EECS 591
Distributed Systems

Manos Kapritsos
Fall 2021
Using (multi)Paxos to implement state machine replication

The original Paxos algorithm achieves agreement on one value.

SMR required replicas to agree on the sequence of commands that will be executed.

3. Ensure that all replicas go through the same sequence of state transitions.

MultiPaxos: Run an instance of Paxos for each slot in the sequence.

Important: we don’t need to run phase 1 (election) every time!
Paxos/SMR in Real Life

Proposers, acceptors and learners are all collocated on $2f + 1$ replicas.
Paxos/SMR in real life

Proposers, acceptors and learners are all collocated on $2f + 1$ replicas.
ADMINISTRIVIA

Midterm
- Wednesday 10/27, 12-1:20pm, during class
 - You can use any material listed on the course website

No class the next two Mondays
- Monday 10/18, UM study day
- Monday 10/15, conflict with SOSP workshops

Research part
- Starts after midterm, Monday 11/1 with Fast Paxos and Flexible Paxos
 - You should read both papers and you can review either one
BYZANTINE FAULT TOLERANCE

Slides by Lorenzo Alvisi
A HIERARCHY OF FAILURE MODELS

Fail-stop Crash

Send omission Receive omission

General omission

○ = benign failures

Arbitrary (Byzantine) failures
WHAT ARE BYZANTINE FAILURES

The short answer: they can be anything!
(they can even be crash/omission failures)

Examples of commission failures

- A bit flip in memory
 - Manufacturing defect
 - Alpha particles
- Network card malfunction
- Intentional behavior
 - Rational node: trying to game the system for personal gain
 - Malicious node: trying to bring the system down
THE BYZANTINE GENERALS

- Synchronous communication
- One general may be a traitor
THE BYZANTINE GENERALS

• Synchronous communication

• One general may be a traitor

• One of the generals is the commander C
 • The commander decides Attack or Retreat

Goals
1. If C is trustworthy, every trustworthy general must follow C’s orders
2. Every trustworthy general must follow the same battle plan
Remember when things were simpler?
You can’t trust anyone these days...
YOU CAN’T TRUST ANYONE THESE DAYS…

He said “retreat”

He said “attack”
YOU CAN’T TRUST ANYONE THESE DAYS…

He said “retreat”

He said “attack”

C

G₁

G₂

C

G₁

G₂
“But they were all of them deceived…”
A LOWER BOUND

Theorem
There is no algorithm that solves TRB for Byzantine failures if \(n \leq 3f \)

Lamport, Shostak and Pease, The Byzantine Generals Problem, 1982
PBFT: A Byzantine Renaissance

Practical Byzantine Fault Tolerance
(Castro, Liskov 1999-2000)

- First practical protocol for asynchronous BFT replication
- Like Paxos, PBFT is safe all the time, and live during periods of synchrony
Barbara Liskov

Turing Award 2008
The setup

System model
- Asynchronous system
- Unreliable channels

Crypto
- Public/private key pairs
- Signatures
- Collision-resistant hashes

Service
- Byzantine clients
- Up to f Byzantine servers
- $n = 3f + 1$ total servers

System goals
- Always safe
- Live during periods of synchrony
THE GENERAL IDEA

- One primary, 3f replicas
- Execution proceeds as a sequence of views
 - A view is a configuration with a well-defined primary
- Client sends signed commands to primary of current view
- Primary assigns sequence number to client’s command
- Primary is responsible for the command eventually being decided
What could possibly go wrong!?

• The primary could be faulty!
 ▶ could ignore commands, assign same sequence number to different requests, skip sequence numbers, etc.
 ✔ Backups monitor primary's behavior and trigger **view changes** to replace a faulty primary

• Replicas could be faulty!
 ▶ could incorrectly forward commands received by a correct primary
 ✔ any single request may be misleading; need to rely on **quorums** of requests
 ▶ could send incorrect responses to the client
 ✔ client waits for $f + 1$ matching responses before accepting
Certificates

Protocol steps are justified by certificates

- Sets (quorums) of signed messages from distinct replicas proving that a property holds

Certificates are of size at least $2f + 1$

- Any two quorums intersect in at least one correct replica (for safety)
- There is always a quorum of correct replicas (for liveness)