
Presenter: Neal Mangaokar

Detecting failures in distributed
systems with the FALCON spy network
Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K. Aguilera, Michael Walfish

Failure Detectors

Failure Detectors
• A service that reports status of a remote process as UP or DOWN:

Failure Detectors
• A service that reports status of a remote process as UP or DOWN:

Failure Detectors
• A service that reports status of a remote process as UP or DOWN:

Failure Detectors
• A service that reports status of a remote process as UP or DOWN:

• Fundamental primitive in distributed applications

Reliable Failure Detectors (RFDs)

Reliable Failure Detectors (RFDs)
• SAFETY (STRONG ACCURACY):

RFD reports process is DOWN process crashed⟹

Reliable Failure Detectors (RFDs)
• SAFETY (STRONG ACCURACY):

RFD reports process is DOWN process crashed⟹

• LIVENESS (STRONG COMPLETENESS):

Process crashes RFD eventually reports process is DOWN⟹

Bad News

Bad News
• The FLP result: consensus is impossible in asynchronous systems where one

process may crash:

• Can’t differentiate between crashed process vs. slow network

Bad News
• The FLP result: consensus is impossible in asynchronous systems where one

process may crash:

• Can’t differentiate between crashed process vs. slow network

• Consensus is reducible to RFD:

• Consensus is impossible RFD is impossible⟹

 Solutions

 Solutions
• Assume synchrony and use end-to-end timeouts:

 Solutions
• Assume synchrony and use end-to-end timeouts:

• Problem: doesn’t extend very well to asynchrony:

• Too short: might violate safety

• Too long: might be overly slow

 Solutions (cont.)

 Solutions (cont.)
• Can I use short timeouts and still be safe?

 Solutions (cont.)
• Can I use short timeouts and still be safe?

• Murder: after timeout, kill the machine and then report DOWN:

 Solutions (cont.)
• Can I use short timeouts and still be safe?

• Problem: disruptive (and sociopathic)

• Murder: after timeout, kill the machine and then report DOWN:

A Better Solution: FALCON

A Better Solution: FALCON
• Detect failures with insider information from process:

• can make us almost always safe and fast

A Better Solution: FALCON
• Detect failures with insider information from process:

• can make us almost always safe and fast

• Fallback onto suboptimal solutions as a failsafe:

• Timeouts + killing ensures liveness and safety when “almost always” fails

• Don’t worry about extreme asynchrony:

• Block!

Collecting Insider Information with Spies

Collecting Insider Information with Spies
• Client can gather information using a spy:

• Spy sits on remote machine and monitors “layer”
L

Collecting Insider Information with Spies
• Client can gather information using a spy:

• Spy sits on remote machine and monitors “layer”
L

• Spy monitors , but occupies and (inspector and enforcer)L L L −1

What Information Does a Spy Collect?

What Information Does a Spy Collect?
• Inspector:

• Tries to infer operational status (alive, or not)

What Information Does a Spy Collect?
• Inspector:

• Tries to infer operational status (alive, or not)

• Enforcer:

• Tells client operational status

• LAYER_DOWN or LAYER_UP

Example: Application Spy

Example: Application Spy
• Inspector:

• Is a thread inside the process

• Looks for signs of life

Example: Application Spy
• Inspector:

• Is a thread inside the process

• Looks for signs of life

• Enforcer:

• Is its own process

• Communicates with inspector via IPC to make quick decisions

• Before reporting LAYER_DOWN, double-checks process table

Collecting More Information: A Spy Network

Collecting More Information: A Spy Network
• One spy per layer

Collecting More Information: A Spy Network
• One spy per layer

• Each spy implicitly monitors spy above it

• App spy enforcer dead OS layer dead

• OS layer dead OS spy says  
 LAYER_DOWN

⟺

⟹

Can Spies Mess Up?

Can Spies Mess Up?

• Problem: app spy enforcer could die without OS layer dying

• Solution: long end-to-end timeout as fallback

Can Spies Mess Up?

• Problem: app spy could miss layer failure (bad “insider” information)

• Solution: again, long end-to-end timeout as fallback

• Problem: app spy enforcer could die without OS layer dying

• Solution: long end-to-end timeout as fallback

The Failure Detection Algorithm

The Failure Detection Algorithm
• If any enforcer confident of crash:

• It reports LAYER_DOWN to FALCON

• FALCON reports final decision DOWN 
(works because any layer down process is down)⟹

The Failure Detection Algorithm
• If any enforcer confident of crash:

• It reports LAYER_DOWN to FALCON

• FALCON reports final decision DOWN 
(works because any layer down process is down)⟹

• If any enforcer suspicious:

• Kill layer and be confident :)

The Failure Detection Algorithm
• If any enforcer confident of crash:

• It reports LAYER_DOWN to FALCON

• FALCON reports final decision DOWN 
(works because any layer down process is down)⟹

• If any enforcer suspicious:

• Kill layer and be confident :)

• If timeout expires:

• FALCON issues surgical kill orders and says DOWN

Corner Case

Corner Case
• Problem: haven’t heard from network spy

Corner Case
• Problem: haven’t heard from network spy

• Solution: block, because this means either:

• extreme asynchrony

• network layer crash (indistinguishable from asynchrony)

Evaluating FALCON

Evaluating FALCON
• Criteria:

1. Failure detection time (and thus system availability)

2. Disruption (when and how much killing)

3. Computational complexity

4. Code complexity

Detection Time and Availability

Detection Time and Availability

• Sub-second detection time:

Detection Time and Availability

• Sub-second detection time:

• Reduces median ZooKeeper unavailability time by ~6x (kernel/host crashes)

System Disruption

System Disruption

• Usually minimal killing

• Few cases where it goes overboard:

• E.g., Network load causes VMM spy enforcer to suspect death (and kill
VMM)

• Can be fixed by better enforcer logic!

Computational and Code Complexity

Computational and Code Complexity

• Generally low cost: < 1% CPU overhead

Computational and Code Complexity

• Generally low cost: < 1% CPU overhead

• Reduces code complexity:

• FALCON is a RFD don’t need to handle failure mistakes

• Primary-backup + FALCON = 21% less code than Paxos + timeout!

⟹

More Discussion In The Paper

More Discussion In The Paper

• FALCON after recovery

• FALCON for different platforms

• More evaluation against large failure and stress-test suite

