
EECS 591
DISTRIBUTED SYSTEMS

Manos Kapritsos
Fall 2021

IMPLEMENTING STRONG CLOCKS
(the hard way)

Strong clock condition:

IMPLEMENTING STRONG CLOCKS
(the hard way)

Strong clock condition:

[4,2,0]

VECTOR CLOCKS

Each process keeps a vector of natural numbers VC,
one for each process

Update rules

If is a local or send event at process i:

If is a receive event of message :

(Update the “local” counter)

(First “max” with the incoming VC…)
(…then update the “local” counter)

VECTOR CLOCKS

[1,0,0]

[2,1,0]

[2,0,0] [4,2,0]

[2,2,0]

[0,0,1] [0,0,2]

[2,3,1]

[3,0,3]

[3,0,0]

= number of events executed by process j
 that causally precede

COMPARING VECTOR CLOCKS

Equality

(i.e. all elements are the same)

Inequality

Strong clock condition:

[2,0,0] < [2,0,1] < [3,0,1] < [4,1,1]Examples:

COMPARING VECTOR CLOCKS

Strong clock condition:

[1,0,0]

[2,1,0]

[2,0,0] [4,2,0]

[2,2,0]

[0,0,1] [0,0,2]

[2,3,1]

[3,0,3]

[3,0,0]

CAUSAL DELIVERY

Processes send copies of their messages to the monitor
Only increment the local component of VC for send events

A “monitor” process wants to record all messages
(e.g. deadlock detection, system snapshot, etc)

CAUSAL DELIVERY RULES

Monitor keeps an array , where is the number of
messages delivered from process

Monitor delivers message from process when:

p

q

monitor

[1,0]

[1,1]

CAUSAL DELIVERY

[1,0]

ADMINISTRIVIA

Remember to send me your picture if you
haven’t already

Clock synchronization

What time is it?

Roman generals v2.0

Attack at midnight!

12:00am 11:30pm

ZZZZZ

Chaaaaaarge!

Clock drift

Bound on drift:

(real time)

(clock

time)

 is typically small (10-6)

H(t)

t

(1 + ⇢)t

(1� ⇢)t

⇢

(1� ⇢)(t� t
0) H(t)�H(t0) (1 + ⇢)(t� t

0)

⇢

⇢2 ⇡ 0

1

1� ⇢
= 1 + ⇢

1

1 + ⇢
= 1� ⇢

External vs internal
synchronization

External Clock Synchronization:

keeps clock within some maximum deviation
from an external time source.

• exchange of info about timing events of
different systems

• can take actions at real-time deadlines

Internal Clock Synchronization:

keeps clocks within some maximum deviation
from each other.

• can measure duration of distributed
activities that start on one process and
terminate on another

• can totally order events that occur in a
distributed system

Probabilistic Clock
Synchronization (Cristian)

Client-server architecture

Server can be connected to
external time source

Clients read server’s clock and
adjust their own

How accurately can a client
read the server’s clock?

Assume that clock drifts are known (for both)

Setup and assumptions

client

server

Goal: Synchronize the client’s clock with the server

Assume that minimum delay is known

(real time)t

P (t)

Q(t)

⇢

min

The protocol

“time=?” “time= ”

Question: what is ?

P (t)

Q(t)

(real time)t

T

T

Q(x)

t = x

Q(x)

client

server

Ideal scenario

Assume no clock drift

P (t)

Q(t)

(real time)t
t = x

T T +min

Perfect synchronization!Q(x) = T +min

minmin

client

server

Problem #1: message delay

P (t)

Q(t)

t

T

2d
min+ ↵ min+ �

P (t)

Q(t)

t

Q(x) = T + 2d�minT

� = 2d� 2minmin 2d�min

P (t)

Q(t)

t

Q(x) = T +minT

� = 02d�min min

one

extreme

another

extreme

Problem #2: client drift

2D

2d
min+ ↵ min+ �

2d(1� ⇢) 2D 2d(1 + ⇢)

P (t)

Q(t)

t

T

client

server

Problem #3: server drift

During the server’s clock drifts
Even if you know , there is still some uncertainty!

P (t)

Q(t)

t
2d

min+ ↵ min+ �

2D

t = x

�

T

client

server

Cristian’s algorithm

“time=?” “time= ”

min+ ↵
2d

min+ �

2D

T

T

Q(x) =?

↵,� � 0

P (t)

Q(t)

t t = x

client

server

Cristian’s algorithm
Naive estimation:

(take server’s drift into account)

Q(x) = T + (min+ �)

Q(x) 2 [T + (min+ �)(1� ⇢) (1 + ⇢), T + (min+ �)]

(take delay into account) � 0 2d� 2min

Q(x) 2 [T + (min+0)(1� ⇢), T + (min+2d� 2min)(1 + ⇢)]

= [T + (min)(1� ⇢), T + (2d�min)(1 + ⇢)]

(take client’s drift into account)2d 2D(1 + ⇢)

Q(x) 2 [T + (min)(1� ⇢), T + (2D(1 + ⇢)�min)(1 + ⇢)]

= [T + (min)(1� ⇢), T + 2D(1 + 2⇢)�min(1 + ⇢)]

Client’s estimation and
precision

Client’s best guess:
Maximum error:

You can keep trying, until you

achieve the required precision

Q(x) = T +D(1 + 2⇢)�min· ⇢

e = D(1 + 2⇢)�min

(if that precision is reasonable)

