MapReduce: Simplified Data Processing on Large Clusters

Authors: Jeffrey Dean and Sanjay Ghemawat

Presented by: Luna (Lilong) Teng
Outline

- Motivation & Overview
- Word Count Example & Implementation
- Structure & Execution Overview
- Fault Tolerance
- Refinements
- Performance
Outline

- **Motivation & Overview**
- Word Count Example & Implementation
- Structure & Execution Overview
- Fault Tolerance
- Refinements
- Performance
Motivation

- **Large amount** of raw data to process
- Conceptually straightforward computation
- Distributed computations → Finish in reasonable time
- Problems:
 - Parallelize computations
 - Distribute data
 - Handle failures
MapReduce: Overview

- A programming model & an associated implementation for processing and generating large data sets.
MapReduce: Overview

- First version in 2003 by Google
- Significant growth of usage

Applications:
- Large-scale machine learning problems
- Clustering problems for the Google News
- Extraction of data in queries &
- Extraction of properties of web pages
- Large-scale graph computations
- ...
- Rewrite the production indexing system for the Google web search service
What is MapReduce

- Inspired by the *map* and *reduce* primitives
 - In Lisp & other languages

- Advantages:
 - Allow **user defined** computations
 - **Hides messy details** in a library:
 - Parallelization
 - Fault-tolerance
 - Data distribution
 - Load balancing
Main idea

- **Map** operation:
 - Each Input record → key/value pair

- **Reduce** operation:
 - (same key) values → Derived data
Map Function

- User specified

- In: An input pair

- Out: A set of intermediate key/value pairs
Intermediate key/value pairs

- MapReduce library **groups** intermediate values with same key /
Reduce Function

- User specified

- In: Intermediate key \(I \) and a set of values for key \(I \)
- Out: Smaller set of values

- Typically 0 or 1 output value per Reduce invocation
User specification

- **Map & Reduce** functions
- Names of input & output files
- Optional tuning parameters
Outline

● Motivation & Overview
● **Word Count Example & Implementation**
● Structure & Execution Overview
● Fault Tolerance
● Refinements
● Performance
Example: Word Count

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

<table>
<thead>
<tr>
<th>DOC1</th>
<th>DOC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>AAAA</td>
</tr>
</tbody>
</table>

Intermediates

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: Word Count

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += parseInt(v);
 Emit(AsString(result));
Implementation of MapReduce

● Many possible implementations depend on the environment

● Here: A MapReduce interface tailored towards Google’s cluster-based computing environment
 ○ Build on Commodity PCs connected with switched Ethernet
 ○ Machine failures are common
Outline

- Motivation & Overview
- Word Count Example & Implementation
- Structure & Execution Overview
- Fault Tolerance
- Refinements
- Performance
Structure

- Single master
- A set of workers
Structure

- **M**: Partition input data into M splits
 - Typically 16-64 MB per piece

- **R**: Partition intermediate key space into R pieces
 - Using a partitioning function
 - E.g. $(\text{hash(key)} \mod R)$

- All specified by user
Execution Overview

- One master program
 - The rest are workers
 - Master assign map/reduce tasks to idle workers

Figure 1: Execution overview
Execution Overview

- One master program
 - The rest are workers
 - Master assign map/reduce tasks to idle workers
Execution Overview

- **Workers** perform **Map** task
 - Intermediate key/value pairs buffered in memory
 - Periodically write buffered pairs into **local disk**
 - Locations of buffered pairs → Master

Figure 1: Execution overview
Execution Overview

- **Workers** perform *Map* task
 - Intermediate key/value pairs buffered in memory
 - Periodically write buffered pairs into *local disk*
 - Locations of buffered pairs → Master
Execution Overview

- Master sends these locations to **reduce workers**
- Reduce worker reads **intermediate data**
 - Sorts data by intermediate keys →
 - Intermediates with same key group together
 - If intermediate data too large:
 - External sort is used
- Atomically renames temporary output file →
 - Final output file
- Final file system: Data from **one** execution of each reduce task
- Therefore, **R** output files

![Diagram of execution overview]

Figure 1: Execution overview
Execution Overview

- Master sends these locations to **reduce workers**
- Reduce worker reads **intermediate data**
 - Sorts data by intermediate keys →
 - Intermediates with same key group together
 - If intermediate data too large:
 - External sort is used
Execution Overview

- Master sends these locations to **reduce workers**
- Reduce worker reads **intermediate data**
 - Sorts by intermediate keys →
 - Intermediates with same key group together
 - If intermediate data too large:
 - External sort is used
Execution Overview

- Master sends these locations to **reduce workers**
- Reduce worker reads **intermediate data**
 - Sorts by intermediate keys →
 - Intermediates with same key group together
 - If intermediate data too large:
 - External sort is used

- Atomically renames temporary output file → Final output file
- Final file system: Data from **one** execution of each reduce task
- Therefore, R output files
Execution Overview

- When all tasks completed
- Master wakes up the user program
Execution Overview

- Master data structures:
 - State of each map & reduce task:
 - Idle, in-progress, completed
 - Identity of worker machine
 - \(R \) intermediate file locations for each completed map task
Outline

- Motivation & Overview
- Word Count Example & Implementation
- Structure & Execution Overview
- Fault Tolerance
- Refinements
- Performance
Fault Tolerance

● Why important:
 ○ Commodity machines: Failures are common
 ○ Hundreds and thousands of machines: Tolerate faults gracefully

● Primary mechanism: Re-execution

● Worker Failure
● Master Failure
Fault Tolerance

Worker Failure

- Master pings worker periodically
- No response → Mark worker failed
- Reset Map task **completed** by failed worker → idle state
- Reset **in-progress** Map and Reduce tasks by failed worker → idle state
- Idle tasks → eligible for rescheduling
Fault Tolerance

Worker Failure
- Master pings worker periodically
- No response → Mark worker failed
- Reset Map task completed by failed worker → idle state
- Reset in-progress Map and Reduce tasks by failed worker → idle state
- Idle tasks → eligible for rescheduling
Fault Tolerance

Worker Failure

- Master pings worker periodically
- No response → Mark worker failed
- Reset Map task **completed** by failed worker → idle state
- Reset **in-progress** Map and Reduce tasks → idle state
- Idle tasks → eligible for rescheduling
Fault Tolerance

Worker Failure

- Master pings worker periodically
- No response \rightarrow Mark worker failed
- Reset Map task completed by failed worker \rightarrow idle state
- Reset in-progress Map and Reduce tasks \rightarrow idle state
- Idle tasks \rightarrow eligible for rescheduling
Fault Tolerance

Worker Failure

- Completed Map tasks are re-executed on failure
 - Map outputs: on local disks of workers

- Completed Reduce tasks do not need
 - Reduce outputs: in global file system

- All the workers will be notified of a re-execution
 - Reduce worker read data from new location

- Resilient to large-scale worker failures
Fault Tolerance

Worker Failure

● Completed Map tasks are re-executed on failure
 ○ Map outputs: on local disks of workers

● Completed Reduce tasks do not need
 ○ Reduce outputs: in global file system

● All the workers will be notified of a re-execution
 ○ Reduce worker read data from new location

● Resilient to large-scale worker failures
Fault Tolerance

Master Failure

- Single master, rare failure
- If master fails, aborts the MapReduce computation
- Client can retry

Figure 1: Execution overview
Semantics in the Presence of Failures

- **Deterministic Map/Reduce Functions**
 - Atomic commit task output:
 - guarantee no duplicates of *Map* results
 - Atomic rename operation:
 - guarantee no duplicates of *Reduce* results

- **Non-deterministic Functions**
 - Weaker but still reasonable semantics
Outline

- Motivation & Overview
- Word Count Example & Implementation
- Structure & Execution Overview
- Fault Tolerance
- Refinements
- Performance
Locality

- Scarce resource: Network bandwidth
- Solution: Store input data (managed by GFS) on local disks of machines that makes up the cluster
- GFS:
 - Divides data into 64 MB blocks
 - Replicates data in different machines (usually 3)
- Master: Assign map tasks to machines contains the data or close to data locations (e.g. same network switch)
Refinements

- Customizable Partitioning Function
- Ordering Guarantees
- Input and Output Types
- Auxiliary additional outputs
- Skipping bad records
- Local Execution
- Status information
- Counters
Refinements

- Optional Combiner Function
 - Partial merging of data at the end of Map
 - Typically same code as Reduce
 - E.x. <the, 1> in Zipf distributed word count task
Outline

- Motivation & Overview
- Word Count Example & Implementation
- Structure & Execution Overview
- Fault Tolerance
- Refinements
- Performance
Performance

2 computation tasks:

- Search through appx. 1 terabytes data → rare 3-character pattern (Grep)
 - Extract small amount of interesting data from large dataset
 - Input → 64 MB pieces ($M = 15000$)
 - Output in 1 file ($R = 1$)
Grep

- Peaks at ~ 30 GB/s
 - 1764 Workers

- ~ 1 min startup overhead
 - Program propagation to workers
 - Delays when interacting with GFS for locality optimization

Figure 2: Data transfer rate over time
Performance

2 computation tasks:

- Sort approx. 1 terabyte of data (Sort)
 - Shuffles data from one representation to another
 - Modeled after the TeraSort benchmark
 - Map → word, text line
 - Reduce → Built-in Identity function
Performance

2 computation tasks:

- Sort approx. 1 terabyte of data (Sort)
 - Input → 64 MB pieces ($M = 15000$)
 - Final output: A set of 2-way replicated GFS files
 - $R = 4000$
Sort Performance

- **Input rate:**
 - Input is read

- **Shuffle rate:**
 - Data sent from map tasks to reduce tasks

- **Output rate**
 - Sorted data written to final output files by reduce tasks

- **Higher input rate**
 - Locality optimization

(a) Normal execution
Sort Performance

- Input rate less than that for grep
 - Spend half of time & bandwidth writing intermediates
Sort Performance

First batch of ~ 1700 reduce workers

Some of the first batch finish, Start shuffling for remaining reduce tasks

- Shuffle rate:
 - Data sent from map tasks to reduce tasks

(a) Normal execution
Sort Performance

- Output rate
 - Sorted data written to final output files by reduce tasks

First batch of ~ 1700 reduce workers
- Some of the first batch finish,
 - Start shuffling for remaining reduce tasks
- Delay due to busy sorting of intermediates
 - Finishes at ~850s
 - (891s including the startup overhead)

(a) Normal execution
Backup Task

- “Stragglers”: machines take unusually long time

- Solution:
 - *Map/Reduce* close to completion
 - Master schedule backups for remaining in-progress tasks

- 44% longer time when no backup tasks

Wait for 5 “stragglers” from 960s
Machine Failure

- Killed 200 out of 1746 workers
 - \(\approx 11.5\%\) workers

- 5% increase of execution time

- Neg values: Map work need to be redone in dead workers
Sort Performance

- Entire computation takes 891s
- Comparable to best reported results (1057s) for the TeraSort Benchmark
Conclusion

● Mapreduce is easy to use
 ○ Hides details of
 ■ Parallelization
 ■ Fault-tolerance
 ■ Locality optimization
 ■ Load balancing

● Powerful
 ○ A large variety of problems are expressible as MapReduce computations

● Scalable
 ○ Implementation of MapReduce using large cluster of machines
Thank you!

Questions?