Detecting failures In distributed
systems with the FALCON spy network

Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K. Aguilera, Michael Walfish

B Microsoft
B Research

Presenter: Neal Mangaokar

Failure Detectors

Failure Detectors

* A service that reports status of a remote process as UP or DOWN:

Failure Detectors

* A service that reports status of a remote process as UP or DOWN:

=

I Client

| D efedkor |

Failure Detectors

* A service that reports status of a remote process as UP or DOWN:

CQuar
[Client | = [Dekechr]

9l
o€

Down X

Failure Detectors

* A service that reports status of a remote process as UP or DOWN:

_ Quer
[Client | = [Deeckr |

Down X

 Fundamental primitive in distributed applications

Reliable Failure Detectors (RFDs)

Reliable Failure Detectors (RFDs)

« SAFETY (STRONG ACCURACY):

RFD reports process is DOWN — process crashed

Reliable Failure Detectors (RFDs)

« SAFETY (STRONG ACCURACY):

RFD reports process is DOWN — process crashed

. LIVENESS (STRONG COMPLETENESS):

Process crashes = RFD eventually reports process is DOWN

Bad News

 The FLP result: consensus is impossible in asynchronous systems where one
process may crash:

 Can’t differentiate between crashed process vs. slow network

Bad News

 The FLP result: consensus is impossible in asynchronous systems where one
process may crash:

 Can’t differentiate between crashed process vs. slow network

e Consensus is reducible to RFD:;

 Consensus is impossible = RFD is impossible

Solutions

Solutions

 Assume synchrony and use end-to-end timeouts:

N

Solutions

 Assume synchrony and use end-to-end timeouts:

N

* Problem: doesn’t extend very well to asynchrony:

 Too short: might violate safety X

1"

* oo long: might be overly slow 41

Solutions (cont.)

Solutions (cont.)

e Can | use short timeouts and still be safe?

Solutions (cont.)

e Can | use short timeouts and still be safe?

 Murder: after timeout, kill the machine and then report DOWN:

G 7 M chine
. S| Mo
N

Solutions (cont.)

e Can | use short timeouts and still be safe?

 Murder: after timeout, kill the machine and then report DOWN:
G 7 M chine
{t// >, —P
W | [Proces

* Problem: disruptive (and sociopathic)

A Better Solution: FALCON

A Better Solution: FALCON

 Detect failures with insider information from process:

 can make us almost always safe and fast

@\,—\:’\\ o'c down .

A Better Solution: FALCON

 Detect failures with insider information from process:

 can make us almost always safe and fast

* Fallback onto suboptimal solutions as a failsafe:

* Timeouts + killing ensures liveness and safety when “almost always” fails

 Don’t worry about extreme asynchrony:
@L—\j\\e): down .

* Block!

Collecting Insider Information with Spies

Collecting Insider Information with Spies

* Client can gather information using a spy:

» Spy sits on remote machine and monitors “layer” L

hep Spy=e | App Layer | Lo*

Collecting Insider Information with Spies

* Client can gather information using a spy:

» Spy sits on remote machine and monitors “layer” L

& nferear

« Spy monitors L, but occupies L and L — 1 (inspector and enforcer)

What Information Does a Spy Collect?

What Information Does a Spy Collect?

* |nspector:

* Tries to infer operational status (alive, or not)

What Information Does a Spy Collect?

* |nspector:

* Tries to infer operational status (alive, or not)

* Enforcer:
- — |
» Jells client operational status | e po %
N
« LAYER DOWN or LAYER_UP e

Example: Application Spy

Example: Application Spy

* |nspector:

* |s athread inside the process

* | ooks for signs of life

Example: Application Spy

* |nspector:
* |s athread inside the process

* | ooks for signs of life

* Enforcer:
e |sits own process
« Communicates with inspector via IPC to make quick decisions

» Before reporting LAYER_DOWN, double-checks process table

Collecting More Information: A Spy Network

Collecting More Information: A Spy Network

e Ones er layer
Py PELEY Aer Spy ® App Layer | L=t
OF S?'& :CDS Lwd.a/r l L=2
’t}’o VMM Layer l =7

NL{'VW’kLo%u— l L=\

o C,li@

Collecting More Information: A Spy Network

* One spy per layer

AF\O S\o\& ® App Lméu" , L=H

* Each spy implicitly monitors spy above it OS Spu ® o5 Lasjar l =2
» App spy enforcer dead <= OS layer dead FE;. UMM Losger l Lea

* OS layer dead = OS spy says | .
LAYER_DOWN N ebwrle Py | g Nebwak Lager | 1=

Can Spies Mess Up?

Can Spies Mess Up?

* Problem: app spy enforcer could die without OS layer dying

e Solution: long end-to-end timeout as fallback

Can Spies Mess Up?

Problem: app spy enforcer could die without OS layer dying

Solution: long end-to-end timeout as fallback

Problem: app spy could miss layer failure (bad “insider” information)

Solution: again, long end-to-end timeout as fallback

The Failure Detection Algorithm

The Failure Detection Algorithm

* |f any enforcer confident of crash:
* |t reports LAYER_DOWN to FALCON

 FALCON reports final decision DOWN
(works because any layer down — process is down)

@YE’L-D@ (DowN)
p-* -.\\)7

Loger x % ﬁ?\
\ (™ \

ENFORCER,

CLIENT

The Failure Detection Algorithm

* |f any enforcer confident of crash:
* |t reports LAYER_DOWN to FALCON

 FALCON reports final decision DOWN
(works because any layer down — process is down)

* If any enforcer suspicious: @Yéh-o@ (/Dw.\g
Ve . L

» Kill layer and be confident) Lagor %§ C}D\
)
\ ™\

ENFORCER

CLIENT

The Failure Detection Algorithm

* |f any enforcer confident of crash:
* |t reports LAYER_DOWN to FALCON

 FALCON reports final decision DOWN
(works because any layer down — process is down)

* If any enforcer suspicious: @Yéh-o@ (/Dw.\g
Ve . L

» Kill layer and be confident) Lagor %§ C}D\
)
\ ™\

e |f timeout expires: ENFORER.

CLIENT

 FALCON issues surgical kill orders and says DOWN

Corner Case

Corner Case

 Problem: haven’t heard from network spy

Corner Case

 Problem: haven’t heard from network spy

o Solution: block, because this means either:
» extreme asynchrony

* network layer crash (indistinguishable from asynchrony)

— 2D
FL |

Evaluating FALCON

Evaluating FALCON

* Criteria:
1. Failure detection time (and thus system availability)

Disruption (when and how much killing)

Computational complexity

L DN

Code complexity

Detection Time and Availability

Detection Time and Availability

e Sub-second detection time:

R
-
—

DeTecron
TTMNME

CJ eLcon &J>

- W B ON) 8 O

—
S

Detection Time and Availability

e Sub-second detection time:

R
-
—

Y
8
1

Detecrron |

TTME p ‘

(seconds) |
L
FALco s '\ M- ouT

BASED FED's

 Reduces median ZooKeeper unavailability time by ~6x (kernel/host crashes)

System Disruption

System Disruption

* Usually minimal killing
 Few cases where it goes overboard:

* E.g., Network load causes VMM spy enforcer to suspect death (and Kill
VMM)

* Can be fixed by better enforcer logic!

Computational and Code Complexity

Computational and Code Complexity

* Generally low cost: < 1% CPU overhead

Computational and Code Complexity

* Generally low cost: < 1% CPU overhead

 Reduces code complexity:

e FALCON is a RFD — don’t need to handle failure mistakes

 Primary-backup + FALCON = 21% less code than Paxos + timeout!

More Discussion In The Paper

More Discussion In The Paper

 FALCON after recovery
 FALCON for different platforms

 More evaluation against large failure and stress-test suite

