Fast Paxos

Presented by Tianji Cong
11/1/2021

Background
e A traditional consensus algorithm like Paxos requires three message delays in
a client-server system with synchrony

e Paxos is popular as the requirement of three message delays has been
shown optimal in practice

Classic Paxos Recap

Proposer Acceptor
Send IAmLeader(n) to all

Wait for a majority of responses

If n is the highest leader # | have seen:
respond with
YouAreLeader(Value, LeaderWhoProposedValue)

Once majority is received, send
Propose(n,V) whereV is the highest-leader
proposal among the responses (or my own
value, if none of the responses had a value)

If n is the highest leader # | have seen, send
Accept(n,V) to the learner

Screenshot from EECS 591 lecture slides (Fall 2021) compiled by Prof. Manos Kapritsos

Class version of Paxos

Three roles: proposer,
acceptor, learner

Does not terminate

New leader with a higher
leader number has to
propose the same value that
has been learned

Paxos in Original Paper

Observations / Optimizations:
1. “In most applications, the system executes a sequence of
instances of the algorithm with the same agents, using the same
leader for each instance.”

2. l|AmLeader and YouArelLeader messages can be performed

Proposer . . , -
P simultaneously for all instances, and so amortized and negligible

(Client)

Decree

Accepted value

Acceptor

C Optimized Paxos: Three message delays in a client-server model

Fast Paxos: Extension of Paxos

Paxos: Three message delays in a client-server model

Challenge: Can we do better?

I’ll cheat when there is no
concurrent requests;
otherwise, remain as Paxos

I'll be live when the network
is synchronous while
keeping safe all the time

Paxos Fast Paxos

Key ldea of Fast Paxos

Proposer

R t
(Client) eques

Leader

Accepted value

Acceptor

The proposer skips the leader and sends the request directly to acceptors if applicable

Fast Paxos Overview

e Around (An execution) is either a fast round or a classic round

e In a fast round (with Leader elected)
o Leader sends a special message (“any” message) to acceptors without proposing any value if

no value was learned before

o Acceptors receiving “any” message accept proposed values directly from a client and send it
to learners

o Alearner learns a value if it receives a quorum of acceptors

e The classic round is the same as an execution of classic paxos

Fast Round vs. Classic Round

Fast Round Classic Round

1
Coordinator

Acceptor : :
Acceptor : \\m ; >
Acceptor H i
Acceptor 4 \ L | :
Learner : .

Screenshot from: Zhao, Wenbing. "Fast paxos made easy: Theory and implementation." International Journal of Distributed Systems and Technologies (IJDST) 6.1 (2015): 15-33

How Fast Paxos Helps?

When could a fast round be executed?
1) A Leader elected as the system starts running AND
2) No value has been proposed, so Leader can send “any” message

Thus,

=> Allow a single “any” message for all instances of Fast Paxos
=> Eliminate a message delay from Leader to Acceptors that proposes decree

A classic run takes over if a consensus cannot be reached in the fast run

No Free Lunch

e Even when there is no failure
o Asimple majority is not enough to tell if a value has been learnt in the previous round

o Need more than 3/4 of the acceptors in the fast quorum

e Fast Paxos “degrades” to classic Paxos
o Failure of Leader

o Client requests collision
m Multiple clients send concurrent requests

m It's possible that different Acceptors accept different values in the fast round

m Learners get confused when seeing different values in the quorum

Quorum Requirement

e Must guarantee to learn the same value as in previous rounds
o Cannot have two quorums in the same round that accept different values WHILE

o Two quorums and a maijority set of acceptors (following Leader) have empty intersection

e Quorum requirements (for any round numbers j and j)
o Any j-quorum and any j-quorum have non-empty intersection

o Ifjis afast round #, then any i-quorum and any two j-quorums have a non-empty intersection

Choosing Quorums

e Let N be the number of acceptors, and choose F and E such that
1) Any set of at least N - F acceptors is a classic quorum AND
2) Any set of at least N - E acceptors is a fast quorum

e Can always assume E<F
o Any i-quorum and any j-quorum have non-empty intersection

> N>2F
o Any two fast quorums and any classic or fast quorum have a non-empty intersection
> N>2E+F

e Forfixed N, two ways to choose E and F to maximize one or the other
o MaximizeE=>E=F=IN/31-1
o Maximize F=>F=[N/21-1and E=LN/4]

Collision Recovery

Collision: In a fast round, Acceptors receive concurrent requests in different orders

Recovery: Leader can begin a classic round after detecting a collision

=> Coordinated Recovery
Suppose round i is a fast round, round /i and j+7 have the same leader

L 4
€ Leader (as a learner) receives p2b message from acceptors

€ Leaderreuses p2b message in round i as p7b message in round i+17
L 4

The rest procedure of a classic round follows as usual

|Is Fast Paxos Practical?

e No performance evaluation in the original paper

e Seems brittle as the scenario of concurrent client requests is not uncommon

4000.0 ’

2 35000 +
g 3000.0 + y
8 25000 \
2 20000 |
g
2 1500.0
=
[
g 1000.0
2
[
& 500.0 | Fast Paxos -- 128 ——

0.0 ‘ Classic Paxos -- 128

o 1 2 3 4 5 6

Number of Concurrent Clients
(b)

Screenshot from: Zhao, Wenbing. "Fast paxos made easy: Theory and implementation." International Journal of Distributed Systems and Technologies (IJDST) 6.1 (2015): 15-33

Discussion Time

