EECS 591
DISTRIBUTED SYSTEMS

Manos Kapritsos
Fall 2021
PBFT: A Byzantine Renaissance

Practical Byzantine Fault Tolerance
(Castro, Liskov 1999-2000)

- First practical protocol for asynchronous BFT replication
- Like Paxos, PBFT is safe all the time, and live during periods of synchrony
The general idea

- One primary, 3f replicas
- Execution proceeds as a sequence of views
 - A view is a configuration with a well-defined primary
- Client sends signed commands to primary of current view
- Primary assigns sequence number to client’s command
- Primary is responsible for the command eventually being decided
Protocol steps are justified by certificates

- Sets (quorums) of signed messages from distinct replicas proving that a property holds

Certificates are of size at least $2f + 1$

- Any two quorums intersect in at least one correct replica (for safety)
- There is always a quorum of correct replicas (for liveness)
PBFT: Normal Operation

Three phases:

- **Pre-prepare**: assigns sequence number to request
- **Prepare**: ensures consistent ordering of requests within views
- **Commit**: ensures consistent ordering of requests across views

Each replica maintains the following state:

- Service state
- A **message log** with all messages sent or received
- An integer representing the replica’s current view
Client issues request

<REQUEST, o, t, c> \(\sigma_c\)

Primary

Replica 1

Replica 2

Replica 3
CLIENT issues request

\[\langle \text{REQUEST}, \sigma, t, c \rangle \]

state machine operation

Primary

Replica 1

Replica 2

Replica 3
CLIENT ISSUES REQUEST

<REQUEST, o, t, c> \(\sigma_c\)

Primary

Replica 1

Replica 2

Replica 3

timestamp
CLIENT ISSUES REQUEST

Client ID

<REQUEST, o, t, c>_{\sigma_c}

Primary

Replica 1

Replica 2

Replica 3
Client issues request

Primary

Replica 1

Replica 2

Replica 3

<REQUEST, o, t, c> \(\sigma_c \)

client signature
Primary sends $\langle\langle\text{PRE-PREPARE}, v, n, d\rangle_{\sigma_p}, m\rangle$ to all replicas
Primary sends $\langle\langle\text{PRE-PREPARE}, v, n, d\rangle_{\sigma_p}, m\rangle$ to all replicas.
Primary sends $\langle\langle\text{PRE-PREPARE}, v, n, d\rangle_{\sigma_p}, m\rangle$ to all replicas.
Primary sends \(\langle\langle \text{PRE-PREPARE}, v, n, d \rangle_{\sigma_p}, m \rangle \) to all replicas.

Client request
Primary sends \(\langle\langle \text{PRE-PREPARE}, v, n, d_{\sigma_p}, m \rangle \rangle \) to all replicas.
Primary sends \(\langle\langle \text{PRE-PREPrepare}, v, n, d \rangle_{\sigma_p}, m \rangle \) to all replicas

Correct backup \(k \) accepts PRE-PREPrepare if:

- message is well formed
- \(k \) is in view \(v \)
- \(k \) has not accepted another PRE-PREPrepare message for \(v, n \) with a different \(d \)
- \(n \) is between two watermarks \(L \) and \(H \) (to prevent sequence number exhaustion)
Primary sends $<<\text{PRE-PREPARE}, v, n, d>_{\sigma_p}, m>>$ to all replicas

Each accepted PRE-PREPARE message is stored in the accepting replica's message log (including the primary's)
Replica k sends $\langle \text{PREPARE}, v, n, d, k \rangle_{\sigma_k}$ to all replicas.
Replica k sends $\langle \text{PREPARE}, v, n, d, k \rangle_{\sigma_k}$ to all replicas

Correct backup k accepts PREPARE if:

- message is well formed
- k is in view v
- n is between two watermarks L and H
Replica k sends $\langle\text{PREPARE, } v, n, d, k\rangle_{\sigma_k}$ to all replicas

- Replicas that send a PREPARE accept the assignment of m to sequence number n in view v
- Each accepted PREPARE message is stored in the accepting replica’s message log
PREPARE CERTIFICATE

- P-Certificates ensure consistent order of requests within views.

- A replica produces a P-Certificate\((m,v,n)\) iff its log holds:
 - the request \(m\)
 - A PRE-PREPARE for \(m\) in view \(v\) with sequence number \(n\)
 - \(2f\) PREPARE from distinct backups that match the PRE-PREPARE

- A P-Certificate\((m,v,n)\) means that a quorum agrees to assign \(m\) to sequence number \(n\) in view \(v\)
 - No two non-faulty replicas with P-Certificate\((m,v,n)\) and P-Certificate\((m',v,n)\)
ADMINISTRIVIA

No class the next two Mondays
- Monday 10/18, UM study day
- Monday 10/15, conflict with SOSP workshops

Research part
- Presentation schedule posted on class website
- Review submission website coming up around 10/25
P-Certificates are not enough

- A P-Certificate proves that a quorum of $2f + 1$ replicas has agreed to assign m to sequence number n in view v

- Yet that assignment could be modified if a view change happens (the primary changes)

 - The new primary may not be convinced to assign m to n in the new view v'
P-Certificates are not enough

- Yet that assignment could be modified if a view change happens (the primary changes)
 - The new primary may not be convinced to assign \(m \) to \(n \) in the new view \(v' \)
 - \(2f + 1 \) prepares means at least \(f + 1 \) correct replicas received a pre-prepare for \((m,v,n)\)
After collecting a P-Certificate, replica \(k \) sends \(<\text{COMMIT, } v, n, d, k>\sigma_k\) to all replicas.
Commit Certificate

- C-Certificates ensure consistent order of requests across views
 - **Cannot miss** a P-Certificate during view change

- A replica has a C-Certificate \((m,v,n)\) iff:
 - it had a P-Certificate \((m,v,n)\)
 - its log contains \(2f + 1\) matching COMMIT messages from distinct replicas (including itself)

- A replica executes a request when:
 - it gets a C-Certificate for it
 - it has executed all requests with smaller sequence numbers