
Bigtable: A Distributed Storage

System for Structured Data

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T Chandra, A. Fikes, R. E. Gruber

Presenter: Wei-Lun Huang

1
● Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

❖ Problem Formulation

❖ Data Model

❖ Building Blocks

❖ Implementation

❖ Evaluation

Outline

2

❖ Problem Formulation

❖ Data Model

❖ Building Blocks

❖ Implementation

❖ Evaluation

Outline

3

❖ Quantity
➢ Petabytes of Data
➢ Thousands of Machines

❖ Variety
➢ Structured Data of Different Formats
➢ Different Demands: throughput vs. latency

4

Google Projects

Goal: one distributed storage system

❖ Scalability: more, more, and more tables/machines

❖ Applicability: a variety of Google projects as clients

❖ Performance: (concurrent) reads/writes from many clients

❖ Availability: crash failures, network partition, and more

5

Expectations

❖ Performance! Performance! Performance!
➢ Structured Data: a weak assumption
➢ Locality: old but classic

❖ Base the design on existing infrastructures!
➢ It’s Google. Why reinventing the wheel?
➢ (Much of the) Availability

6

Key Ideas: in my opinion

❖ Problem Formulation

❖ Data Model

❖ Building Blocks

❖ Implementation

❖ Evaluation

Outline

7

❖ Atomic Read/Write

❖ Row Keys: sorted in lexicographic order

❖ Dynamic Partition by Row Range
➢ One Table → Several Tablets
➢ One Tablet ↔ One Row Range
➢ Distribution & Load Balancing

Data Model: Row

8

Locality

❖ Columns of the Same Data Type

❖ Column Key = Family:Qualifier

❖ At the column-family level, …
➢ Access Control
➢ Memory/Disk Accounting
➢ Locality Group + Compression

9

Data Model: Column Family

❖ One Cell/Data, Multiple Versions
➢ The Latest Version First

❖ From Bigtable? From client applications?
➢ Real Time in μs vs. Customized Collision Avoidance

❖ Garbage Collection: the last n copies vs. in the last m days

10

Data Model: Timestamp

11

Example: Webtable

● Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

❖ Problem Formulation

❖ Data Model

❖ Building Blocks

❖ Implementation

❖ Evaluation

Outline

12

❖ {Creation, Deletion} of {Table, Column Family}

❖ Metadata Change: access control rights

❖ Row Read, Value Write/Deletion, Column Family Iteration, …

❖ Single-Row Transaction: read-modify-write

❖ Execution of Client-Supplied Scripts
➢ No writes back into Bigtable!

13

API

❖ Google File System (GFS): persistent log/data storage

❖ Cluster Management System
➢ What if other distributed applications on the same machines?
➢ Job Scheduling + Resource Management

❖ Sorted String Table (SSTable): “data” file format in GFS

14

Google Infrastructures Availability

❖ Paxos-Based Distributed Lock Service
➢ Directory/File as a Lock
➢ Atomic File Read/Write + Consistent Client-Side Caching

❖ One Client, One Session with Chubby
➢ Session Expiration → All Locks + Open Handles Lost

❖ Bigtable relies heavily on Chubby.
➢ Chubby Unavailable → Bigtable Unavailable
➢ Bigtable Debugging → Cubby Debugging 15

Google Infrastructures: Chubby Availability

❖ Always ≤1 Active Master Server

❖ Tablet Server Existence/Death

❖ Metadata Storage
➢ Access Control
➢ Column Family
➢ Bootstrap Location of Bigtable Data

16

Chubby in Bigtable

17

❖ Problem Formulation

❖ Data Model

❖ Building Blocks

❖ Implementation

❖ Evaluation

Outline

18

❖ One Master Server
➢ Tablet Assignment: to tablet servers
➢ Addition/Expiration Detection: of tablet servers
➢ Load Balancing: for tablet servers

❖ Many Tablet Servers: dynamic addition/removal
➢ Tablet Serving: reads/writes from clients

❖ Client-Side Library
➢ Tablet Location 19

Three Components

v

v

v

❖ One Master Server
➢ Schema Change: table/column family creation
➢ GFS Garbage Collection

❖ Many Tablet Servers: dynamic addition/removal
➢ Tablet Split: if a tablet >100~200 MB

❖ Client-Side Library

20

Three Components: more tasks

21

22

Tablet Location: three-level hierarchy

● Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

128MB / 1KB
= 128K

128MB / 1KB
= 128K 128K x 128K

= 16G (128MB Tablet)

❖ METADATA: a special Bigtable
➢ One Row = One Tablet’s Location
➢ Row Key = Table Identifier + End Row
➢ No Root-Tablet Split (∵ Three-Level Hierarchy)

❖ Caching by Client-Side Library
➢ Unknown/Incorrect Location → Recursive Move-Up
➢ Empty Cache? 3 Network Round-Trips
➢ Stale Cache? ≤6 Network Round-Trips

23

Tablet Location

❖ Tablet Server ↔ Chubby File: servers/unique_file_name
➢ Start → File Creation + Exclusive Lock Acquisition

➢ Stop Serving ← Exclusive Lock Lost
➢ Recover → Exclusive Lock Reacquisition
➢ Kill Itself ← File Deleted

➢ Terminate → Exclusive Lock Release

24

Tablet Assignment

❖ Master Server should know …
➢ Live Tablet Servers
➢ Unassigned Tablets
➢ Assigned Tablet vs. Tablet Server
➢ Unassigned Tablet vs. Available Tablet Server

❖ How? Ask Chubby + Tablet Servers!
➢ Hi Chubby, any news in servers/?
➢ Hi Tablet Server, still own the lock?

❖ New Master? Ask Chubby + Tablet Servers + METADATA!
25

Tablet Assignment

❖ Persistent Tablet Contents: SSTables @GFS
➢ Location Info ← METADATA
➢ Commit Logs @GFS ← Redo Points ← METADATA

❖ Latest Updates: memtable @memory + Commit Log @GFS

❖ How to Write? Read? Tablet Recovery?

26

Tablet Serving

❖ Minor Compaction
➢ Current memtable x1 as New SSTable x1
➢ Memory Usage ↓ + Reads from Commit Log ↓

❖ Major Compaction
➢ (SSTable xN + memtable x1) as New SSTable x1
➢ Read Complexity ↓ (∵ No Changes/Deletions)
➢ Security ↑ (∵ Timely Deletion)

27

Compactions

❖ Locality Group x1 -- Relevant Column Family xN -- SSTable x1

❖ Fast Two-Pass Per-SSTable Compression
➢ Window: Large (long common strings) vs. Small (repetitions)
➢ Compression Ratio? Row Locality!

❖ Two-Level Caching for Read
➢ Key-Value Pairs
➢ SSTable Blocks

28

Refinements

29

❖ Bloom Filter for <Row, Col> Existence in SSTable

❖ Per-Tablet-Server Commit Log
➢ Tablet Recovery? Commit Log Sorting First!
➢ GFS Issues? Log Writer Threads x2!

❖ SSTable Immutability: tablet split, concurrent read/write, etc.

❖ Minor Compactions before Tablet Transfer

Refinements

❖ Problem Formulation

❖ Data Model

❖ Building Blocks

❖ Implementation

❖ Evaluation

Outline

30

31

Per-Server #Read/#Write

● Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

32

Single-Server #Read/#Write

SSTable Fetch ++++

Networking/GFS ----

Per-Server Commit Log

SSTable Block Caching

Group Commit

Client RPC ----

● Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

33

Aggregate #Read/#Write

CPU-Intensive

Network Saturation

Load Imbalance

● Fay Chang et al. Bigtable: A Distributed Storage System for Structured Data

❖ Distributed Storage of Structured Data
➢ Locality for Performance: data model, refinements, etc.
➢ Google Infrastructure for Availability + Reliability

❖ Tablet Location/Assignment/Serving + Minor/Major Compaction
➢ Chubby for METADATA + Tablet Server Existence
➢ GFS for Persistent Storage of Commit Log + Tablets (SSTables)

❖ Bigtable/GFS: latency/throughput, table/file, write/append, Chubby/lease
❖ Bigtable as MapReduce Input/Output: Google Analytics/Earth/PSearch

34

Summary

Backup Slides

❖ Google File System (GFS): persistent log/data storage

❖ Cluster Management System
➢ What if other distributed applications on the same machines?
➢ Job Scheduling + Resource Management + Fault Tolerance

❖ Sorted String Table (SSTable): data file format
➢ Block Index: in-memory when SSTable opened
➢ Block Sequence: block-index binary search → disk seek x1

36

Google Infrastructures Availability

