
ZooKeeper: 
Wait-free coordination for 

Internet-scale systems
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, 

Benjamin Reed

Presented by Justin Beemer



What is Coordination?

● Configuration Management

● Leader Election

● Group Membership

● Locks & Synchronization Primitives



Approach #1: Implement Coordination in 
the Application

Application
Pros
● Can design and 

optimize for specific 
application needs

Cons
● Not reusable
● Really hard to 

implement correctly



Approach #2: Implement Coordination 
Services

Chubby Lock 
Service

Application 1

Application 2

Pros
● Easier for the client to 

implement
● Services usable by 

many applications

Cons
● May require multiple 

services
● Flexibility



Best of Both Worlds: Give Clients the 
Tools

Application 1

Application 2

● Single service
● Suitable for many 

different applications
● Simple for clients to 

implement
● Can tailor 

coordination to 
specific use-cases



What Kind of Tools Are Useful?

● Simple but Powerful

● High Performance

● Fault Tolerant

● Consistent



ZooKeeper
ZooKeeper gives clients the abstraction of a set of 
data nodes arranged in a hierarchical namespace.
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/

/app1 /app2

/app1/a /app1/b /app1/c

...



ZooKeeper
ZooKeeper gives clients the abstraction of a set of 
data nodes arranged in a hierarchical namespace.

● Watches notify clients when nodes change.
● Performance

○ Wait-free
○ Optimized for reads

● Consistency
○ Linearizable writes
○ FIFO ordering for a given client
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getData(/app1/config, TRUE);getData(/app1/config, TRUE);
Give me the configuration, and notify 
me if it changes!



Configuration Management

/

/app1 /app2

/app1/config

...

Here's the configuration!



Configuration Management

/

/app1 /app2

/app1/config

...



Configuration Management

/

/app1 /app2

/app1/config

...



Configuration Management
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Configuration Management
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Done.



Configuration Management

/

/app1 /app2

/app1/config

...

Hey! The configuration changed! You 
should reread it!



Configuration Management

/

/app1 /app2

/app1/config

...

getData(/app1/config, TRUE);getData(/app1/config, TRUE);
Give me the configuration, and notify 
me (again) if it changes!



Configuration Management
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Configuration Management

/

/app1 /app2

/app1/config

...
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Locks
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Create the lock file.

/app1/lock

Create the lock file.
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The lock file is gone!
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Locks

/

/app1 /app2

...

/app1/lock

...



How does ZooKeeper achieve 
consistency?

Write requests are funneled through a single 
leader process, which determines consistent total 

order via an atomic broadcast protocol.

Request processing is pipelined, naturally 
providing FIFO ordering for each client.



Linearizable Writes
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Linearizable Writes

ZAB

Atomic Broadcast 
guarantees that 

writes are applied in 
the same total order 

at all replicas



How does ZooKeeper achieve 
performance?

All ZooKeeper operations are wait-free.

Read requests are processed locally, by the 
individual replica that communicates with the 

client.



Fast Reads
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Fast Reads

ZAB
?



Fast Reads

ZAB



Fast Reads

ZAB

A read may return 
a stale value, even 

though a write 
request has 
completed!



How does it Perform?

To evaluate ZooKeeper's performance, the 
throughput was measured for a fully-saturated 

system.

● 250 clients
● 1K Data for read/write requests
● Read:Write ratio varied from 0 to 1
● Experiment repeated for different numbers 

of ZooKeeper replicas



Percentage of Read Requests

Operations 
per 

Second

Throughput

3 Replicas

13 Replicas

Throughput for 13 
replicas, 100% reads: 

460k



Throughput (All Requests to Leader)

Percentage of Read Requests

Operations 
per 

Second

3 Replicas

13 Replicas
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Throughput with Failures
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Throughput with Failures
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Throughput with Failures

Time (seconds)

Operations 
per 

Second

Recovery of leader



Latency



Thank you! Questions?


