟑𝒇
matching responses:
• Client assembles a C-

certificate
• Transmits it to the 

replicas 

24

X

⟨𝐶𝑂𝑀𝑀𝐼𝑇, 𝑐, 𝐶𝐶⟩!!



Agreement Subprotocol

1 2 3 4 5

Client

Primary

Replica 1

Replica 2

Replica 3

4b.1. 
• Replica receives a 
COMMITmessage 
from a client 
containing a C-
certificate

• Replica acknowledges 
with a LOCAL-
COMMITmessage.

25

X

⟨𝐿𝑂𝐶𝐴𝐿 − 𝐶𝑂𝑀𝑀𝐼𝑇, 𝑣, 𝑑, ℎ, 𝑖, 𝑐⟩!#



Agreement Subprotocol

1 2 3 4 5 6

Client

Primary

Replica 1

Replica 2

Replica 3

4b.2. If client receives a 
LOCAL-COMMIT
message from 2𝑓 + 1
replicas:
• Client completes the 

request. 

26

X

Application
4b.2



Client Completion Summary

If client receives…
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Exactly 
3𝑓 + 1 speculative 
response messages

Between 2𝑓 + 1 and 
3𝑓 matching 

responses

Make C-Certificate
Send COMMIT to

replicas

Replica sends 
LOCAL-COMMIT

message

If 2𝑓 + 1 LOCAL-
COMMIT messages 

from replicas, 
complete request

Complete 
request

Fewer than 2𝑓 + 1
matching responses



Agreement Subprotocol

1 2 3 4
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Replica 3
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4c. If client receives 
fewer than 𝟐𝒇 + 𝟏
matching responses:
• Client resends its 

request to all replicas
• Replicas forward the 

request to the 
primaryX

X



Agreement Subprotocol
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X
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Agreement Subprotocol
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X

X

𝑚 = ⟨𝑅𝐸𝑄𝑈𝐸𝑆𝑇, 𝑜, 𝑡, 𝑐⟩!!
⟨𝐶𝑂𝑁𝐹𝐼𝑅𝑀 − 𝑅𝐸𝑄, 𝑣,𝑚, 𝑖⟩!#

4c. If client receives 
fewer than 𝟐𝒇 + 𝟏
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request to the 
primary



Client Completion Summary

If client receives…
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Agreement Subprotocol
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4d. If client receives 
responses indicating 
inconsistent ordering by 
the primary:
• Client sends a proof 

of misbehavior to the 
replicas

• Replicas initiate a 
view change to oust 
the faulty primary.



Agreement Subprotocol
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⟨𝑃𝑂𝑀, 𝑣, 𝑃⟩!!

4d. If client receives 
responses indicating 
inconsistent ordering by 
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the faulty primary.



Agreement Subprotocol
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Initiate view change

4d. If client receives 
responses indicating 
inconsistent ordering by 
the primary:
• Client sends a proof 

of misbehavior to the 
replicas

• Replicas initiate a 
view change to oust 
the faulty primary.



Client Completion Summary

If client receives…
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Exactly 
3𝑓 + 1 speculative 
response messages

Between 2𝑓 + 1 and 
3𝑓 matching 

responses

Make C-Certificate
Send COMMIT to

replicas

Replica sends 
LOCAL-COMMIT

message

If 2𝑓 + 1 LOCAL-
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from replicas, 
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Complete 
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Fewer than 2𝑓 + 1
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Retransmit request
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All replicas forward 
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request is 
eventually executed

Inconsistent ordering 
of messages

Send proof of 
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Initiate view 
change 



View Change Subprotocol
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View Change Subprotocol

• To ensure liveness
• Extra “I hate the primary” phase added
• A correct replica will not abandon a view unless every other correct replica 

does as well

• To guarantee safety
• Weakens condition under which a request appears in the new view’s history
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View Change Subprotocol

Client

Primary

Replica 1

Replica 2

Replica 3

VC1. Replica initiates the 
view change by sending 
an accusation against the 
primary to all replicas.
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⟨𝐼 − 𝐻𝐴𝑇𝐸 − 𝑇𝐻𝐸 − 𝑃𝑅𝐼𝑀𝐴𝑅𝑌, 𝑣⟩!&
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View Change Subprotocol

Client

Primary

Replica 1

Replica 2

Replica 3

VC2. 
• Replica receives 𝑓 + 1

accusations that the 
primary is faulty 

• Then it commits to 
the view change.
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1 2

⟨𝑉𝐼𝐸𝑊 − 𝐶𝐻𝐴𝑁𝐺𝐸, 𝑣 + 1, 𝐶𝐶, 𝑂, 𝑖⟩!#

X



View Change Subprotocol

Client

Primary

Primary

Replica 2

Replica 3

VC3. 
• Replica receives 2𝑓 +
1 view change 
messages

• New primary sends 
new view message
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1 2 3

X
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View Change Subprotocol

Client

Primary

Primary

Replica 2

Replica 3

VC4. 
• Replica receives a 

valid new view 
message 

• Then it sends a view 
confirmation 
message to all other 
replicas.

41

X
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⟨𝑉𝐼𝐸𝑊 − 𝐶𝑂𝑁𝐹𝐼𝑅𝑀, 𝑣 + 1, 𝑛, ℎ, 𝑖⟩%"



View Change Subprotocol

Client

Primary

Primary

Replica 2

Replica 3

VC5: 
• Replica receives 2𝑓 +
1matching VIEW-
CONFIRMmessages

• Begins accepting 
requests in the new 
view

42

X

1 2 3 4

Ready for requests!



Implementation Optimizations

• Replacing signatures with MACs
• Separating agreement from execution
• Request batching 
• Caching out of order requests
• Read-only optimization
• Single execution response
• Preferred Quorums
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Midterm 
question!



Evaluation
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Evaluation: Throughput

45Figure 3

*𝑓 = 1 tolerated faults

2.7x

↑ 45%

9x

3x



Evaluation: Latency

46Figure 4

Q/U Z Z Z Q/U Z &
PBFT



Evaluation: Fault Scalability

47Figure 6

Robust to 
increasing 

𝒇



Conclusion

“By systematically exploiting speculation, 
Zyzzyva exhibits significant performance 

improvements over existing BFT services. …
approach[ing] the theoretical lower bounds for 

any BFT protocol.”
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Questions?
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