
Zyzzyva: Speculative
Byzantine Fault Tolerance

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong

Presented by Madelyn Gatchel
EECS 591 Fall 2021

1

Byzantine Fault Tolerance (BFT) Replication

System Model

• Asynchronous system
• Unreliable channels

Service
• Byzantine clients
• Up to 𝑓 Byzantine servers
• 𝑛 > 3𝑓 total servers

Crypto
• Public/private key pairs
• Signatures
• Collision-resistant hashes

System Goals
• Always safe
• Live during periods of

synchrony

2[Adapted from EECS 591 Lecture 12 Slide 20]

PBFT Review

3

PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

• Client sends message
to primary

4

PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

• Client sends message
to primary

Three-phase commit:
1. Pre-prepare

1

5

PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

• Client sends message
to primary

Three-phase commit:
1. Pre-prepare
2. Prepare

1 2

6

PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

• Client sends message
to primary

Three-phase commit:
1. Pre-prepare
2. Prepare
3. Commit

1 2 3

7

PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

• Client sends message
to primary

Three-phase commit:
1. Pre-prepare
2. Prepare
3. Commit

• Replicas execute and
send reply to client

8

1 2 3

PBFT Review

Client

Primary

Replica 1

Replica 2

Replica 3

The three-phase commit
protocol is expensive.

9

1 2 3

Introducing…Zyzzyva

10

Zyzzyva: tropical weevil
and last word in dictionary

• Novel contribution: replicas
speculatively execute requests
without 3-phase commit
• Correct replicas may be

inconsistent
• Replicas may send different

responses to clients
• Clients use history and replies to

detect inconsistencies
• Clients wait until history and

speculative reply are stable to
complete request

https://www.usatoday.com/story/news/nation-now/2017/06/27/zyzzyva-newest-
last-word-oxford-english-dictionary-explained/431203001/

Why Zyzzyva?

• State-of-the-art BFT protocols
• Practical Byzantine Fault Tolerance (PBFT) [Castro and Liskov, 1999]
• Query/Update (Q/U) [Abd-El-Malek et al., 2005]
• Hybrid-Quorum replication (HQ) [Cowling et al., 2006]

• HQ replication paper => best technique depends on workload
• How does Zyzzyva solve this issue?

11

PBFT Q/U HQ Zyzzyva

Cost
Total replicas
Reps w/ app

state

3f+1
2f+1

5f+1
5f+1

3f+1
3f+1

3f+1
2f+1

Throughput
MAC ops at
bottleneck

server
2+(8f+1)/b 2+8f 4+4f 2+3f/b

Latency
Critical path
NW 1-way
latencies

4 2 4 3

BFT State-of-the-Art Comparison

12[Adapted from Table 1]

**Gray/bold = best

Zyzzyva Overview

• One primary, 3f replicas
• Execution proceeds as a sequence of views
• Design challenges
• Conditions for client request completion
• Defining subprotocols to ensure correctness

• Subprotocols:

13

- Agreement Orders requests for replica execution

- Checkpoint Limits state replicas must store and reduces cost of
view changes

- View Change Coordinates new primary election if current is faulty or
system is running slowly

Node State &
Checkpoint Subprotocol

14

Node State & Checkpoint Subprotocol

• Test

15

Agreement Subprotocol

16

Agreement Subprotocol

1

Client

Primary

Replica 1

Replica 2

Replica 3

1. Client sends request to
the primary.

17

⟨𝑅𝐸𝑄𝑈𝐸𝑆𝑇, 𝑜, 𝑡, 𝑐⟩!!

Agreement Subprotocol

1 2

Client

Primary

Replica 1

Replica 2

Replica 3

2.
• Primary receives

request
• Assigns sequence

number
• Forwards ordered

request to replicas

18

⟨⟨𝑂𝑅𝐷𝐸𝑅 − 𝑅𝐸𝑄, 𝑣, 𝑛, ℎ", 𝑑, 𝑁𝐷⟩!" , 𝑚⟩

Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

3.
• Replica receives

ordered request
• Speculatively

executes request
• Responds to the client

19

⟨⟨𝑆𝑃𝐸𝐶 − 𝑅𝐸𝑆𝑃𝑂𝑁𝑆𝐸, 𝑣, 𝑛, ℎ", 𝐻 𝑟 , 𝑐, 𝑡⟩!# , 𝑖, 𝑟, 𝑂𝑅⟩
𝑂𝑅 = ⟨𝑂𝑅𝐷𝐸𝑅 − 𝑅𝐸𝑄, 𝑣, 𝑛, ℎ$, 𝑑, 𝑁𝐷⟩%!

Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

4. Client gathers
speculative responses

20

Client Completion Summary

If client receives…

21

Exactly
3𝑓 + 1 speculative
response messages

Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

4a. If client receives
exactly 𝟑𝒇 + 𝟏
matching responses:
• Client completes the

request.

22

Application
4a

Client Completion Summary

If client receives…

23

Exactly
3𝑓 + 1 speculative
response messages

Between 2𝑓 + 1 and
3𝑓 matching

responses

Complete
request

Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

4b. If client receives
between 𝟐𝒇 + 𝟏 and 𝟑𝒇
matching responses:
• Client assembles a C-

certificate
• Transmits it to the

replicas

24

X

⟨𝐶𝑂𝑀𝑀𝐼𝑇, 𝑐, 𝐶𝐶⟩!!

Agreement Subprotocol

1 2 3 4 5

Client

Primary

Replica 1

Replica 2

Replica 3

4b.1.
• Replica receives a
COMMITmessage
from a client
containing a C-
certificate

• Replica acknowledges
with a LOCAL-
COMMITmessage.

25

X

⟨𝐿𝑂𝐶𝐴𝐿 − 𝐶𝑂𝑀𝑀𝐼𝑇, 𝑣, 𝑑, ℎ, 𝑖, 𝑐⟩!#

Agreement Subprotocol

1 2 3 4 5 6

Client

Primary

Replica 1

Replica 2

Replica 3

4b.2. If client receives a
LOCAL-COMMIT
message from 2𝑓 + 1
replicas:
• Client completes the

request.

26

X

Application
4b.2

Client Completion Summary

If client receives…

27

Exactly
3𝑓 + 1 speculative
response messages

Between 2𝑓 + 1 and
3𝑓 matching

responses

Make C-Certificate
Send COMMIT to

replicas

Replica sends
LOCAL-COMMIT

message

If 2𝑓 + 1 LOCAL-
COMMIT messages

from replicas,
complete request

Complete
request

Fewer than 2𝑓 + 1
matching responses

Agreement Subprotocol

1 2 3 4

Client

Primary

Replica 1

Replica 2

Replica 3

28

4c. If client receives
fewer than 𝟐𝒇 + 𝟏
matching responses:
• Client resends its

request to all replicas
• Replicas forward the

request to the
primaryX

X

Agreement Subprotocol

1 2 3 4

Client

Primary

Replica 1

Replica 2

Replica 3

29

X

X

⟨𝑅𝐸𝑄𝑈𝐸𝑆𝑇, 𝑜, 𝑡, 𝑐⟩!!

4c. If client receives
fewer than 𝟐𝒇 + 𝟏
matching responses:
• Client resends its

request to all replicas
• Replicas forward the

request to the
primary

Agreement Subprotocol

1 2 3 4

Client

Primary

Replica 1

Replica 2

Replica 3

30

X

X

𝑚 = ⟨𝑅𝐸𝑄𝑈𝐸𝑆𝑇, 𝑜, 𝑡, 𝑐⟩!!
⟨𝐶𝑂𝑁𝐹𝐼𝑅𝑀 − 𝑅𝐸𝑄, 𝑣,𝑚, 𝑖⟩!#

4c. If client receives
fewer than 𝟐𝒇 + 𝟏
matching responses:
• Client resends its

request to all replicas
• Replicas forward the

request to the
primary

Client Completion Summary

If client receives…

31

Exactly
3𝑓 + 1 speculative
response messages

Between 2𝑓 + 1 and
3𝑓 matching

responses

Make C-Certificate
Send COMMIT to

replicas

Replica sends
LOCAL-COMMIT

message

If 2𝑓 + 1 LOCAL-
COMMIT messages

from replicas,
complete request

Complete
request

Fewer than 2𝑓 + 1
matching responses

Retransmit request
to all replicas

All replicas forward
to primary so

request is
eventually executed

Inconsistent ordering
of messages

Agreement Subprotocol

1 2 3

Client

Primary

Replica 1

Replica 2

Replica 3

32

4d. If client receives
responses indicating
inconsistent ordering by
the primary:
• Client sends a proof

of misbehavior to the
replicas

• Replicas initiate a
view change to oust
the faulty primary.

Agreement Subprotocol

1 2 3 4

Client

Primary

Replica 1

Replica 2

Replica 3

33

⟨𝑃𝑂𝑀, 𝑣, 𝑃⟩!!

4d. If client receives
responses indicating
inconsistent ordering by
the primary:
• Client sends a proof

of misbehavior to the
replicas

• Replicas initiate a
view change to oust
the faulty primary.

Agreement Subprotocol

1 2 3 4

Client

Primary

Replica 1

Replica 2

Replica 3

34

Initiate view change

4d. If client receives
responses indicating
inconsistent ordering by
the primary:
• Client sends a proof

of misbehavior to the
replicas

• Replicas initiate a
view change to oust
the faulty primary.

Client Completion Summary

If client receives…

35

Exactly
3𝑓 + 1 speculative
response messages

Between 2𝑓 + 1 and
3𝑓 matching

responses

Make C-Certificate
Send COMMIT to

replicas

Replica sends
LOCAL-COMMIT

message

If 2𝑓 + 1 LOCAL-
COMMIT messages

from replicas,
complete request

Complete
request

Fewer than 2𝑓 + 1
matching responses

Retransmit request
to all replicas

All replicas forward
to primary so

request is
eventually executed

Inconsistent ordering
of messages

Send proof of
misbehavior

message

Initiate view
change

View Change Subprotocol

36

View Change Subprotocol

• To ensure liveness
• Extra “I hate the primary” phase added
• A correct replica will not abandon a view unless every other correct replica

does as well

• To guarantee safety
• Weakens condition under which a request appears in the new view’s history

37

View Change Subprotocol

Client

Primary

Replica 1

Replica 2

Replica 3

VC1. Replica initiates the
view change by sending
an accusation against the
primary to all replicas.

38

⟨𝐼 − 𝐻𝐴𝑇𝐸 − 𝑇𝐻𝐸 − 𝑃𝑅𝐼𝑀𝐴𝑅𝑌, 𝑣⟩!&

1

View Change Subprotocol

Client

Primary

Replica 1

Replica 2

Replica 3

VC2.
• Replica receives 𝑓 + 1

accusations that the
primary is faulty

• Then it commits to
the view change.

39

1 2

⟨𝑉𝐼𝐸𝑊 − 𝐶𝐻𝐴𝑁𝐺𝐸, 𝑣 + 1, 𝐶𝐶, 𝑂, 𝑖⟩!#

X

View Change Subprotocol

Client

Primary

Primary

Replica 2

Replica 3

VC3.
• Replica receives 2𝑓 +
1 view change
messages

• New primary sends
new view message

40

1 2 3

X

⟨𝑁𝐸𝑊 − 𝑉𝐼𝐸𝑊, 𝑣 + 1, 𝑃⟩!"'&

View Change Subprotocol

Client

Primary

Primary

Replica 2

Replica 3

VC4.
• Replica receives a

valid new view
message

• Then it sends a view
confirmation
message to all other
replicas.

41

X

1 2 3 4

⟨𝑉𝐼𝐸𝑊 − 𝐶𝑂𝑁𝐹𝐼𝑅𝑀, 𝑣 + 1, 𝑛, ℎ, 𝑖⟩%"

View Change Subprotocol

Client

Primary

Primary

Replica 2

Replica 3

VC5:
• Replica receives 2𝑓 +
1matching VIEW-
CONFIRMmessages

• Begins accepting
requests in the new
view

42

X

1 2 3 4

Ready for requests!

Implementation Optimizations

• Replacing signatures with MACs
• Separating agreement from execution
• Request batching
• Caching out of order requests
• Read-only optimization
• Single execution response
• Preferred Quorums

43

Midterm
question!

Evaluation

44

Evaluation: Throughput

45Figure 3

*𝑓 = 1 tolerated faults

2.7x

↑ 45%

9x

3x

Evaluation: Latency

46Figure 4

Q/U Z Z Z Q/U Z &
PBFT

Evaluation: Fault Scalability

47Figure 6

Robust to
increasing

𝒇

Conclusion

“By systematically exploiting speculation,
Zyzzyva exhibits significant performance

improvements over existing BFT services. …
approach[ing] the theoretical lower bounds for

any BFT protocol.”

48

References

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie. Fault scalable byzantine fault-tolerant
services. In Proc. SOSP, Oct. 2005.

[2] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proc. OSDI, February 1999.

[3] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shira. HQ replication: A hybrid quorum protocol for
Byzantine fault tolerance. In Proc. OSDI, Nov. 2006

[4] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative Byzantine Fault Tolerance. In
Proc. SOSP, October 2007.

49

Questions?

50

