
SPANNER
GOOGLES GLOBALLY DISTRIBUTED DATABASE



WHAT IS IT?

• Scalable, globally distributed database

• Shards data across many sets of Paxos State 
Machines

• Automatic failover for clients between replicas 

• Auto re-sharding of data as well as data migration

• Designed for scale, scale, scale



WHY USE IT

• Applications want high availability, even in the 
face of natural disasters

• Spanner can replicate across continents (main 
focus)

• Cross between Bigtable and Megastore



HOW DOES IT 
WORK

Temporal multi-version database

Data stored in schematized tables

Data is versioned and stamped with a 
commit time

Support for general purpose 
transactions and SQL-based queries



SOME INTERESTING FEATURES
• Replication can be dynamically controlled by the application

• Externally consistent reads and write as well as globally consistent 
reads at a timestamp

• Globally meaningful commit timestamps which reflect 
serialization order

• TrueTime API 

• Directly exposes clock uncertainty

• Uncertainty less than 10m/s 

• Uses a combination of GPS and Atomic clocks



ORGANIZATION

• Spanner deployment is called a 
universe

• Test/Playground

• Dev/Prod

• Prod only

• Zones can be added to or removed 
from a running system as new 
datacenters are brought into service 
and old ones are turned off 



SPANSERVER STACK

• Each server responsible for between 
100 and 1000 instances of a data 
structure: Tablet

• (key:string, timestamp:int64) → string 

• All data has timestamps 

• Single Paxos state machine on top of 
each tablet for replication
• Stores meta data in tablet

• Writes must initiate protocol at 
leader

• Reads access tablet directly



LEADER REPLICAS

• Lock table implemented at every replica that is a leader

• Designed for long-lived transactions that can take minutes

• Ops that need synchro can use table, others can bypass

• Transaction Manager also implemented

• Used to implement a participant leader

• Transactions involving more than one Paxos group use this to 
coordinate with 2PC



DIRECTORIES

Set of keys that share a 
common prefix

Allow applications to control 
locality of data

When data is moved between 
Paxos groups, it is moved 

directory by directory

Can be moved while client 
operations are ongoing

Moves data in the background



APPLICATION DIRECTORY 
INTERACTION

• Smallest unit where location can be specified by application

• Admins control the # and types of replicas, Applications control 
how data is replicated

• Spanner can shard a directory if it grows too large



DATA MODEL

Applications 
create one or 

more databases 
in the universe

Each DB can have 
an unlimited 
number of 

schematized 
tables (relational 

db tables)

Every table has an 
ordered set of 

primary key 
columns

Applications can 
control data 

locality through 
choice of keys



TRUE TIME



TRUE TIME

• GPS and atomic clocks since each have different failure modes

• Implemented with time master machines

• Some have GPS antennas and the rest have atomic clocks

• Masters cross check with references and self evict if there are 
significant differences

• GPS masters have clock drift typically close to zero



SUPPORTED OPERATIONS

RW 
transactions

Standalone 
writes

RO 
transactions

Non-snapshot 
standalone 

reads

Snapshot 
reads



LEADER LEASES 

Leader gets timed leases on the quorum

Lease interval for leader starts when it gets 
a quorum and ends when it no longer does

Leader can request lease vote extension if 
near expiration

10 second leases



RW TRANSACTION TIMESTAMPS

• Transactions assigned as the same for the Paxos system write 
(monotonically increasing)

• If start of T2 occurs after commit of T1 then T2 timestamp must 
be greater than T1

• Two rules

• Start – Leader assigns timestamp si no less than TT.now.latest()

• Commit Wait – Clients cannot see any data commited by T until 
after TT.after(si) is true



RO TRANSACTION 
TIMESTAMPS

• Assign timestamp sread and then execute read from snapshot at 
sread

• Timestamp = TT.now().latest

• Assign oldest timestamp that preserves external consistency to 
prevent blocking



BENCHMARK SETUP

Clients and Spansevers on 
separate machines

Each zone = 1 spanserver, 
placed in a set of 
datacenters with < 1 ms 
network distance

50 Paxos groups, 2500 
directories

Standalone read and 
writes of 4KB 1 warmup round



LATENCY 
BENCHMARKING

• Clients issued few enough operations to avoid queues building at 
the server

• With 1 replica commit wait ~= 5ms and Paxos latency ~=9ms

• As replica numbers increase, latency stays roughly constant

• Latency to achieve a quorum decreases since more replicas



THROUGHPUT 
BENCHMARKS

• Client issues enough operations to 
saturate server 

• Throughput increases linearly with
number of replicas



AVAILABILITY

• 5 zones, each have 25 spanservers

• Sharded into 1250 Paxos groups

• 100 test clients con- stantly issued 
non-snapshot reads at an aggregrate
rate of 50K reads/second 

• 5 seconds in, all servers in 1 zone are 
killed

• All leaders are located in Zone 1: Z1



TRUETIME TESTS

• Is TrueTime reliable/trustworthy?

• Mostly yes but outside factors can 
influence reliability

• Networking Improvements

• Shutdown of time masters at 
datacenters for maintenance 



DISCUSSION TIME


