Implementing strong clocks
(the hard way)

Strong clock condition: \(p \rightarrow q \iff \theta(p) \subset \theta(q) \)
Vector clocks

Each process keeps a vector of natural numbers VC, one for each process

Update rules

If e_i is a local or send event at process i:

$$VC(e_i)[i] := VC[i] + 1$$

If e_i is a receive event of message m:

$$VC(e_i) := \max\{VC, VC(m)\}$$

$$VC(e_i)[i] := VC[i] + 1$$
Vector clocks

\[VC(e_i)[j] = \text{number of events executed by process } j \text{ that causally precede } e_i \]
Comparing vector clocks

Equality

\[V = V' \equiv \forall k : 1 \leq k \leq n : V[k] = V'[k] \]
(i.e. all elements are the same)

Inequality

\[V < V' \equiv (V \neq V') \land (\forall k : 1 \leq k \leq n : V[k] \leq V'[k]) \]

Examples: \([2,0,0] < [2,0,1] < [3,0,1] < [4,1,1]\)

Strong clock condition: \(p \rightarrow q \iff VC(p) < VC(q)\)
Comparing vector clocks

Strong clock condition: $p \rightarrow q \Leftrightarrow VC(p) < VC(q)$
Causal delivery

A "monitor" process wants to record all messages (e.g. deadlock detection, system snapshot, etc)

- Processes send copies of their messages to the monitor
- Only increment the local component of VC for send events
Causal delivery rules

Monitor keeps an array D, where $D[i]$ is the number of messages delivered from process i

Monitor delivers message m from process j when:

$D[j] = VC(m)[j] - 1$

$D[k] \geq VC(m)[k], \forall k \neq j$
Causal Delivery

\[
D
\]

\[
D[j] = VC(m)[j] - 1
\]

\[
D[k] \geq VC(m)[k], \forall k \neq j
\]
ADMINISTRIVIA

- Still missing a few pictures
 - Please send them today

- At capacity
Clock synchronization

What time is it?
Roman generals v2.0

Attack at midnight!

Chaaaaaaarge!

12:00am

ZZZZZZ

11:30pm
Clock drift

- Bound on drift: ρ

 $$(1 - \rho)(t - t') \leq H(t) - H(t') \leq (1 + \rho)(t - t')$$

- ρ is typically small (10^{-6})

 $\rho^2 \approx 0$

 $\frac{1}{1 - \rho} = 1 + \rho$

 $\frac{1}{1 + \rho} = 1 - \rho$
External vs internal synchronization

External Clock Synchronization:
keeps clock within some maximum deviation from an external time source.

- exchange of info about timing events of different systems
- can take actions at real-time deadlines

Internal Clock Synchronization:
keeps clocks within some maximum deviation from each other.

- can measure duration of distributed activities that start on one process and terminate on another
- can totally order events that occur in a distributed system
Probabilistic Clock Synchronization (Cristian)

- Master-Slave architecture
- Master can be connected to external time source
- Slaves read master’s clock and adjust their own

How accurately can a slave read the master’s clock?
Setup and assumptions

Goal: Synchronize the slave’s clock with the master

Assume that minimum delay is known
Assume that clock drifts are known (ρ for both)
The protocol

Question: what is $Q(x)$?
Ideal scenario

Assume no clock drift

\[t = x \]

\[Q(x) = T + \text{min} \rightarrow \text{Perfect synchronization!} \]
Problem #1: message delay

\[P(t) \quad Q(t) \quad t \]
\[min + \alpha \quad min + \beta \]
\[t \quad T \]
\[Q(x) = T + 2d - \min \]
\[\beta = 2d - 2\min \]

one extreme

\[t \quad P(t) \quad Q(t) \quad T \]
\[min \quad 2d - min \]
\[Q(x) = T + 2d - \min \]

another extreme

\[t \quad P(t) \quad Q(t) \quad T \]
\[2d - \min \quad min \]
\[Q(x) = T + \min \]
\[\beta = 0 \]
Problem #2: slave drift

\[2d(1 - \rho) \leq 2D \leq 2d(1 + \rho) \]
Problem #3: master drift

During the master’s clock drifts
Even if you know β, there is still some uncertainty!
Cristian's algorithm

\[\text{time} = \min + \alpha, \quad \min + \beta, \quad t = x \]

\[2d \quad 2D \]

slave \[P(t) \]

master \[Q(t) \]

\[\text{"time=?"} \quad \text{"time=T"} \]

\[T \]

\[Q(x) = ? \]
Cristian’s algorithm

Naive estimation: \(Q(x) = T + (\min + \beta) \)

(take master’s drift into account)

\(Q(x) \in [T + (\min + \beta)(1 - \rho), T + (\min + \beta)(1 + \rho)] \)

0 \(\leq \beta \leq 2d - 2\min \) (take delay into account)

\(Q(x) \in [T + (\min + 0)(1 - \rho), T + (\min + 2d - 2\min)(1 + \rho)] \)

= \([T + (\min)(1 - \rho), T + (2d - \min)(1 + \rho)] \)

2d \(\leq 2D(1 + \rho) \) (take slave’s drift into account)

\(Q(x) \in [T + (\min)(1 - \rho), T + (2D(1 + \rho) - \min)(1 + \rho)] \)

= \([T + (\min)(1 - \rho), T + 2D(1 + 2\rho) - \min(1 + \rho)] \)
Slave's estimation and precision

Slave's best guess: \(Q(x) = T + D(1 + 2\rho) - \text{min} \cdot \rho \)

Maximum error: \(e = D(1 + 2\rho) - \text{min} \)

You can keep trying, until you achieve the required precision
(if that precision is reasonable)
Adjusting the clock

After synchronizing:

- If slave simply sets $P(x) = Q(x)$, it could create time discontinuities.
Adjusting the clock

Logical clock \[C(t) = H(t) + A(t) \]

Hardware clock \[H(t) \]

Adjustment function \[A(t) \]