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Failure Detectors

* A service that reports status of a remote process as UP or DOWN:
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 Fundamental primitive in distributed applications
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Reliable Failure Detectors (RFDs)

« SAFETY (STRONG ACCURACY):

RFD reports process is DOWN — process crashed

. LIVENESS (STRONG COMPLETENESS):

Process crashes = RFD eventually reports process is DOWN
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process may crash:

 Can’t differentiate between crashed process vs. slow network




Bad News

 The FLP result: consensus is impossible in asynchronous systems where one
process may crash:

 Can’t differentiate between crashed process vs. slow network

e Consensus is reducible to RFD:;

 Consensus is impossible = RFD is impossible
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 Assume synchrony and use end-to-end timeouts:

N

* Problem: doesn’t extend very well to asynchrony:

 Too short: might violate safety X

1"

* oo long: might be overly slow 41
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e Can | use short timeouts and still be safe?

 Murder: after timeout, kill the machine and then report DOWN:

G 7 M chine
. S| Mo
N




Solutions (cont.)

e Can | use short timeouts and still be safe?

 Murder: after timeout, kill the machine and then report DOWN:
G 7 M chine
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* Problem: disruptive (and sociopathic)
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 Detect failures with insider information from process:

 can make us almost always safe and fast
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A Better Solution: FALCON

 Detect failures with insider information from process:

 can make us almost always safe and fast

* Fallback onto suboptimal solutions as a failsafe:

* Timeouts + killing ensures liveness and safety when “almost always” fails

 Don’t worry about extreme asynchrony:
@L—\j\\e): down .

* Block!
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Collecting Insider Information with Spies

* Client can gather information using a spy:

» Spy sits on remote machine and monitors “layer” L

& nferear

« Spy monitors L, but occupies L and L — 1 (inspector and enforcer)
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What Information Does a Spy Collect?

* |nspector:

* Tries to infer operational status (alive, or not)

* Enforcer:
- — |
» Jells client operational status | e po %
N
« LAYER DOWN or LAYER_UP e
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Example: Application Spy

* |nspector:
* |s athread inside the process

* | ooks for signs of life

* Enforcer:
e |sits own process
« Communicates with inspector via IPC to make quick decisions

» Before reporting LAYER_DOWN, double-checks process table
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Collecting More Information: A Spy Network

* One spy per layer

AF\O S\o\& ® App Lméu" , L=H

* Each spy implicitly monitors spy above it OS Spu ® o5 Lasjar l =2
» App spy enforcer dead <= OS layer dead FE;. UMM Losger l Lea

* OS layer dead = OS spy says | .
LAYER_DOWN N ebwrle Py | g Nebwak Lager | 1=
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e Solution: long end-to-end timeout as fallback



Can Spies Mess Up?

Problem: app spy enforcer could die without OS layer dying

Solution: long end-to-end timeout as fallback

Problem: app spy could miss layer failure (bad “insider” information)

Solution: again, long end-to-end timeout as fallback
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The Failure Detection Algorithm

* |f any enforcer confident of crash:
* |t reports LAYER_DOWN to FALCON

 FALCON reports final decision DOWN
(works because any layer down — process is down)
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The Failure Detection Algorithm

* |f any enforcer confident of crash:
* |t reports LAYER_DOWN to FALCON

 FALCON reports final decision DOWN
(works because any layer down — process is down)

* If any enforcer suspicious: @Yéh-o@ (/Dw.\g
Ve . L

» Kill layer and be confident ) Lagor %§ C}D\
)
\ ™\

e |f timeout expires: ENFORER.

CLIENT

 FALCON issues surgical kill orders and says DOWN
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Corner Case

 Problem: haven’t heard from network spy



Corner Case

 Problem: haven’t heard from network spy

o Solution: block, because this means either:
» extreme asynchrony

* network layer crash (indistinguishable from asynchrony)
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Evaluating FALCON

* Criteria:
1. Failure detection time (and thus system availability)

Disruption (when and how much killing)

Computational complexity

L DN

Code complexity
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e Sub-second detection time:
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Detection Time and Availability

e Sub-second detection time:
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 Reduces median ZooKeeper unavailability time by ~6x (kernel/host crashes)



System Disruption



System Disruption

* Usually minimal killing
 Few cases where it goes overboard:

* E.g., Network load causes VMM spy enforcer to suspect death (and Kill
VMM)

* Can be fixed by better enforcer logic!
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Computational and Code Complexity

* Generally low cost: < 1% CPU overhead



Computational and Code Complexity

* Generally low cost: < 1% CPU overhead

 Reduces code complexity:

e FALCON is a RFD — don’t need to handle failure mistakes

 Primary-backup + FALCON = 21% less code than Paxos + timeout!
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More Discussion In The Paper

 FALCON after recovery
 FALCON for different platforms

 More evaluation against large failure and stress-test suite



