
EECS 591

DISTRIBUTED SYSTEMS

Manos Kapritsos

Fall 2021

Slides by: Lorenzo Alvisi

CONSENSUS AND

RELIABLE BROADCAST

BROADCAST

If a process sends a message , then every process
eventually delivers

How can we adapt the spec for an environment
where processes may fail?

RELIABLE BROADCAST

Validity

Agreement

Integrity

If the sender is correct and broadcasts a
message , then all correct processes
eventually deliver

If a correct process delivers a message ,
then all correct processes eventually
deliver

Every correct process delivers at most one
message, and if it delivers , then
some process must have broadcast

TERMINATING RELIABLE BROADCAST

Validity

Agreement

Integrity

If the sender is correct and broadcasts a
message , then all correct processes
eventually deliver

If a correct process delivers a message ,
then all correct processes eventually
deliver

Every correct process delivers at most one
message, and if it delivers , then
some process must have broadcast

Termination Every correct process eventually delivers
some message

CONSENSUS

Every process has a value to propose. After
running a consensus algorithm, all processes should

deliver the same value.

CONSENSUS

Validity

Agreement

Integrity

If all processes that propose a value
propose , then all correct processes
eventually decide

If a correct process decides , then all
correct processes eventually decide

Every correct process decides at most one
value, and if it decides , then some process
must have proposed

Termination Every correct process eventually decides
some value

PROPERTIES OF send(m) AND receive(m)

Benign failures:

Validity

Uniform*

integrity

If sends to , and , and the link
between them are correct, then
eventually receives

For every message , receives at most
once from , and only if sent to

* A property is called uniform if it applies
to both correct and faulty processes

MODEL

Synchronous message passing

Execution is a sequence of rounds

In each round every process takes a step

sends messages to neighbors

receives messages send in that round

changes its state

Network is fully connected

No communication failures

A SIMPLE CONSENSUS ALGORITHM

Process :
Initially

To execute propose():
1. Send { } to all
decide() occurs as follows:
2. for all , do
3. receive from
4.
5. decide min()

AN EXECUTION

time

AN EXECUTION

What should decide at the end of the round?

start of

round

end of

round

AN EXECUTION

What should decide at the end of the round?

round 1

round 2

ECHOING VALUES

A process that receives a proposal in round 1,
relays it to others during round 2

Suppose hasn’t heard from at the end of
round 2. Can decide?

WHAT IS GOING ON

A correct process has not received all proposals
by the end of round . Can decide?

Another process may have received the missing
proposal at the end of round and be ready to
relay it in round

DANGEROUS CHAINS

Dangerous chain

The last process in the chain is correct, all others faulty

round 1

round 2

round

LIVING DANGEROUSLY

How many rounds can a dangerous chain span?

 faulty processes
 At most nodes in the chain

 Spans at most rounds

It is safe to decide by the end of round !

ADMINISTRIVIA

Problem set #1 due September 27

See Piazza post for a list of deadlines

PREPARING FOR THE “RESEARCH”

PART OF THE COURSE

Look at the papers listed on the course webpage

You each pick one to present

(email me 4 preferences by Monday night)

I’ll assign you to a paper and post the schedule

~25-30 minutes presentation
Send me the slides by Nov 2

(unless you are presenting earlier)

THE RESEARCH PROJECT
Sample topics:

Combining Fast Paxos and Flexible Paxos to reduce latency in
a geo-replicated storage system

Proving the correctness of BitCoin

Why the world needs real-time proofs of distributed systems

Applying Byzantine Fault Tolerance to blockchains: theory
and practice

Supporting the equivalent instruction hypothesis

Concrete

Motivational

Survey

All the things you can do with Flexible Paxos

THE ALGORITHM

Process :
Initially

To execute propose():

1. Send { : has not already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

Every correct process

Reaches round

Decides min(), which is well defined

PROVING TERMINATION
To execute propose():

1. Send { : has not
already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

PROVING INTEGRITY
To execute propose():

1. Send { : has not
already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

At most one value:

Only if it was proposed:

One decide() and min() is unique

To be decided, must be in in round
If value = , then it is proposed in round

By Uniform Integrity of underlying send and
receive, it must have been sent in round
By the protocol, and because we only have
benign failures, it must have been proposed

Induction hypothesis: all values received up to
round have been proposed

Sent in round (Uniform Integrity of
send and synchronous model)
Must have been part of of sender at end
of round
By the protocol, must have been received by
sender by the end of round
By induction hypothesis, must have been
proposed

else, suppose it was received in round
By induction:

PROVING VALIDITY
To execute propose():

1. Send { : has not
already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

Suppose every process proposes

Since we only deal with crash failures, only

 can be sent

By Uniform Integrity of send and receive,

only can be received

By the protocol,

min() =

decide()

PROVING AGREEMENT
To execute propose():

1. Send { : has not
already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

Lemma 1
For any , if a process
receives a value in round ,
there exists a sequence of
distinct processes
such that , is ’s
proponent and in each round

 sends and receives it.

Proof
By induction on the length of the
sequence

PROVING AGREEMENT
To execute propose():

1. Send { : has not
already sent } to all

decide() occurs as follows:

2. for all , do
3. receive from
4.

6. decide min()

round

5. if

Lemma 2

Proof

In every execution, at the end of round ,

 for every correct process and

Agreement follows from Lemma 2,
since min is a deterministic function

Show that if a correct has in its at
the end of round then every correct
process has in its at the end of round
Let be the earliest round is added to the
set of a correct process. Let that process be
If ,then sends in round  
Every correct process receives and adds it 
to its in round
What if ?

By Lemma 1, there exists a sequence of  
distinct processes
Consider processes
 processes; only can be faulty
One of is correct and adds to
its before does it in round

Contradiction!

