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Motivation

● Large amount of raw data to process

● Conceptually straightforward computation

● Distributed computations → Finish in reasonable time

● Problems:
○ Parallelize computations
○ Distribute data
○ Handle failures



MapReduce: Overview

● A programming model & an associated implementation 
for processing and generating large data sets. 



MapReduce: Overview

● First version in 2003 by Google
● Significant growth of usage

○ Rewrite the production indexing system for the 
Google web search service

● Applications:
○ Large-scale machine learning problems
○ Clustering problems for the Google News 
○ Extraction of data in queries & 
○ Extraction of properties of web pages
○ Large-scale graph computations
○ …



What is MapReduce

● Inspired by the map and reduce primitives 
○ In Lisp & other languages

● Advantages:
○ Allow user defined computations
○ Hides messy details in a library:

■ Parallelization 
■ Fault-tolerance
■ Data distribution
■ Load balancing



Main idea

● Map operation: 
○ Each Input record → key/value pair

● Reduce operation:  
○ (same key) values → Derived data



Map Function

● User specified

● In: An input pair
● Out: A set of intermediate key/value pairs



Intermediate key/value pairs

● MapReduce library groups 
intermediate values with 
same key I



Reduce Function

● User specified

● In: Intermediate key I and a set of values for key I
● Out: Smaller set of values

● Typically 0 or 1 output value per Reduce invocation



User specification

● Map & Reduce functions
● Names of input & output files
● Optional tuning parameters
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Example: Word Count



Implementation of MapReduce

● Many possible implementations depend on the environment

● Here: A MapReduce interface tailored towards Google’s 
cluster-based computing environment

○ Build on Commodity PCs connected with switched Ethernet
○ Machine failures are common
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Structure

● Single master
● A set of workers



Structure

● M: Partition input data into M splits
○ Typically 16-64 MB per piece

● R: Partition intermediate key space into R pieces
○ Using a partitioning function 
○ E.g. (hash(key) mod R)

● All specified by user



Execution Overview

● One master program 
○ The rest are workers 
○ Master assign map/reduce tasks 

to idle workers
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Execution Overview
● Workers perform Map task

○ Intermediate key/value pairs buffered in 
memory

○ Periodically write buffered pairs into local disk
○ Locations of buffered pairs → Master
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Execution Overview ● Master sends these locations to reduce workers
● Reduce worker reads intermediate data

○ Sorts data by intermediate keys → 
○ Intermediates with same key group together
○ If intermediate data too large:
○ External sort is used

● Atomically renames 
temporary output file → 
Final output file

● Final file system: Data 
from one execution of 
each reduce task

● Therefore, R output files
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Execution Overview

● When all tasks completed
● Master wakes up the user program



Execution Overview
● Master data structures:

○ State of each map & reduce task:
■ Idle, in-progress, completed

○ Identity of worker 
machine

○ R intermediate file 
locations for each 
completed map task
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Fault Tolerance

● Primary mechanism:   Re-execution

● Worker Failure
● Master Failure

● Why important:
○ Commodity machines: Failures are common
○ Hundreds and thousands of machines: Tolerate faults gracefully



Fault Tolerance
Worker Failure

● Reset Map task completed by failed 
worker → idle state

● Reset in-progress Map and Reduce 
tasks by failed worker → idle state

● Idle tasks → eligible for rescheduling

● Master pings worker periodically
● No response → Mark worker failed 
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Fault Tolerance
Worker Failure

● Completed Map tasks are re-executed on failure
○ Map outputs: on local disks of workers

● Completed Reduce tasks do not need 
○ Reduce outputs: in global file system

● All the workers will be notified of a 
re-execution

○ Reduce worker read data from new location
● Resilient to large-scale worker failures
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Fault Tolerance
Master Failure

● Single master, rare failure

● If master fails, aborts the MapReduce 
computation

● Client can retry



Semantics in the Presence of Failures 
● Deterministic Map/Reduce Functions

○ Atomic commit task output: 
■ guarantee no duplicates of Map results

○ Atomic rename operation: 
■ guarantee no duplicates of Reduce results

● Non-deterministic Functions
○ Weaker but still reasonable semantics
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Locality
● Scarce resource: Network bandwidth 

● Solution: Store input data (managed by GFS) on 
local disks of machines that makes up the cluster

● GFS: 
○ Divides data into 64 MB blocks
○ Replicates data in different machines (usually 3)

● Master: Assign map tasks to machines 
contains the data or close to data 
locations (e.g. same network switch) 



Refinements

● Customizable Partitioning Function
● Ordering Guarantees
● Input and Output Types
● Auxiliary additional outputs
● Skipping bad records
● Local Execution
● Status information
● Counters



Refinements

● Optional Combiner Function
○ Partial merging of data at the 

end of Map

○ Typically same code as 
Reduce

○ E.x. <the, 1> in Zipf 
distributed word count task
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Performance

2 computation tasks:

● Search through appx. 1 terabytes data → 
rare 3-character pattern (Grep)

○ Extract small amount of interesting data 
from large dataset

○ Input → 64 MB pieces (M = 15000)
○ Output in 1 file (R = 1)



Grep

Map task finishing

~ 1 min startup

● Peaks at ~ 30 GB/s
○ 1764 Workers

● ~ 1 min startup 
overhead 
○ Program propagation to 

workers
○ Delays when interacting 

with GFS for locality 
optimization



Performance

2 computation tasks:

● Sort appx. 1 terabyte of data (Sort)

○ Shuffles data from one representation to another

○ Modeled after the TeraSort benchmark

○ Map → word, text line
○ Reduce → Built-in Identity function



Performance

2 computation tasks:

● Sort appx. 1 terabyte of data (Sort)

○ Input → 64 MB pieces (M = 15000)

○ Final output: A set of 2-way replicated GFS files
○ R = 4000



Sort Performance ● Input rate:
○ Input is read

● Shuffle rate:
○ Data sent from map tasks 

to reduce tasks

● Output rate
○ Sorted data written to final 

output files by reduce tasks

● Higher input rate
○ Locality optimization



Sort Performance

● Input rate less than that for grep
○ Spend half of time & bandwidth writing 

intermediates

Grep input rateSort input rate

Peaks at ~13 GB/s



Sort Performance

First batch of ~ 1700 reduce workers

Some of the first batch finish, 
Start shuffling for remaining 
reduce tasks

● Shuffle rate:
○ Data sent from map tasks 

to reduce tasks



Sort Performance

First batch of ~ 1700 reduce workers

Some of the first batch finish, 
Start shuffling for remaining 
reduce tasks

● Output rate
○ Sorted data written to final 

output files by reduce tasks

Delay due to busy sorting of intermediates 
Finishes at ~850s 
(891s including the startup overhead)



Backup Task

Wait for 5 “stragglers” from 960s

● “Stragglers”: machines take 
unusually long time

● Solution: 
○ Map/Reduce close to 

completion
○ Master schedule backups for 

remaining in-progress tasks

● 44% longer time when no 
backup tasks



Machine Failure
● Killed 200 out of 1746 workers

○ ~ 11.5% workers

● 5% increase of execution 
time

● Neg values: Map work need 
to be redone in dead 
workers



Sort Performance

● Entire computation takes 891s
● Comparable to best reported results (1057s) for the TeraSort 

Benchmark



Conclusion
● Mapreduce is easy to use

○ Hides details of 
■ Parallelization
■ Fault-tolerance
■ Locality optimization
■ Load balancing

● Powerful
○ A large variety of problems are expressible as MapReduce 

computations

● Scalable
○ Implementation of MapReduce using large cluster of machines



Thank you!

Questions?


