
ZooKeeper: 
Wait-free coordination for 

Internet-scale systems
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, 

Benjamin Reed

Presented by Justin Beemer



What is Coordination?

● Configuration Management

● Leader Election

● Group Membership

● Locks & Synchronization Primitives



Approach #1: Implement Coordination in 
the Application

Application
Pros
● Can design and 

optimize for specific 
application needs

Cons
● Not reusable
● Really hard to 

implement correctly



Approach #2: Implement Coordination 
Services

Chubby Lock 
Service

Application 1

Application 2

Pros
● Easier for the client to 

implement
● Services usable by 

many applications

Cons
● May require multiple 

services
● Flexibility



Best of Both Worlds: Give Clients the 
Tools

Application 1

Application 2

● Single service
● Suitable for many 

different applications
● Simple for clients to 

implement
● Can tailor 

coordination to 
specific use-cases



What Kind of Tools Are Useful?

● Simple but Powerful

● High Performance

● Fault Tolerant

● Consistent



ZooKeeper
ZooKeeper gives clients the abstraction of a set of 
data nodes arranged in a hierarchical namespace.



ZooKeeper
ZooKeeper gives clients the abstraction of a set of 
data nodes arranged in a hierarchical namespace.

/

/app1 /app2

/app1/a /app1/b /app1/c

...



ZooKeeper
ZooKeeper gives clients the abstraction of a set of 
data nodes arranged in a hierarchical namespace.

● Watches notify clients when nodes change.
● Performance

○ Wait-free
○ Optimized for reads

● Consistency
○ Linearizable writes
○ FIFO ordering for a given client



Configuration Management

/

/app1 /app2

/app1/config

...



Configuration Management

/

/app1 /app2

/app1/config

...

getData(/app1/config, TRUE);getData(/app1/config, TRUE);
Give me the configuration, and notify 
me if it changes!



Configuration Management

/

/app1 /app2

/app1/config

...

Here's the configuration!



Configuration Management

/

/app1 /app2

/app1/config

...



Configuration Management

/

/app1 /app2

/app1/config

...



Configuration Management

/

/app1 /app2

/app1/config

...

Update the configuration!



Configuration Management

/

/app1 /app2

/app1/config

...



Configuration Management

/

/app1 /app2

/app1/config

...

Done.



Configuration Management

/

/app1 /app2

/app1/config

...

Hey! The configuration changed! You 
should reread it!



Configuration Management

/

/app1 /app2

/app1/config

...

getData(/app1/config, TRUE);getData(/app1/config, TRUE);
Give me the configuration, and notify 
me (again) if it changes!



Configuration Management

/

/app1 /app2

/app1/config

...

Here's the configuration!



Configuration Management

/

/app1 /app2

/app1/config

...



Locks

/

/app1 /app2

...



Locks

/

/app1 /app2

...

Create the lock file.



Locks

/

/app1 /app2

...



Locks

/

/app1 /app2

/app1/lock

...



Locks

/

/app1 /app2

/app1/lock

...

Success!



Locks

/

/app1 /app2

/app1/lock

...



Locks

/

/app1 /app2

...

Create the lock file.

/app1/lock

Create the lock file.



Locks

/

/app1 /app2

...

Failed. It already exists.

/app1/lock



Locks

/

/app1 /app2

...

Create the lock file.

/app1/lock

Notify me if the lock file changes.



Locks

/

/app1 /app2

...

/app1/lock

...

...



Locks

/

/app1 /app2

...

/app1/lock

...

...



Locks

/

/app1 /app2

...

Delete the lock file.

/app1/lock

...

...



Locks

/

/app1 /app2

...

/app1/lock

...

...



Locks

/

/app1 /app2

...
...

...



Locks

/

/app1 /app2

...
...

...

Success!



Locks

/

/app1 /app2

...
...

...



Locks

/

/app1 /app2

...
...

...

The lock file is gone!



Locks

/

/app1 /app2

...

Create the lock file.



Locks

/

/app1 /app2

...

Create the lock file.Create the lock file.



Locks

/

/app1 /app2

...



Locks

/

/app1 /app2

/app1/lock

...



Locks

/

/app1 /app2

/app1/lock

...

Success!



Locks

/

/app1 /app2

...

Failed. It already exists.

/app1/lock



Locks

/

/app1 /app2

...

/app1/lock

Notify me if the lock file changes.



Locks

/

/app1 /app2

...

/app1/lock

...



How does ZooKeeper achieve 
consistency?

Write requests are funneled through a single 
leader process, which determines consistent total 

order via an atomic broadcast protocol.

Request processing is pipelined, naturally 
providing FIFO ordering for each client.



Linearizable Writes



Linearizable Writes



Linearizable Writes



Linearizable Writes



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB



Linearizable Writes

ZAB

Atomic Broadcast 
guarantees that 

writes are applied in 
the same total order 

at all replicas



How does ZooKeeper achieve 
performance?

All ZooKeeper operations are wait-free.

Read requests are processed locally, by the 
individual replica that communicates with the 

client.



Fast Reads



Fast Reads



Fast Reads



Fast Reads



Fast Reads

ZAB



Fast Reads

ZAB



Fast Reads

ZAB



Fast Reads

ZAB



Fast Reads

ZAB



Fast Reads

ZAB
?



Fast Reads

ZAB



Fast Reads

ZAB

A read may return 
a stale value, even 

though a write 
request has 
completed!



How does it Perform?

To evaluate ZooKeeper's performance, the 
throughput was measured for a fully-saturated 

system.

● 250 clients
● 1K Data for read/write requests
● Read:Write ratio varied from 0 to 1
● Experiment repeated for different numbers 

of ZooKeeper replicas



Percentage of Read Requests

Operations 
per 

Second

Throughput

3 Replicas

13 Replicas

Throughput for 13 
replicas, 100% reads: 

460k



Throughput (All Requests to Leader)

Percentage of Read Requests

Operations 
per 

Second

3 Replicas

13 Replicas



Throughput with Failures

Time (seconds)

Operations 
per 

Second



Throughput with Failures

Time (seconds)

Operations 
per 

Second

Failure and 
recovery of two 

different followers



Throughput with Failures

Time (seconds)

Operations 
per 

Second

Failure and 
recovery of leader



Throughput with Failures

Time (seconds)

Operations 
per 

Second

Failure of two 
followers, then 

recovery



Throughput with Failures

Time (seconds)

Operations 
per 

Second

Failure of leader



Throughput with Failures

Time (seconds)

Operations 
per 

Second

Recovery of leader



Latency



Thank you! Questions?


