- ~ PDF Download
e DIGITAL -)
ACM . hesatoater acmopen }AD 3721462.3770763.pdf
)] Cinrany O S pend : 25 January 2026
Check for oq. gt
updates Total Citations: 0

Total Downloads: 131

£ Latest updates: https://dl.acm.org/doi/10.1145/3721462.3770763

RESEARCH-ARTICLE @ !

Recipe: Hardware-Accelerated Replication Protocols: Rethinking Crash
Fault Tolerance Protocols for Untrusted Cloud Environments

Published: 15 December 2025

Citation in BibTeX format

DIMITRA GIANTSIDI, Microsoft Research, Redmond, WA, United States

Middleware '25: 26th International

EMMANOUIL GIORTAMIS, Technical University of Munich, Munich, Bayern, Germany g:dlewar]e_sc_o;;e;gzc;
JULIAN PRITZI, Technical University of Munich, Munich, Bayern, Germany TN, Nashville, USA

MAURICE BAILLEU, Huawei Technologies Co., Ltd, United Kingdom, Reading, Berkshire, U.K.
MANOS KAPRITSOS, University of Michigan, Ann Arbor, Ann Arbor, MI, United States
PRAMOD BHATOTIA, Technical University of Munich, Munich, Bayern, Germany

Open Access Support provided by:

Microsoft Research

Technical University of Munich

Huawei Technologies Co., Ltd, United Kingdom
University of Michigan, Ann Arbor

MIDDLEWARE '25: Proceedings of the 26th International Middleware Conference (December 2025)
https://doi.org/10.1145/3721462.3770763
ISBN: 9798400715549

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3721462.3770763
https://dl.acm.org/doi/10.1145/3721462.3770763
https://dl.acm.org/doi/10.1145/contrib-99659454642
https://dl.acm.org/doi/10.1145/institution-60021726
https://dl.acm.org/doi/10.1145/contrib-99660972918
https://dl.acm.org/doi/10.1145/institution-60019722
https://dl.acm.org/doi/10.1145/contrib-99660970457
https://dl.acm.org/doi/10.1145/institution-60019722
https://dl.acm.org/doi/10.1145/contrib-99659358381
https://dl.acm.org/doi/10.1145/institution-60118521
https://dl.acm.org/doi/10.1145/contrib-81350601035
https://dl.acm.org/doi/10.1145/institution-60025778
https://dl.acm.org/doi/10.1145/contrib-81466648713
https://dl.acm.org/doi/10.1145/institution-60019722
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60021726
https://dl.acm.org/doi/10.1145/institution-60019722
https://dl.acm.org/doi/10.1145/institution-60118521
https://dl.acm.org/doi/10.1145/institution-60025778
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3721462.3770763&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/middleware
https://dl.acm.org/conference/middleware
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721462.3770763&domain=pdf&date_stamp=2025-12-14

Recipe: Hardware-Accelerated Replication Protocols

Rethinking Crash Fault Tolerance Protocols for Untrusted Cloud Environments

Dimitra Giantsidi
Azure Research’
Cambridge, UK

Emmanouil Giortamis
TU Munich
Munich, Germany

Julian Pritzi
TU Munich
Munich, Germany

Maurice Bailleu Manos Kapritsos Pramod Bhatotia
Huawei Research’ University of Michigan TU Munich
Edinburgh, UK Michigan, USA Munich, Germany

Abstract

Today’s modern hardware, with manycore servers, RDMA-capable
networks and trusted execution environments, challenges the con-
ventional wisdom about CFT protocols’ design. We explore the syn-
ergy between modern hardware and the security and performance of
strongly consistent replication protocols. Specifically, can we leverage
(and how) modern cloud hardware to harden the security properties of a
CFT protocol for Byzantine settings while achieving high performance?

We propose RECIPE, a generic approach to transform existing CFT
protocols to tolerate Byzantine failures in untrusted cloud environ-
ments. RECIPE leverages advances in confidential computing and
direct network I/O to guarantee non-equivocation and transferable
authentication in the presence of Byzantine actors, while offering
performance and resource overheads on par with CFT protocols. Our
evaluation based on the transformation of four CFT protocols against
the state-of-the-art BFT protocols shows that RECIPE can increase
throughput up to 5.9x—24X and reduce the number of participating
nodes by f.

CCS Concepts
« Security and privacy — Distributed systems security.

ACM Reference Format:

Dimitra Giantsidi, Emmanouil Giortamis, Julian Pritzi, Maurice Bailleu,
Manos Kapritsos, and Pramod Bhatotia. 2025. REc1pE: Hardware-Accelerated
Replication Protocols Rethinking Crash Fault Tolerance Protocols for
Untrusted Cloud Environments. In 26th ACM Middleware Conference
(Middleware ’25), December 15—19, 2025, Nashville, TN, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3721462.37
70763

1 Introduction

Replication protocols play the foundational role in designing diverse
distributed systems [2, 4, 5, 9-12, 14, 20, 25, 135, 137, 148]. For per-
formance and fault tolerance, distributed systems employ Crash
Fault Tolerant (CFT) replication protocols [29, 93, 101, 107, 121, 131,
132, 144] guaranteeing a consistent view of the datasets as well as
reliability and availability when failures occur [12, 55, 66, 70, 86, 99].

CFT protocols assume a fail-stop model, i.e., replicas are honest
and only fail by crashing [58]. As such, they are inadequate for mod-
ern untrusted cloud environments, where the cloud infrastructure
can be compromised by adversaries, e.g., co-located tenants or a
misbehaving cloud operator that eavesdrop or actively influence the
replicas’ behavior. In such environments, the surface of faults and
attacks expands beyond the CFT fail-stop model [76, 78, 138]. CFT

“This work was done while the authors were at the University of Edinburgh, UK.

This work is licensed under a Creative Commons Attribution 4.0 International License.

MIDDLEWARE 25, December 15-19, 2025, Nashville, TN, USA
© 2025 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-1554-9/2025/12.
https://doi.org/10.1145/3721462.3770763

protocols are fundamentally incapable of providing consistent repli-
cation under non-benign (Byzantine) faults in the untrusted cloud.

Byzantine Fault Tolerant (BFT) protocols [102] offer core founda-
tions for building distributed systems with stronger guarantees un-
der Byzantine failures, i.e.,nodes fail in arbitrary ways. However, they
are not adopted in practice due to their high-performance and repli-
cation resource overheads, and implementation complexity [128].

The “CFT vs. BFT" conundrum creates a fundamental design trade-
off between the efficiency of CFT protocols for practical deployments
and the robustness of BFT protocols for Byzantine settings of modern
cloud environments. However, traditional BFT protocols design and
evaluation has not taken into account modern cloud hardware.

Our work seeks to resolve this trade-off transforming existing CFT
protocols for the Byzantine (untrusted) cloud environments with
modern cloud hardware. Our approach underpins the robustness and
efficiency axes. For robustness, we leverage trusted hardware avail-
able as part of confidential cloud computing to harden the security
properties of CFT protocols [17, 30, 87, 103]. We use trusted execution
environments (TEEs) to provide two key properties [49] (§ 4.2) for
successfully transforming a CFT protocol for Byzantine settings: (a)
transferable authentication, i.e., the ability to establish trust among
distributed nodes by designing a remote attestation protocol, and (b)
non-equivocation, i.e., once a node is trusted through remote attesta-
tion, the node follows the CFT replication protocol faithfully, thus, it
cannot send conflicting statements to other nodes. For efficiency, we
leverage modern networking hardware, such as RDMA/DPDK for
kernel bypass, to design a highly optimized communication protocol
that replicates state across nodes in distributed settings [16, 90, 110],
overcoming the I/O bottlenecks in trusted computing [145].

Our proposal: REcIPE. RECIPE leverages TEEs along with direct /O,
two prominent cloud technologies, to resolve the tension between
security and performance by building an efficient and practical trans-
formation of unmodified CFT replication protocols for Byzantine
settings. RECIPE achieve this by implementing a distributed trusted
computing base (TCB) that shields the replication protocol execution
and extends the security properties offered by a single TEE (whose
security properties are only effective in a single-node setup) to a
distributed setting of TEEs. Our design is comprised of a transferable
authentication phase (§ 5.3) for distributed trust establishment, a
high-performant network stack for secure communication over the
untrusted network (§ 6) and a memory-efficient KV store (§ 6). We
materialise RECIPE approach as a generic library, REc1pe-lib (§ 6).
Our evaluation assesses RECIPE’s generality and efficiency. To
show the generality, we apply and evaluate RECIPE on real hard-
ware with four well-known CFT protocols (we use an ‘R-’ prefix for

https://doi.org/10.1145/3721462.3770763
https://doi.org/10.1145/3721462.3770763
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3721462.3770763

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Leader-based
Raft[121], ZAB [
Multi-Paxos [147]
CR [132], CRAQ [144],
PB [120], CHT [44]

Leader-less

131], AllConcur [126],
Derecho [88]

ABD [107], CP [101],
Hermes [93]

Total order

Per-key order

Table 1: CFT protocols taxonomy. Using RECIPE, we
transform one protocol (shown in bold) of each category.

our transformed protocols); a decentralized (leaderless) linearizable

multi-writer multi-reader protocol (ABD) [107] (R-ABD), two leader-

based protocols with linearizable reads, Raft [121] (R-Raft) and Chain

Replication (CR) [132] (R-CR), and AllConcur [126] (R-AllConcur), a

decentralized consensus protocol with consistent local reads. To eval-

uate performance, we compare RECIPE protocols with two compet-
itive BFT replication protocols, BFT-smart [140] (PBFT [40]), whose
specificimplementation hasbeen adopted in industry [13] and Damy-
sus [56] a state-of-the-art BFT replication protocol. Our evaluation
shows that REcIPE achieves up to 24X and 5.9% better throughput

w.r.t. PBFT and Damysus, respectively, while improving scalability—

RECIPE requires 2f +1 replicas, f fewer compared to PBFT (3f+1).

We further show that RECIPE can offer confidentiality—a security

property not provided by traditional BFT protocols—while achieving

a speedup of 7x—13x w.r.t. PBFT and up to 4.9X w.r.t. Damysus.

To summarize, we make the following contributions:

o Hardware-assisted transformation of CFT protocols: We
present RECIPE, a generic approach for transforming CFT protocols
to tolerate Byzantine failures without any modifications to the
core of the protocols.

e Formal analysis and verification: We formally verify safety
and security properties of RECIPE using Tamarin [109]. By model-
ing RecIPE while assuming a Dolev-Yao attacker [59], we verify
key properties like safety, integrity, and freshness through auto-
mated deduction and equational reasoning. Therefore, we provide
a correctness analysis for the safety and liveness properties of our
transformation of CFT protocols operating in Byzantine settings.

o Generic REcIPE APIs: We propose generic RECIPE APIs to trans-
form existing CFT protocols for Byzantine settings. Using RECIPE
APIs, we successfully transform a range of leader-/leaderless-
based CFT protocols enforcing different ordering semantics.

e RECIPE in action: We present an extensive evaluation of RECIPE
by applying it to four CFT protocols: Chain Replication, Raft, ABD,
and AllConcur. We evaluate these four protocols against the state-
of-the-art BFT protocol implementations and show that REcIPE
achieves up to 24x and 5.9% better throughput.

2 Background

2.1 The CFT Vs. BFT Conundrum

CFT protocols. CFT protocols assume a trusted infrastructure, toler-
ating only benign faults; replicas can fail by stopping or by omitting
some steps [58]. As such, while having low overheads, they are
not suitable for modern applications deployed in the third-party
untrusted cloud infrastructure [31]. In this paper, we evaluate proto-
cols that enforce either sequential consistency [100] or linearizabil-
ity [79], also referred to as strongly-consistent replication protocols.

We can broadly split strongly-consistent CFT protocols into two
categories (see Table 1 for the taxonomy): (i) leader-based protocols

Dimitra Giantsidi et al.

(e.g., Raft [121], Chain Replication (CR) [132]), where a node, desig-
nated as a leader, drives the protocol execution and (ii) decentralized
protocols (e.g., ABD [107], AllConcur [126]), where there is no leader
and all nodes can propose and execute requests.

We further divide them based on their ordering semantics. First,
protocols with total ordering, where the protocols create a total order
of all writes across all keys and apply them in that order. Second,
protocols with per-key ordering semantics where the protocol en-
forces the total order of writes on a per-key basis. The evaluation of
REcIPE (§ 8) relies on this taxonomy to systematically study its pro-
tocols’ performance, as these two dimensions significantly impact
the performance of the CFT protocols [67].

BFT protocols. In contrast to CFT protocols, BFT protocols assume
very little about the nodes and the network; faulty nodes may behave
arbitrarily while the network is unreliable. To tolerate f arbitrarily
faulty processes that may equivocate (i.e., make conflicting state-
ments for the same request to different replicas), BFT protocols add f
extra replicas to their system model requiring at least 3 +1 replicas
for safety. As such, BFT protocols exhibit worse scalability compared
to CFT protocols (which only require at most 2f +1 replicas).

BFT protocols are limited in performance, too. They incur high
message complexity (O(f?)) [41, 92, 149], multiple protocol rounds [27,
41,92, 106, 153] and complex recovery (O(f2) in view-change) [41,
92, 106, 149]. As an example of this, PBFT [41], a well-known BFT
protocol, requires at least 3f + 1 nodes, executes three broadcast
rounds, and incurs O(n?) message complexity.

Thirdly, BFT protocols are complex, introducing burdens to de-
velopers. Guerraoui et al. [33] found that most protocol implementa-
tions consist of thousands of lines of (non-trivial) code, e.g., PBFT [41]
and Zyzzyva [95]. Even if system designers wish to use a state-of-the-
art BFT protocol, optimizing it for the specific application settings
(e.g., network bandwidth, number of clients and replicas, crypto-
graphic libraries, etc.) is a rather complicated task.

2.2 Modern Hardware in the Context of BFT

Confidential Computing. In the long line of confidential com-
puting, trusted execution environments (TEEs) [3, 17, 30, 52, 133]
offer the state-of-the-art confidential computing environment that
guarantees the integrity and confidentiality of its code and data,
remaining resistant against all software attacks even in the presence
of a privileged attacker (hypervisor or OS). Based on this promise,
TEEs are now being streamlined by all major CPU manufacturers,
i.e., Intel TDX/SGX [17, 87], RISC-V Keystone [133], AMD-SEV [30],
Arm Realms [3]. etc. and are adopted in cloud [6, 7, 50, 73, 113].

In our work, we build RecIPE leveraging these recent advances
in hardware in the context of BFT. We realize the potential of TEEs
in hardening the properties of CFT replication protocols in the pres-
ence of Byzantine actors (e.g., network adversaries, compromised
OS/hypervisor, corrupted host memory, etc.) in the untrusted cloud.
Direct network I/0. High-performance distributed systems [34, 61,
83, 89, 91, 115, 116] abandon the traditional kernel-based network-
ing (sockets) to avoid syscalls’ overheads [139]. Instead, they adopt
direct network I/O (RDMA [110], DPDK [16]) to map the device’s
address space into userspace, bypassing the kernel stack.

We also adopt direct network I/O as it is even more well-suited
to TEEs where syscall execution is extremely expensive [35, 69]. We
leverage eRPC [90], a general-purpose and asynchronous remote

RECIPE : Hardware-Accelerated Replication Protocols

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Client1 request ‘ Client2 request ‘ Client3 request ‘

12 2 2
i ‘Routing table (Consistent hashmg)‘ ‘Routing table (Consistent hashing)‘ ‘Routing table (Consistent hashing)‘
: Distril data
i store layer
H Protocol coordinator Protocol follower Protocol follower
; RECIPE Keys + RECIPE Keys + RECIPE Keys+ |
A~ {CFT Protocol buffs } { metadata }" {CFT Protocol buffs } { metadata [{CFT F‘rotocol} { buffs } { metadata [}
protocol layer — "))
[Authentication + Non-equivocation layers] [Authentication + Non-equivocation layers] [Authentication + Non-equivocation layers]
x F x
. |))
"' SCETTIT [ormravanio | (RPoane) maen]
Direct I/O layer —>| Direct network I/0 Direct network 1/0 . | RPC objs Handlers :
| ; DPDK/RDMA |
| Data layer Values Values Values
b T i T i T T
§ ' ' ' ' ' '
i ' ' '
i ' H H TX/RX
| Network layer L> DMA-ed NIC Memory NIC | DMA-ed NIC Memory NIC g Msg queues || '€
1 ol A 8 I 0 buffers L
' ' ' ' ' '

TEE Controller TEE Controller TEE Controller

Node #1

Node #2 Node #k

Byzantine network

Figure 1: RECIPE’s system architecture.

procedure call (RPC) library for high-speed networking for lossy
Ethernet or lossless fabrics. eRPC provides us with a UDP stack and
RDMA, DPDK and RoCE transport layers. We extended eRPC to (1)
optimize the TEE memory usage and (2) shield the network messages
against the untrusted network infrastructure.

3 System Model

Model sketch. We model the distributed system as a set of N TEEs
in N nodes (or replicas) that host either follower or coordinator pro-
cesses which execute a CFT protocol and communicate by exchang-
ing messages. We assume that RECIPE’s nodes run in a third-party
untrusted cloud infrastructure. A coordinator serves client requests
by initiating the implemented CFT replication protocol. Upon com-
pletion, it replies back to clients. In leaderless protocols, coordinators
are selected randomly (any node can act as a follower and/or a co-
ordinator). In leader-based protocols, only the active leader can act
as a coordinator, the rest of the nodes are followers.
Communication model. Nodes communicate via a fully-connected,
bidirectional, point-to-point and unreliable message-passing net-
work, where messages can be arbitrarily delayed, re-ordered or
dropped. In line with previous BFT protocols, we adopt the par-
tial synchrony model [63], where there is a known bound A and an
unknown Global Stabilization Time (GST), such that after GST, all
communications arrive within time A.

Fault and threat model. We say that a node is faulty if it exhibits
Byzantine behavior [102]. The unprotected (out-of-the-TEE) infras-
tructure (e.g., host memory, OS, NIC, network infrastructure/adver-
saries) can exhibit Byzantine behavior while we assume that the
TEEs can only crash-fail. We say that a node is faulty if one of the fol-
lowing holds true: (i) the TEE fails by crashing or (ii) the unprotected
infrastructure is Byzantine. For safety (and liveness), we assume that
for N> (2f+1) nodes up to f can be faulty.

4 REecIPE Overview
4.1 Architecture Overview

Distributed systems architecture. Figure 1 shows the overview of
adistributed data store system that builds on top of the RECIPE system.

Distributed data stores implement a tiered architecture consisting
of a distributed data store layer, replication layer, and data layer. In
our case, the replication and data layers are provided by Recipe. The
distributed data store layer maintains a routing table that matches
the keyspace with the owners’ nodes. This layer is responsible for
forwarding client requests to the appropriate coordinator nodes (e.g.,
leader of the replication protocol) for execution. The RECIPE repli-
cation layer is responsible for consistently replicating the data by
executing the implemented protocol. After the protocol execution,
RECIPE nodes store the data in their Key-Value stores (KVs), the data
layer, and they reply to the client [66, 104, 130, 134].

REcIPE architecture. RECIPE design is based on a distributed set-
ting of TEEs that implement a (distributed) trusted computing base
(TCB) and shield the execution of unmodified CFT protocols against
Byzantine failures. REcIPE’s TCB contains the CFT protocol’s code
along with some metadata specific to the protocol. The code and
TEEs of all replicas are attested before instantiating the protocol to
ensure that the TEE hardware and the residing code are genuine. All
authenticated replicas receive secrets (e.g., signing or encryption
keys) and configuration data securely at initialization.

Further, RecipE builds a direct I/O layer comprised of a networking
library for low-latency communication between nodes (§ 6). The
library bypasses the kernel stack for performance and shields the
communication to guarantee non-equivocation and transferable au-
thentication against Byzantine actors in the network (§ 4.3 and § 6).
RecIPE guarantees both properties by layering the non-equivocation
and authentication layers on top of the direct I/O layer. In addition,
to strengthen RECIPE’s security properties and eliminate syscalls, we
map the network library software stack to the TEE’s address space.

Lastly, REcIpE builds the data layer on top of local KV store in-
stances. Our design of the KV store increases the trust to individual
nodes, allowing for local reads (§ 6). Our KV store achieves two goals;
first, we guarantee trust to individual replicas to serve reads locally,
and secondly, we limit the TCB size, optimizing the TEE memory (en-
clave) usage. As shown in Figure 1, REcIPE keeps bulk data (values)
in the host memory and stores only minimal data (keys + metadata)

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

in the TEE area. The metadata, e.g., hash of the value, timestamps,
etc., are kept along with keys in the TEE for integrity verification.

REecrIPE’s adoption. Our decision to use TEEs with direct I/O for
networking is grounded in practice. Confidential computing and
kernel-bypass networking are widely adopted by cloud providers
for both security and performance. Our research aligns with this
trend; we trust the TEE and its vendor, and we believe that growing
confidence in TEEs [98, 114] will further validate REcIPE’s design.

4.2 Transformation Requirements

The basic requirements for transforming a CFT protocol for Byzan-
tine environments are established in a theoretical result published
by Clement et al. in PODC 2012 [49]. Due to this seminal paper, we
know that non-equivocation and transferable authentication are
necessary to go from 3f+1 to 2f +1 replicas for a reliable broadcast
in Byzantine settings. Our work shows that not only can this lower
bound be achieved in practice, but we can do so while providing high
performance by leveraging modern hardware in a cloud environ-
ment. Next we discuss how RECIPE satisfies these two fundamental
requirements, while § 4.4 elaborates on how to design practical and
efficient protocols that meet these requirements.

Transferable authentication: The transferable authentication prop-
erty refers to the authenticity of a received message, requiring that
areplica must be able to verify that the supposed sender indeed had
sent the message. The authentication is transferable if the original
sender can be verified, even when the authentication proof is for-
warded. Formally, a message m with authentication proof o; from
P;, which is verified by a correct process P;, is also verified by any

other correct process Py.. From which follows for correct processes:
VP;,Py: Verifypj(m,ai,Pi) = Acceptpk(m,Pi)

Non-equivocation: The non-equivocation property guarantees

that there are no conflicts between the accepted messages of correct
processes. That implies that REcIPE must detect attacks in which
adversaries try to send different, potentially stale messages to some
processes. Formally, if k is a unique identifier, like a message counter
or request id, then a Byzantine node P; cannot get two messages m #
m’ with the same k accepted by different correct processes P; and Py:
VP;,Py: Acceptpj(k,m,Pi) /\Acceptpk(k,m',Pi) — m=m’

4.3 REecIPE Primitives In a Nutshell

RecipE embodies the TEE-assisted primitives, i.e., the RECIPE au-
thentication primitive and the RECIPE attestation primitive, shown
in Algorithms 1 and 2, to ensure non-equivocation and transferable
authentication. These primitives are integrated into the network
library (§ 5.1) and complement the attestation protocol (§ 5.3) to
guarantee in practice that only trusted replicas access the crypto-
graphic keys and can generate and verify authenticated messages.
We present an analysis and formal verification of REcIPE in § 7.

Authentication primitive. For the authentication, we use cryp-
tographic primitives (e.g., MAC and encryption functions when
RecrIpE aims for confidentiality) to verify the integrity and the au-
thenticity of the messages. Each message m sent from a node n;
to anode n; over a communication channel cq is accompanied by
metadata for preventing (or detecting) equivocation. This metadata
includes a trusted counter value cnt.q, the current view number
view €N, sender and receiver nodes’ ids, and the calculated message
authentication code (MAC) hg,,. The MAC is calculated over the

Dimitra Giantsidi et al.

Algorithm 1: REcIPE’s authentication primitives.

1 > cnteq: the latest sent message id from cq

2 b renteg: the last committed message id from cq
3 function shield_request(req, cq) {

4 cnteg ¢ cnteg+1; te— (View, cq, cnteg);

5 [hacq, (req,t)] « singed_hash(req, t);

6 return [hg, (req,t)];
7}
8 function verify_request(ho,,, req, (view, cq, cnteq)) {
9 if verify_signature(h(,cq, req, (view, cq, cnt.q)) == True then
10 if view == current_view then
1 if cntcy <= renteq then
12 return [False, req, (view, cq, cnth)];
13 if cnteq == renteq+1 then rentc,
« renteq+1; buffer_locally(req, (view, cq, cntegq));
14 return [True, req, (view, cq, cnteg)];
15 return [False, req, (view, cq, cntcg)];
16 }

payload and the metadata, then follows the message m. Formally,
m— ({req,(view,cq,cntcq) ho,,), (regllview||cql|cntcq)). The sender
node calls into the shield_request(req, cq) and generates such a
trusted message for the request req. On the receiver side,

Accept({req, (Uiew,cq,cnth)), ID;) =
verify_request(hgcq, req, (view,cq,cntcq)).
Non-equivocation. RECIPE prevents equivocation and replay at-
tacks in the network using sequence numbers for all the messages.
Replicas maintain local sequence tuples t = (view,cq,cnt.q) where
cntcq is the current trusted counter value in that view for the latest
request sent over c¢q. The sender assigns a unique tuple to messages
and then increments the trusted counter to guarantee monotonicity.
Formally, if m; < m; is the relation defining the message order, then
Vmi,mj: m;<m; &= cnicq(m;) <cnteqg(m;). Replicas can verify
the freshness of a message by examining its cnt., (verify_request()
primitive). The primitive verifies that the message’s id (as part of the
metadata)is consistent with the receiver’slocal counter rentcy (rent.q
is the last seen valid message counter for received messages in cq).

Attestation primitive. Remote attestation is the building block to
verify the authenticity of a TEE, i.e., the code and the TEE state are the
expected [125]. As such, RECIPE provides attest(), generate_quote()
and remote_attestation() primitives (Algorithm 2) that allow replicas
to prove their trustworthiness to other replicas or clients. The attes-
tation takes place before the control passes to the protocol’s code.
Only successfully attested nodes get access to secrets (e.g., signing
or encryption keys, etc.) and configurations.

4.4 System Design Challenges

Our work shows how to leverage modern hardware to build effi-
cient, robust, and easily adaptable distributed protocols by meeting
the aforementioned transformation requirements. Specifically, we
address the following research questions.

Q1: How to use TEEs efficiently? TEEs are not a panacea: due
to their architectural limitations (limited trusted memory and slow
syscalls’ API) [69, 94], their naive adoption to build practical systems
does not necessarily translate into performance improvements. For
example, communication in the state-of-the-art BFT protocols [56,
112, 149], which is at the core of any distributed protocol, primarily

RECIPE : Hardware-Accelerated Replication Protocols

Algorithm 2: RECIPE’s attestation primitive.

1 function remote_attestation() {

2 nonce «— generate_nonce();
3 send(nonce, kpub)2 DHKE(); quoteg, —recv();
pub
4 if verify_signature(quotes, .) == True then
pu
5 HUTEE < decrypt(quotegkpub s Kprio)s

6 if (verify_quote(urgg) == True) send_secrets();
7

}

8 function attest() {
9 pt < gen_enclave_report(); return y;
10 }

1 function generate_quote(u, kpup) {

12 keyp < EGETKEY();

13 quote « sign(y, keyp.,); quotes, . < sign(quote, Kpup);
pu
14 return quote ;
q O-kpuh
15 }

builds on standardised kernel interfaces (e.g., sockets) suffering from
big latencies and not exploiting the full potential of the system [152].
In REeCIPE, we carefully address these limitations without intro-
ducing an additional burden to developers. We build a secure Remote
Procedure Call (RPC) framework on top of a direct I/O network stack
for TEEs that: (1) boosts performance by avoiding expensive syscalls
within TEEs. (2) extends the transferable authentication and non-
equivocation primitives across the untrusted network infrastructure
realising the transformation in practice. (3) follows an established
RPC-programming paradigm that has proven to be the most effective
one for building distributed protocols [61, 90, 91, 93].
Q2: How to use TEEs to transform and build practical systems?
While Clement et al. show that a translation of a CFT protocol to a
BFT protocol exists, this mechanism adopts an impractical strategy
when it comes to building real systems. The entire (transformed)
system relies on an expensive mechanism to ensure the correct ex-
ecution of the underlying CFT protocol. In each round, each replica
needs to receive the history of all previous messages, verify their au-
thentication and replay the execution of the protocol’s entire history.
This way, it is ensured that non-Byzantine replicas rebuild their state
correctly and also that the currently executed message is legitimate
(i-e., derives from a valid execution scenario of the protocol).
Secondly, the transformed protocol may amplify the native seman-
tics of the original CFT protocol such as linearizable local reads. As in
classical BFT protocols, clients cannot trust individuals, instead, they
build collective trust by receiving f +1identical replies from different
replicas to ensure that at least one correct replica has responded.
We design RecIPE to work out-of-the-box to build real systems.
RecIpE leverages the properties offered by TEEs to shield the correct
protocol execution while our network stack extends the security
properties to the network. As a result, our approach does not impose
any dependency on the history execution of the protocol, and the
original protocol’s message complexity is not affected. We also offer
an authenticated, per-node, in-memory KV store to allow replicas to
detect integrity and authenticity violations and to supportlocal reads
individually. Our approach improves performance, but enables easy
adoption as well; developers do not have to worry about maintaining
protocols’ semantics in Byzantine settings.

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Q3: How to realize initialisation, recovery, and failure detec-
tion? While the transformation remains agnostic to the transformed
CFT protocol in normal operation, the system designers still need
to design recovery mechanisms when failures occur. Clement et al.
do not address how the system initialises its state, detects failures,
and recovers from them. CFT protocols vary in their mechanisms for
recovery and failure detection. Some protocols continue to operate
when failures occur [107, 120] while others rely on accurate timeouts
to detect non-responsive leaders and nodes [93, 121, 132]. Unfortu-
nately, TEEs come with neither a trusted initialisation mechanism
for distributed systems [15] nor a trusted timer source [22, 24].
RecIPE builds on a secure substrate that overcomes these limi-
tations. We build on a mechanism for collective attestation and a
trusted lease mechanism [146] which is a foundational primitive for
trusted timeouts, failure detectors [84], leader election [65], etc.

Q4:Is BFT enough? The case for confidential BFT protocols.
Applications that manage sensitive data (e.g., health-care applica-
tions [96]) adopt blockchain solutions for privacy. To this end, cloud-
hosted blockchain solutions have been launched [2, 4, 14, 20, 25].
However, these cloud-hosted blockchain systems that fundamen-
tally build on agreement protocols for serialising the ledger [21],
jeopardise the blockchain principles of decentralised trust [112].
While BFT protocols offer an important foundation to build trust-
worthy systems, we argue that modern applications [1, 37, 45, 68, 119,
123, 127] seek confidentiality beyond the scope of the BFT model.
RECIPE satisfies this need. Built on top of TEEs, RECIPE transparently
offers confidential execution without sacrificing performance.

5 RecIPE Protocol

Clients in RECIPE execute requests through a PUT/GET APL As dis-
cussedin § 4.1, the request is forwarded to the protocol’s coordinator
node. Figure 2 shows as an example a RECIPE implementation of
Raft (R-Raft) including all three execution phases of a typical RECIPE
protocol: the transferable authentication phase (blue box), the ini-
tialization phase (green box) and the normal execution phase where
the transformed CFT protocol executes clients’ requests (red box).
Prior to the protocol execution, nodes pass through a transferable
authentication phase (§ 5.3) to prove that the TEEs and loaded code
are genuine, followed by initialization and normal operation.

5.1 Normal Operation

We first explain the initialization and the normal execution phases,
assuming all participant nodes executed the transferable authentica-
tion phase successfully. The nodes execute the initialization phase,
initializing their own local KVs @.1) and their network connections
(e.g., configures NIC-memory, network ports, etc.) and establish con-
nections with other peers ¢.2) based on the configuration it securely
received at the attestation process . The leader then runs the un-
derlying CFT protocol (in our case, Raft €)—(C9) to execute the client
request . Upon completion, it replies back to the client . Next,
we discuss the RECIPE abstraction under the normal operation.

We use the notation [h,,_, payload] to denote an attested or
shielded message that is comprised of the signed hash (.,) of pay-
load (certificate) along with the raw payload data. We use the symbol
o to denote that a piece of data is signed with a key c. Figure 2 uses
the notation (@, kv) for an attested message referring to a key-value
pair kv with certificate a.

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Transferable authenticati itialization

Dimitra Giantsidi et al.

Normal

Protocol
designer Attest
TLS request Response(A.7] Client
cAS handshake Verify request reply
i C.9
attestation Secrets Create Beast Mark {kv) as Bcast -
Leader distribution RPCs | [Shieid |1, k) replicated [Shield | (9% omt-ms9) ‘WnKt\e/
c Quote msg{kv] Fmt msg o
F1 T ';% response Init local X \—m—‘gﬁ ! \ / = \ store
53 KV store Verify | /ACK Verify || Write
-2 ACK
o £ K \ @ o L to KV
tmsg) || store
C 9] C 9]
Replicaﬁ;n phase Commit phase

Figure 2: Example of the RECIPE version of Raft (R-Raft) execution.

#1: Clients send to the coordinator their request of the form [h,, _,
(metadata, req_data)] 1. The req_data is the request’s associated
data and the metadata might include among others the client’s and
the request’s id, the leader’s and term’s ids (known to the client).
#2: Nodes receive and process a request after successfully verifying
their integrity and authenticity. RECIPE’s protocols inherit the con-
strains of the original CFT protocol. For instance, our R-Raft leader
will drop requests with wrong view of the term or leader.

#3: Upon the reception of a client’s request:

#3.1 The coordinator (leader) verifies the integrity and authentic-
ity of the message using RECIPE’s authentication layer. It also verifies
the metadata, e.g., the message is invalid if the term and the leader (if
any) known to the client are incorrect. The leader updates the client
table with the latest processed request for each client.

#3.2 Next, the leader initializes the protocol for that request. In
our example, the Raft leader shields the message @, generating a
trusted message format (a1, kv) where a1 is the certificate of kv and
broadcasts the request to the followers C2) (replication phase).

#3.3 The messages exchanged between replicas are of the form
[h . (metadata, req_data)]. The metadata includes a per-request
unique tuple (view, cq, cntc,) that contains: (1) the view, an identifier
that is optionally set by the implementation for every new leader (if
any) (2) the communication channel id (cq) and (3) a sequencer id or
a message counter (cnt.4) that is assigned to the messages sent over
this channel and is increased monotonically for every new message.
#4: When a replica receives a message:

#4.1 If the replica is in normal state operation, it verifies the
validity of the message. Else, it refuses to process the request.

#4.2 The replica verifies the received sequencer id (recvcn;) to see
if it is consistent with its local counter (cntc,). If the recv,,; equals
(cntey+1), the replica executes the request immediately, increases
its local counter, acknowledges to the sender and updates the client
table. If the recv.,, refers to a “future” message (recvc,;>cnteq+1),
the replica queues the request in the protected area. Periodically,
it applies the queued requests eligible for execution and notifies
coordinators accordingly.

#5: In our example, the followers verify the request @, enqueue
the un-committed request in a TEE buffer, and send ACKs back to
the leader. The leader, upon receiving the majority of ACKs marks
the request as replicated (.4 and proceeds to the second round of
the protocol instructing the followers that replied to commit the
update (@—@) At this point, each follower instructed to commit
applies the request to its local KV store and ACKs the commit
to the leader. Similarly to the replication phase, the leader finally
commits (C.9) when it receives ACKs from the majority.

#6: After the protocol’s execution, the coordinator marks the request
as committed and notifies the client ®2).

Toe

5.2 View Change

While decentralized protocols remain available as long as most
nodes are part of the membership, the leader-based protocols do
not progress if the leader goes down. To remain available after the
leader crashes, the followers need to closely monitor the leader (e.g.,
heartbeat messages in inactive periods) and, in case it is unreachable,
to elect anew one, i.e., perform a view change.

In line with the CFT protocols, RECIPE protocols must assign a
leader with a term and a node identifier. The term id can be seen as an
epoch, a monotonically increasing counter that uniquely identifies
the current view of the system. To continue serving requests after a
leader election, the majority needs to confirm the new leader along
with the new term. Since a leader needs to be acknowledged by the
majority of the nodes to operate, the latest term will survive in at
least one node, ensuring the term’s monotonic increments.

Correctness. The correctness condition for leader elections is that
every commit must survive into the new leader election in the order
selected for it at the time it was executed. RECIPE does not make
further assumptions, protocols can rely on their election algorithms
as we guarantee that the replicas are trusted.

Failure detection. CFT protocols [121, 132] often require trusted
timers to detect failures. RECIPE builds on top of Intel SGX, which
does not secure timers [22, 24] whereas OS-timers and software
clocks cannot be trusted. To overcome this, RECIPE implements a
trusted lease mechanism [146]. Our mechanism supports all the prop-
erties of classical leases [74] that are the building block for trusted
timeouts, failure detectors [84], leader election [65], etc.

5.3 Transferable Authentication

Before initialization, all participant nodes run the transferable au-
thentication phase (are attested). The phase ensures that only authen-
ticated replicas receive configurations and secrets and participate to
the protocol, guaranteeing the transferable authentication property
and protecting against Sybil attacks [60]. This step is essential to pre-
vent impersonation attacks, even with correct and protected code, as
basic authentication cannot stop Byzantine behaviors like forking.

RecIPE materializes this phase using a remote attestation protocol.
Right after the attestation protocol we rely on node identifiers and
message sequencers (§ 5.1, § 6).

The attestation protocolisinitialized by the protocol designer (PD)
(challenger) who establishes TLS connection with the Configuration
and Attestation service (CAS)(x.1). CAS is responsible for proving the
authenticity of a TEE. For now, we focus solely on the attestation
protocol; the CAS is discussed in § 6. The CAS also establishes secure
communication channels with the participant nodes.

The PD sends an attest request to the CAS, which is then for-
warded to thereplicas . Thereplicas perform local attestation [125],

RECIPE : Hardware-Accelerated Replication Protocols

i.e., they calculate a measurement of their code and generate a quote
that is uniquely bound to that particular TEE . The quotes are
sent over the TLS channel to the CAS for verification. Upon a suc-
cessful attestation of a TEE, the CAS notifies the PD to forward
configurations to the replicas (3.7)—(.4).

CAS runs on attested TEEs, hence, it does not pose vulnerability
risks. As a single point of trust, it may face availability issues—e.g.,
an attacker shutting it down prohibits RECIPE nodes to be attested
and join the membership (§ 5.5).

5.4 Recovery

As nodes fail, new or recovered nodes need to be added to continue
operating at peak performance. To add a new node, the membership
needs to be reliably updated, following that all other live replicas
are notified of the new node’s intention to join the replica group.
For non-equivocation, recovered nodes always start as fresh nodes
and as such are assigned unique node ids by the CAS through the
attestation phase. Overall, a new joining node follows the next steps:
#1: A recovering node needs first to be attested before any secrets
and membership information are shared. Before the control passes
to the CFT protocol, the node sends a join request to a designated
node, notifying it about its willingness to join the cluster.

#2: The challenger-node that receives the request initializes a remote
attestation to verify the new node’s trustworthiness (§ 5.3).

#3: After a successful attestation, as a response to the join-request,
the challenger-node shares the network signing or encryption keys
and the configurations. The challenger-node also broadcasts a mes-
sage to the other replicas about the successful attestation of the new
node. Once the new joiner acknowledges the response from the
challenger-node, it establishes connections with the other replicas.
#4: The new node joins as a shadow replica fetching the state of
the system as in [62, 122]. If the CFT protocol allows, this node can
participate in writes while recovering. Once it is synchronized with
the system’s state, it transitions to normal operation of the protocol.

5.5 REcIPE liveness and safety properties
We do not consider DoS-based liveness or censorship attacks, since
the unprotected cloud infrastructure can be controlled by an ad-
versary to compromise the availability of REcipe. While not imple-
mented, client-centric techniques as in [151] can also be adapted.
RecIpE is safe. Especially, in the context of rollback attacks, where
other systems, e.g., MinBFT [149], recover from persistent storage,
REcIPE attestation phase carefully addresses this violation relying
on unique fresh node identifiers and message sequence numbers
using lightweight symmetric-key hashing, with no measurable per-
formance overhead to generate distinguishable protocol messages.

6 REecrpE Library

This section describes four core components of RecipE. Table 2 sum-
marizes the REc1pE’s API for each component.
REcIPE networking. REcIPE adopts the Remote Procedure Call
(RPC) paradigm [34] over a generic network library with various
transportation layers (Infiniband, RoCE, and DPDK), which is also
favorable in the context of TEEs where traditional kernel-based
networking is impractical [97].

We offer asynchronous network operations following the RPC
paradigm. For each RPCobj, RECIPE keeps a transmission (TX) and
reception (RX) queue, organized as ring buffers. Developers enqueue

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Attestation API
attest (measurement)

Attests the node based on a measurement.

Initialization API
create_rpc(app_ctx)
init_store()
reg_hdlr (&func)
Network API

send (&msg_buf) Prepares a req for transmission.
respond (&msg_buf) Prepares a resp for transmission.
poll() Polls for incoming messages.

Security API
verify_msg(&msg_buf)
shield_msg(&msg_buf)

KV Store API

write(key, value)

Initializes an RPCobj.
Initializes the KV store.
Registers request handlers.

Verifies the authenticity/integrity and cnt of a msg.
Generates a shielded msg.

Writes a KV to the store.
Reads the value into vrgg
and verifies integrity.

Table 2: REcIPE library APIs.

requests and responses to requests via RECIPE’s specific functions
which place the message in the RPCobj’s TX queue. Later, they can
call a polling function that flushes the messages in the TX and drains
the RX queues of an RPCobj. The function will trigger the sending of
all queued messages and process all received requests and responses.
Reception of a request triggers the execution of the request handler
for that specific type. Reception of a response to a request triggers a
cleanup function that releases all resources allocated for the request,
e.g., message buffers and rate limiters (for congestion).

While RecipE’skernel-bypassing architecture targets performance,
its network stack embeds non-equivocation and transferable authen-
tication primitives (see § 4.3), enabling BFT transformation of CFT
protocols with just 2f +1 nodes.

Non-equivocation and authentication layers: REcipe’s send () func-

get (key, &VTEE)

tion calls into the shield_request() primitive (§ 4.3) ensuring that
sender always assigns to unique and monotonic, thus, distinguish-
able, sequence numbers to the transmitted messages. Replicas poll
for messages (poll()) executing the implemented CFT protocol
when they receive verified valid messages (verify_request() primi-
tive). In addition, RECIPE’s replicas are willing to accept “future” valid
messages as these might come out of order, i.e., messages whose cntcg
is > (rentcq+1). These messages are processed and committed accord-
ing to the CFT protocol. The shield_request() and verify_request()
are also verifying the authenticity and the integrity of the messages.

Secure runtime. We build our codebase in C++ using SCONE to
access the TEE hardware. SCONE exposes a modified libc library and
combines user-level threading and asynchronous syscalls [139] to
reduce the cost of syscall execution. While we limit the number of
syscalls, leveraging SCONE’s exit-less approach allows us to optimize
the initialization phase that vastly allocates host memory for the
network stack and the KV store. To enable NIC’s DMA operations
and memory mappings to the hugepages (for message buffers and
TX/RX queues) (§ 6), we overwrite the mmap () syscall of SCONE to
bypass its shield layer and allow the allocation of (untrusted) host
memory. RECIPE runtime supports a trusted lease mechanism [146]
that preserves the correctness guarantees of classical leases [75],
even when timers may be unreliable.

REecrIPE key-value store. REcIPE provides alock-free, high-performant
KV store based on a skip-list. We partition the keys from the values’
space by placing the keys along with metadata (and a pointer to the

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

value in host memory) inside the TEE’s memory area, the enclave,
and storing the values in the host memory. REcIPE’s KV store design
resolves Byzantine errors since the metadata (and the code that ac-
cesses them) reside in the enclave. That said, RecipE allows for local
reads as nodes can verify the integrity of the stored values.

Attestation and secrets distribution. The attestation process
is initialized by the challenger, a remote process that can verify
the authenticity of a specific TEE. The challenger executes the re-
mote_attestation() primitive (§ 4.3) to send an attestation request to
the application—usually in the form a nonce (a random number). The
challenger and the application, then, pass through a Diffie-Hellman
key exchange process [111]. The application generates an ephemeral
public key used by the challenger later to provision any secrets.
When the TEE receives the nonce, it calls the attest() and generates
a measurement (i) of its state and loaded code. Following this, the TEE
callsinto the generate_quote(p,kpyp) to sign i (quote) with the keyp,,
which is fetched from the TEE’s h/w. The TEE signs and encrypts
the quote quoteJkPub over the challenger’s public key k,,;» which is,

then, sent back to the challenger. Upon successful verifications of
the quotegkp Y the challenger shares secrets and configurations.

7 RECIPE Analysis and Formal Verification
7.1 Requirements Analysis
We show how RECIPE satisfies the required properties (§ 4.2).

Non-equivocation. RECIPE prevents equivocation attacks through
trusted monotonically increasing message counters cntc, that assign
sequence numbers to the network messages. The sender assigns
a monotonically increasing sequence number to every message of
a given round, cntcq < cnicq + 1, guaranteeing a total ordering of
all network messages between any two communication endpoints.
Formally, for any two messages my,m;, over a communication chan-
nel cq: Vmy, my : my < my &= cnieqg(my) < cnteq(my) thus
cnteq(my) = cnteg(mz) &= m; = my. On the receiving side, it
suffices for replicas to verify that the message’s counter is consistent
with their local known sequencer for this communication channel,
cnteq =renteq+1 or for accepting “future” valid messages as these
might come out of order, i.e., cntcq > (renteq+1). RECIPE’s sequencer
prevents the replays (stale but authenticated messages), which is
indistinguishable from equivocation, cnt.q < rntcy. In addition, a
Byzantine node may “appear” to not send messages to some (weak
non-equivocation) or all (strong non-equivocation) other nodes dur-
ing a given operation [108]. RECIPE is responsible for neither—we
rely on the CFT as both weak and strong non-equivocation are in-
distinguishable from crash failures [108].

Transferable authentication. RECIPE ensures the core two proper-
ties from its TEE-assisted primitives: (1) REcIPE distributes the config-
uration, keys etc. in a secure manner to trusted nodes, and (2) RECIPE
preserves the authenticity and integrity of the network messages.
Transferable authentication is provided implicitly by properties
(1) and (2). The first ensures that signing keys are shared for every
communicating pair of processes after their successful attestation.
Recall that configuration data, signing keys, and other secrets are
securely provisioned only to successfully attested TEEs, i.e., trusted
nodes that have successfully completed remote attestation. Thus,
only trusted (correct) processes can sign (and generate) valid (and
verifiable) messages, since every message m is signed by the sender’s

Dimitra Giantsidi et al.

TEE using a private key sk. It also follows that Byzantine adversaries,
even by controlling the unprotected infrastructure (see §3), cannot
alter or forge messages without the signing key, including “future”
messages; instead, they are only limited to replaying old messages.
Formally, Pr[Verify(oc,mkpup) =1] < negl(1), where o is the sig-
nature, A is the security parameter (e.g., key size), and negl(1) is a
negligible function, meaning it decreases faster than any polynomial
function. Lastly, authenticity is transferable and can be verified in
the exact same way that any two directly communicating nodes do.

7.2 Correctness Analysis

CFT protocols need to provide the following safety properties regard-
ing the messages delivered by the network [80, 81]. We show how
these are provided by RECIPE’s non-equivocation and (transferable)
authentication layers.

Safety. If a correct process p; receives and accepts a message m from
aprocess p;, then the sender p; is correct and has executed the send
operation with m.

Integrity. If a correct process p; receives and accepts a message m,
then m is a valid and correct message generated according to the
protocol specifications.

Freshness. If a correct process p; receives and accepts a valid message
mj, sent from a correct process p;, then it will not accept any future
message m;, with the same identifier, y =x, Vx,y e N*.

Next, we explain how RECIPE satisfies these properties. Safety and
integrity are directly satisfied by our transferable authentication
mechanisms. Firstly, every message m is signed by the sender’s TEE
using a private key ki, and receivers verify m using the sender’s
public key kp,,p. Thus, only trusted and correct processes can gen-
erate valid messages (i.e., valid signatures) that can be successfully
verified: a message maccepted by some correct process p; must have
been generated and sent by a correct process p;. Moreover, correct
processes cannot deviate from the protocol’s specification to gen-
erate messages that do not adhere to it. Byzantine adversaries can
neither forge nor alter messages without kp,;, (§ 7.1).

To guarantee freshness, our system uses monotonically increasing
counters to establish a total order for messages between two end-
points. This allows a correct process p; to discard duplicate messages,
preventing replay attacks.

7.3 Formal Verification of the REcIPE Protocol

We formally verify the safety and additional security properties
of RECIPE using Tamarin [109]. Tamarin operates in the symbolic
(Dolev-Yao) model [59] and thus requires us to make the following as-
sumptions: (1) we do not consider individual bits, but instead atomic
terms, like a counter, cryptographic key, etc., which are composed
to derive messages (2) all cryptographic functions are pure, i.e., they
have no side effects, and perfect (e.g., no hash collision) (3) a poten-
tial attacker can read and delete all messages sent on the network
and modify them using the functions built into Tamarin or explicitly
provided in the model (e.g., no side channels). Based on these assump-
tions, we can model the system state as a multiset, and the possible
state transitions as multiset rewriting rules, resulting in a labeled
transition system. In the case of RECIPE, this involved mapping of the
transferable authentication, initialization, and execution phase to
facts stored in the multiset and rules for each operation that modifies
the system state. This allows us to consider an unbounded number of
processes, messages, and protocol executions. Utilizing the results of

RECIPE : Hardware-Accelerated Replication Protocols

previous TLS verification work [23, 53, 54], we abstract the TLS hand-
shake and subsequent connection as a secure channel in our model.

In order to verify the properties of this system, we annotate rules
with parameterizable action facts and use them to express temporal
first-order properties on all possible traces, i.e., transition sequences.
Tamarin can then use deduction and equational reasoning to derive
either a proof of correctness or a counterexample, which violates
our property [109]. To express the temporal relation of action facts
we will use a@t;, to express that action fact a occurred in the trace
at time point ¢;. The relation ¢, < t;, specifies that ¢, occurred strictly
before t; in the trace, and t, = t}, expresses that both occur at the same
time, which implies that they map to the same rule execution. Using
this framework, we can express the following safety properties:

We use the action facts Acc(ept) and Send, which map to the ac-
cording process operations, as well as the action fact Tr(usted), which
marks the rule where the processes are finally attested and from
which point onward they are trusted. The first property we verity,
which corresponds to our safety and integrity properties, is that sent
and accepted (by some process) messages always originate from a
trusted (correct) process or formally in Tamarin:

Vpimjotita: Tr(p) @ty AAcc(pim,)@tq Aty <tq
= Apitts: Tr(pj)@ty; ASend(pjm;)@ts Ay, <ts<tq

We define property (2) to verify that messages are always accepted
in the order they are sent. We express this in Tamarin as:
Vpi,mjx,mjy,tti,tax,tay :
Tr(p:)@t:; A Acc(pi,mj,)@ta, AAcc(pimj,)@ta, Aty <ta, <ta,
= 3pjitsts,: Send(pj,mj.)@ts, A Send(pj,mjy)@tsy Als, <ts,

Finally, we verify that messages are never accepted twice, which
corresponds to our freshness property, expressed in Tamarin as:
Vpi,mjx,tti,tax,tay 2 Tr(pi)@ty; AAcc(pimj,)@ta,

A Acc(p,—,mjx)@tay Aty <taysta, = ta, =ta,

All of these properties are successfully verified by Tamarin for any
number of TEEs, processes, and protocol executions, even in the
presence of an attacker, as outlined above. A link to the full Tamarin
model and proof artifact, which consists of more than seven thousand
generated lines, will be provided after the double-blind review.

8 Evaluation
8.1 How to Apply the REcIPE Library?
RecIpE draws inspiration from systems like Fabric [31], which sup-
ports both CFT [21] and BFT [86] protocols for blocks ordering.
Since replication protocols are central to fault-tolerant cloud ser-
vices, we envision RECIPE serving blockchain layers and generalizing
to distributed KVs and replicated systems requiring BFT-like guaran-
tees [35]. Below, we outline how developers can use the REcIpE-lib
API and transform widely adopted CFT protocols like Raft [8, 21, 51].
Developers can use the REc1PE-lib API to transform their preferred
CFT protocol for Byzantine settings without further modifying the
core states of the protocol. Listing 1 illustrates Raft’s transformation
using the same example of R-Raft from Figure 2. In Listing 1, the
blue sections show the native Raft code, whereas the orange sections
show the modifications introduced by REcIPE.

/] e Requests handlers definition -----------
> void replication_hdlr(Raft_ctx* ctx, Msg* recv_msg) {
// verifies recv_msg integrity and counter
[msg, cnt] = verify_msg(recv_msg);

5
6
8
9
10
11

W/ comcmcmmooo Init phase

3 for (auto& node

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

... // appends the req to the on-going reqs buffer

conn.respond(shield_msg(ACK_repl)); // transmits ACK
}
void cmt_hdlr(Raft_ctx* ctx, Msg* recv_msg) {

[msg, cnt] = verify_msg(recv_msg);

auto [key, vall] = decode(req);

// stores val in host mem and its certificate in TEE

ctx->kv.write(key, val);

conn.respond (shield_msg(ACK_cmt)); // transmits ACK
¥

auto ctx = new Raft_ctx(metadata, node_type);

// init local KV with host allocated memory and a cipher
ctx->kv = init_store(HostMemSize, cipher);

RPC_obj conn = create_rpc(enc_key); // create RPC handle
conn.reg_hdlr(&cmt_hdlr); // registers handlers
conn.reg_hdlr(&replication_hdlr);

A Raft leader ---—--—————-

: followers_list) {
conn.wait_until_connected(node); // connects with followers

}

, for (53) {

... // gets client request and marks it as on-going

for (auto& follower : connections)

// generates a shielded message and bcast to followers
follower.send(shield_msg(rep_req), TypeRepl);

conn->poll(); // polls to flush TX/RX queues

for (auto& follower : connections) ... // bcast commit
follower.send(shield_msg(cmt_req), TypeCmt);

... // commit phase, apply changes to local kv

ctx->kv.write(key, val);

Listing 1: Raft transformation using REcCIPE: blue sections
(native Raft) and orange sections (RECIPE additions).

Developers need to port the codebase within the TEE and use the
RecIPE’s network API to replace the conventional unsecure RPC-
API [67, 90, 110] with Rec1pE-lib’s networking functions extending
the TEEs’ trust accross the network. Some of the REcipE’s API re-
mains equivalent to the native API; typical examples are the poll()
and reg_hdlr() functions. On the other hand, we introduced some
slight modifications in send() operation and Initialization APIs.

8.2 REecIPE in Action for CFT Protocols

Experimental setup. We run our experiments in a cluster of three
SGX machines (NixOS, 5.15.43) with CPU: Intel(R) Core(TM) i9-
9900K each with 8 cores (16 HT), NIC: Intel Corporation Ethernet
Controller XL710 for 40GbE QSFP+ (rev 02) and a 40GbE QSFP+ net-
work switch. For the evaluation, we use the YCSB benchmark [26]
(configured with approx. 10K distinct keys with Zipfian distribution)
with various R/W ratios and value sizes. Competitive baselines (e.g.,
Damysus [56] and PBFT [140]) run on the same machines. PBFT
used an additional machine with identical specs.

To show the benefits of our approach, we implement four widely
adopted CFT protocols (one of each category in § 2, Table 1), with
the Rec1pPe-lib API. We build R-ABD, R-Raft, R-AllConcur and R-CR
which are the REcIPE versions of ABD, Raft, AllConcur and CR respec-
tively. We compare these protocols with BFT-smart [140], an opti-
mized version of PBFT [41] with system-level optimizations and real-
world integration (e.g., Hyperledger Fabric) and Damysus [56], the
state-of-the-art version of HotStuff [27] on top of SGX (with 2f+1) in-
cluding optimizations such as pipelining and concurrent processing.

Our evaluation targets the following: not only to show how
RecIPE’s approach with TEEs can improve throughput using only

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

R/W R- R-CR R- R-
ratio ABD Raft AllConcur
50% 6.5% 13.7X 5.3% 6.8X
75% 13.3% 14.8% 10.05% 9.4%
90% 13X 24X 16.5% 9IX
95% 12.8% 21x 10.7% 9.5%
99% 12.3%x 23X 9.8% 10.5%

2568 1024 B
Figure 4: Performance of REcIPE for different value sizes.

2f + 1 nodes but also, to explore the impact of kernel-bypass net-
working for BFT.

Our findings based on the evaluations showed that RECIPE im-
proves performance by preserving the original CFT protocol work-
flow. For example, it allows local reads where permitted, due to
trusted leases and the authenticated per-node KV store. Additionally,
kernel-bypass networking eliminates critical path bottlenecks im-
proving throughput. Next, we discuss the characteristics of protocols
categories, our chosen protocol and our evaluation results in detail.

A:Leaderless w/ per-key order. Protocols in this family agree on

a per-key order of writes in a distributed manner. All nodes can
coordinate a write that is completed in at least two rounds. A typ-
ical example is Classic Paxos (CP) that achieves consensus in three
broadcast rounds. Several works [64, 82, 93, 107, 117] simplify the
complexity of CP to boost performance. Protocols suchas [64,82,117]
can offer consensus in two rounds but fall back to CP if conflicts occur.
Others [93, 107] execute writes in two rounds enforcing all messages
to be received by all nodes or relaxing the Read-Modify-Write seman-
tics. These protocols offer linearizable reads by executing quorum
reads to consult (at least) the majority. Protocols like [93] where
writes need to reach all nodes allow for local reads (at the cost of
availability—if a node fails, writes block).

Choice: ABD [107]. We implemented ABD, a multi-writer, multi-
reader protocol with RecipE (R-ABD). R-ABD offers linearizable
(quorum) reads using Lamport timestamps (TS) [102] for each key-
value (KV) pair. R-ABD broadcasts requests to all replicas and waits
for acks from the quorum.

Wirites are executed in two rounds of broadcasts. First, the coor-
dinator asks from all replicas to hand over the key’s TS, securely
stored inside the TEE (KVs’ metadata). Upon receiving a majority
of the timestamps, the coordinator creates a higher TS for that key
by increasing the highest received TS. Finally, it broadcasts the new
KV pair along with its new TS to all replicas which, in turn, insert
the KV pair into their KV store. Upon gathering a majority of acks
it replies to the client.

10

Dimitra Giantsidi et al.

R-ABD

R-Raft E=3 R-CR EEE R-AllConcur)

75% R R

50% R y R
Figure 3: Speedup (left Table) and throughput (right Figure) of four protocols with REcIPE compared with PBFT (BFT-smart).

99

[EE PBFT R-Raft E= R-CR EEE R-AllConcur @2 R-ABD

— ==

©108 LT

@

o =

)]

5 558 as

a L]

<

= sEn L]

=1

° =5 =

10’ = =

-

50% R 95% R

Figure 5: Throughput of ReciPE (w/ confidentiality)
compared with PBFT (BFT-Smart).

R-ABD (usually) executes reads in one round by collecting all
values (and their TS) from the majority. If the majority agrees on the
latest seen TS, the coordinator replies to the client. Otherwise, the
coordinator chooses the highest TS and invokes the second round
of the write-path (for availability).

B: Leader-based w/ total ordering. The protocols [121, 131, 147]
serialize writes at the leader, offering total order. The writes usually
require two broadcast rounds; the leader proposes writes to (passive)
followers, which they ack the proposal. Once the leader collects
the acks from the majority, it runs the commit round where the
nodes apply the proposed writes in their total order. Since writes
are propagated to the majority where the leader is always part of
it, the leader can always know the latest committed write for all
keys. As such, leaders can always read locally while followers must
forward reads to the leader. Some protocols [131] allow followers
to read locally. This is achieved in two ways: they might forego lin-
earizability and downgrade to sequential consistency [32] (with the
possibility of reading stale values [131]), or ensure that all writes
reach all followers at the cost of availability.

Choice: Raft [121]. As a representative protocol of this family we
implement Raft with RecIpE (R-Raft). We target linearizability; all
reads are forwarded to the leader, which also serializes writes. The
leader proposes writing to replicas and commits the request when
the majority of them acknowledge the proposal.

The leader stores writes in an uncommitted_queue inside the
TEE. We spawn a dedicated (worker) thread to manage this queue
and serialize all writes. The worker thread broadcasts the request
(or a batch of consecutive requests) to all followers. The followers
verify the messages. As an optimization, followers accept future
messages, storing them in a separate queue. The followers commit
requests respecting the leader’s total order and send acks for one or
more consecutive requests. The leader only commits a request and
responds to the client when it receives a response from the majority.

C: Leader-based w/ per-key order. In these protocols all writes

are steered to the leader node, which ensures that writes to the same
key are applied in the same order by all replicas. These protocols can

RECIPE : Hardware-Accelerated Replication Protocols

R-Raft E= R-CR EEE R-AllConcur R-ABD

Overheads

50%

(a) Performance overheads of TEEs.

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

kernel-net kernel-net (TEEs) E= Recipe-lib (net)
== direct 1/O 3 direct I/O (TEEs)

1024 1460
payload size (B)

(b) Performance evaluation of REcIPE-lib (net).

Figure 6: Performance overheads of transformation and TEEs and performance analysis of RECIPE networking.

offer linearizability (it is a compositional property) similarly to the
leader-based protocols with total order. While writes are propagated
to a majority of nodes, reads are propagated to the leader. As the
protocols do not respect a total ordering, local reads to followers lead
to weak guarantees such as eventual consistency [150]. As before,
we can allow for local reads to all nodes when writes are guaranteed
to propagate to all followers.

Choice: Chain Replication [132]. Asarepresentative protocol, we
build Chain Replication (R-CR) with RecIpE. In R-CR, the nodes are
organized in a chain, through which writes are propagated from the
head of the chain to its tail. Similarly to [67], we consider CR among
the leader-based protocols as the head node is the leader to serialize
all writes. A write traverses the chain until it reaches the tail where
it is considered committed, which guarantees that all writes reach
all nodes. We offer linearizability by reading locally from the tail.

D: Leaderless w/ total ordering. These protocols rely on a prede-
termined static allocation of write-ids to nodes. For example, all
nodes know that the writes 0 to N-1 will be proposed and coordi-
nated by node-0, the next N writes will be proposed by node-1 and so
on. Therefore, in each round each node can calculate the place of each
write in the total order based on its own node-id, without synchroniz-
ing with any other node. Then, the node broadcasts its writes along
with their place in the total order. Typically a commit message is
broadcast after gathering acks from a majority of the nodes. Crucially,
all nodes must apply the writes in the prescribed total order.

Choice: AllConcur [126]. To study this category, we implemented
AllConcur with RectpE (R-AllConcur), a decentralized replication
protocol with total order that relies on an atomic broadcast prim-
itive. Nodes are organized in a digraph (G) [126] where the fault
tolerance of the system is given by G’s connectivity. For example, to
tolerate 1 node failure on a 3-node system, we calculated the vertex-
connectivity to be equal to 2, namely, each node is connected to the
other 2 nodes. For the writes, all nodes track all messages for each
round and commit them in a predefined order without synchroniza-
tion. We can treat reads as writes (for linearizability) or, we allow
for local reads to replicas offering sequential consistency [85].

8.3 Evaluation Analysis

REecrPE vs PBFT. Figure 3 shows the throughput (Ops/s) and the
speedup of the four case studies we implemented with RECIPE com-
pared to BFT-smart [140] (PBFT) for different read/write workloads
(and constant value size/payload, 256 B). Our evaluation shows that
all four protocols with REcIPE outperform the classical BFT 5x to 24X.
We observe that the local linearizable reads offered by R-CR greatly
improve performance. We see less speedup in read-heavy workloads

11

for the protocols with local reads (e.g., R-Raft and R-AllConcur). We
found out that in these protocols, the total ordering was the bottle-
neck. In R-Raft, the writer thread that serialized all writes was slower
than the other worker threads (which executed reads or enqueued
writes to the writer thread’s queue). Additionally, for R-AllConcur
we saw that collecting all messages of each round decreased through-
put. The speedup in R-ABD, R-Raft and R-AllConcur is moderate for
write-heavy workloads where writes require two rounds of messages.
R-ABD has lighter read-path; reads require the majority to agree on
a value which is typically resolved in one round. R-CR outperforms
R-ABD as reads are done locally. Lastly, we see that as the workload
becomes more read heavy, the throughput is improved slightly due
to (1) request rate limiter and (2) single-node bottlenecks.

REcIPE vs Damysus. We compare RECIPE against Damysus [56]

with SGX in simulation mode due to SGX driver incompatibility with
our system. Damysus achieves throughput of 320 kOp/s, 230 kOp/s

and 152 kOp/s for payload sizes 0 B, 64 B and 256 B respectively. Our
RecIPE (with 256 B payload) outperforms 1.1X—2.8% and 2.3X—5.9x

Damysus with 0 and 256 B payloads. Since the SGX simulation avoids
syscall and enclave memory overheads [36, 69, 129, 141], it is typi-
cally 2—-4x faster than real SGX hardware. As such, RECIPE is shown
to consistently outperform Damysus’ idealized upper bound.

REecrpE with confidentiality. Figure 5 shows REcIpE throughput
when we also strive for confidentiality; an extra property that is not
offered by classical BFT protocols. We guarantee confidentiality by
encrypting all data that leave the TEE (network messages, values re-
siding in the host memory). Briefly, the cost for this extra property is
a throughput decrement by a factor of 2. Surprisingly, R-ABD shows
minimal degradation compared to R-ABD without confidentiality.
The reason is that R-ABD quickly saturated all memory resources
in our system so the throughput was limited mainly by the requests’
rate limiter. RECIPE, even with stronger properties, i.e., confidential-
ity, achieves higher throughput than PBFT: on average we calculate
7% and 13X speedup for 50% and 95% workloads respectively.

RecrpE with confidentiality boosts throughput up to 4.9x w.r.t.
Damysus that does not offer confidentiality.

Value size. Figure 4 shows the throughput for different value sizes
(under a 90% R workload) for each of the four protocols. The per-
formance drops as the value size is increased due to the enclave’s
limited size. While RecIPE places the values and network buffers
in the untrusted (unlimited) memory, the bigger the allocations are
the more we stress test the (limited) enclave memory. R-Raft and
R-AllConcur show the greatest slowdown (2 to 7x for 4096 B). We
interestingly found out that the batching technique in these proto-
cols with value size of 4096 B deteriorates the performance and, even,

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

Mean/s Speedup
Recipe CAS 0.169 18.2x
IAS 2.913

Table 3: The end-to-end latency comparison between the
attestation mechanisms using REciPE CAS and IAS.

crashes the system by consuming all SCONE’s memory. For these
two protocols with value size 4096 B we depict the numbers with
little (< 4) or no batching factor. The other two protocols, R-ABD
and R-CR, also show similar behavior. In these protocols we did not
use batching as an extra optimization.

Transformation and TEEs overheads. Figure 6a shows the over-
heads introduced by RecipE where we compare a native CFT im-
plementations of the protocols (without TEEs). Both use the same
network stack, but native CFT omits authentication, allowing us
to isolate TEEs overheads. Overall, an R-CFT protocol experiences
2x—15% slowdown compared to its native execution. The overheads
mainly derive from the TEEs. To prove that, we also ran these pro-
tocols in simulation mode in SCONE where the trusted memory is
unlimited: we found the throughput to be almost equivalent to the
native runs’ results. Our observation is also explained from the fact
that the higher overheads are for AllConcur and Raft. To optimize
these protocols we found extremely helpful the batching. However,
batching requires allocations/de-allocations of bigger continuous
(virtual) memory buffers which stress test SCONE memory subsystem.

REecIPE-lib network performance. Figure 6b shows the network
throughput (Gbps) of five competitive network stacks: (i) a native
and a TEE-based network stack on top of kernel sockets [18], (ii) a
native and a TEE-based direct I/O for networking (RDMA/DPDK)
and (iii) our TEE-based RecIpE-lib network library. This is to isolate
the performance gains of the RDMA-based stack in RECIPE.

We deduct two core conclusions. First, TEEs (SCONE) can degrade
network throughput 4x—8x for both kernel-net and direct I/O net-
working compared to their unprotected (native) runs. Consequently,
anaive adoption of TEEs for BFT does not necessarily translate to
performance gains. Secondly, Recipe-lib network performs up to
1.66x faster than the kernel-based networking (kernel-net (TEEs)).
As a takeaway the performance speedup (24X w.r.t. PBFT and 5.9%
w.r.t. Damysus) for all our four use-cases with RECIPE are primarily
due to the transformation (REcIPE) rather than the use of direct I/O.

Attestation. Table 3 shows the latencies of Intel’s Attestation Ser-
vice (IAS) [15] and ReciPE CAS. We found that the (mean) average
of our CAS is 0.17 s, i.e., 18X faster than the IAS (2.9 s). Note that
since RECIPE recovers by launching fresh replicas that immediately
join the write path while synchronizing in-memory state from peers,
recovery time is primarily influenced by CAS attestation latency.

9 Related Work

Classical BFT protocols. PBFT [41] and its variations [136] run
a three-phase protocol. Replicas broadcast messages and transit
to the next phases after receiving quorum certificates [40] from at
least 2f +1 distinct replicas leading to O(n?) message complexity.
Zyzzyva [95] offloads to the clients the responsibility to correct repli-
cas’ state in case of a Byzantine primary. However, prior work [28]
found safety concerns in the protocol.

Streamlined protocols [27,39, 42, 43] avoid heavy state transfers at
the view-change by rotating the leader on each command at the cost

12

Dimitra Giantsidi et al.

of additional rounds. HotStuff [27] adds two extra phases at the com-
mit. Basil [143] targets operability when Byzantine nodes sabotage
the execution requiring 5f +1 replicas. Others focus on algorithmic
optimizations [47, 72]. In contrast to our RECIPE that operates with
2f+1 nodes, these systems require (at least) 3f+1 nodes.

Hybrid BFT protocols. Hybrid BFT protocols use trusted hard-
ware to enhance performance, often at the cost of generality and
ease of adoption. Examples include MinBFT [149]—unfortunately,
incompatible with our SGX setup [19]— Damysus [56], OneShot [57]
and Hybster [38], which use TEEs to reduce replication factors,
communication rounds, or message complexity. CheapBFT [92]
and FastBFT [106] operate with trusted modules and fewer active
replicas but fall back to classical BFT under Byzantine faults. Oth-
ers [46, 48, 77, 105, 153] incorporate TEEs, trusted counters and
logs. HotStuff-TPM [27] uses TPM [124] with an additional phase.
CCF [51] uses TEEs offering a REST API, requiring two requests per
commit. RECIPE commits in one, improving latency and throughput.
Achilles [118] and Engraft [151] improve rollback resilience using
TEEs to offload rollback prevention from the critical path or stateful
storage. RECIPE addresses this through attestation and cooperative
recovery, where nodes assist each other in state restoration.

Programmable hardware for BFT. Programmable hardware such
as FPGAs, SmartCards, and switches has been used to support BFT
primitives [71,92,105,142]. NeoBFT [142] implements authenticated
ordered multicast in switches but introduces a single point of failure.
In contrast, REcIPE distributes trust across TEEs for better availabil-
ity and compatibility with unmodified CFT protocols. Trinc [105]
and CheapBFT [92] rely on peripherals for attestations but suffer
from high latency ((50us—105ms). In contrast to our RECIPE, these
approaches still require a working understanding of BFT; a task as
challenging as it is error-prone [28].

10 Conclusion

We present RECIPE, a generic approach for transforming CFT proto-
cols to tolerate Byzantine failures without any modifications to the
core of the protocols, e.g., states, message rounds, and complexity. We
realize our approach by implementing RecipE-lib with trusted hard-
ware to guarantee transferable authentication and non-equivocation
for thwarting Byzantine errors. Further, we combine trusted hard-
ware with direct network I/O [16, 110] for performance. We present
an extensive evaluation of RECIPE by applying it to four CFT proto-
cols: Chain Replication, Raft, ABD, and AllConcur. All four protocols
show that RecIPE achieves up to 24X and 5.9 better throughput
compared to state-of-the-art BFT protocol implementations.

Software availability. https://github.com/TUM-DSE/Recipe.git.

Acknowledgments. We thank our shepherd, Maarten van Steen,
and Martin Kleppmann and Antonis Katsarakis for their helpful feed-
back. This work was supported in part by an ERC Starting Grant (ID:
101077577) and the Chips Joint Undertaking (JU), European Union
(EU) HORIZON-JU-IA, under grant agreement No. 101140087
(SMARTY), the Intel Trustworthy Data Center of the Future (TD-
CoF), Google Research Grants and National Science Foundation
grant PPoSS-2118512. The authors acknowledge the financial sup-
port by the Federal Ministry of Research, Technology and Space of
Germany in the programme of “Souverin. Digital. Vernetzt.. Joint
project 6G-life, project identification number: 16KISK002.

https://github.com/TUM-DSE/Recipe.git

RECIPE : Hardware-Accelerated Replication Protocols

References
[1] 3 Pillars of Data Security: Confidentiality, Integrity and Availability.
https://mark43.com/resources/blog/3-pillars-of-data-security-confidentiality-

availability-integrity/. Last accessed: November 14, 2025.

Alibaba cloud: Blockchain as a service. https://www.alibabacloud.com/produ

ct/baas. Last accessed: November 14, 2025.

[3] Arm Confidential Compute Architecture. https://www.arm.com/why-

arm/architecture/security-features/arm-confidential-compute-architecture.

Last accessed: May 2021.

Blockchain on aws. https://aws.amazon.com/blockchain/. Last accessed:

November 14, 2025.

[5] Case study: Ge healthcare takes dynamodb on-premises with scylladb’s ‘project
alternator’. https://www.scylladb.com/users/case-study-ge-healthcare-takes-
dynamodb-on-premises-with-scyllas-project-alternator/. Last accessed:
November 14, 2025.

[2

[4

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

[33] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevi¢, Vivien Quéma, and
Marko Vukoli¢. The next 700 bft protocols. ACM Trans. Comput. Syst., 32(4),
jan 2015.

[34] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin, Daniel
Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert
Greenberg, Manish Gupta, Randy Haagens, Matthew Hendel, Ridwan Howlader,
Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit Kumar,
Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu, Guohan
Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka, David A.
Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari, Aaron Ogus,
Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power, Suraj Puri,
Shachar Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff, Chris
Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian,

[6] DataprocConfidential Compute. https:/cloud.google.com/dataproc/docs/concepts/configuring-Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce Yom, Lihua

clusters/confidential-compute. Last accessed: November 14, 2025.

[7] Encrypt workload data in-use with Confidential Google Kubernetes Engine
Nodes. https://cloud.google.com/kubernetes-engine/docs/how-to/confidential-
gke-nodes. Last accessed: November 14, 2025.

[8] etcd. https://github.com/etcd-io/eted. Last accessed: November 14, 2025.

[9] Hess corporation case study. https://aws.amazon.com/solutions/case-
studies/hess-corporation/. Last accessed: November 14, 2025.

[10] The history of databases at netflix and how they use cockroachdb.
https://www.cockroachlabs.com/blog/netflix-at-cockroachdb/. Last
accessed: November 14, 2025.

[11] How are databases used in banking? https://globalbanks.com/how-are-

databases-used-in-banking/. Last accessed: November 14, 2025.

How big is rocksdb adoption? https://rocksdb.org/docs/support/faq.html. Last

accessed: May 2021.

Hyperledger fabric ordering service. https://github.com/hyperledger/fabric/

tree/main/orderer#service-types. Last accessed: November 14, 2025.

Ibm blockchain. https://www.ibm.com/blockchain. Last accessed: November

14, 2025.

Intel Corporation. Attestation Service for Intel Software GuardExtensions (Intel

SGX): API Documentation. https://api.trustedservices.intel.com/documents/sgx-

attestation-api-spec.pdf. Last accessed: Jan, 2021.

Intel DPDK. http://dpdk.org/. Last accessed: Jan, 2021.

[17] Intel tdx. https://www.intel.com/content/www/us/en/developer/articles/tec

hnical/intel-trust-domain-extensions.html. Last accessed: November 14, 2025.

iPerf - The ultimate speed test tool for TCP, UDP nd SCTP. Last accessed: Aug,

2020.

Minbft incompatibility. https://github.com/hyperledger-labs/minbft/issues/252.

Oracle blockchain. https://www.oracle.com/blockchain/. Last accessed:

November 14, 2025.

. Ordering service implementations. Last accessed: November 14, 2025.

SGX Monotonic Counters not supported. https://github.com/intel/linux-

sgx/issues/424. Last accessed: November 14, 2025.

[23] Tamarin tls handshake proof. https://github.com/tamarin-prover/tamarin-
prover/blob/develop/examples/classic/TLS_Handshake.spthy.

[24] Unable to find Alternatives to Monotonic Counter Application Programming
Interfaces (APIs) in Intel Software Guard Extensions (Intel SGX) for Linux to
Prevent Sealing Rollback Attacks. https://www.intel.co.uk/content/www/uk
/en/support/articles/000057968/software/intel-security-products.html. Last
accessed: November 14, 2025.

[25] Web3. https://azure.microsoft.com/en-us/solutions/web3. Last accessed:
November 14, 2025.

[26] YCSB. https://github.com/brianfrankcooper/YCSB. Last accessed: Jan, 2021.

[27] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-

resilience, one-message bft devil. CoRR, abs/1803.05069, 2018.

Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and

Jean-Philippe Martin. Revisiting fast practical byzantine fault tolerance, 2017.

[29] Peter A. Alsberg and John D. Day. A principle for resilient sharing of distributed
resources. In Proceedings of the 2nd International Conference on Software
Engineering, ICSE ’76, page 562-570, Washington, DC, USA, 1976. IEEE
Computer Society Press.

[30] AMD. AMD Secure Encrypted Virtualization
https://developer.amd.com/sev/. Last accessed: Jan, 2021.

[31] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos

Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukoli¢, Sharon Weed Cocco, and Jason Yellick. Hy-

perledger fabric: A distributed operating system for permissioned blockchains.

In Proceedings of the Thirteenth EuroSys Conference, EuroSys 18, New York, NY,

USA, 2018. Association for Computing Machinery.

Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability.

ACM Trans. Comput. Syst., 12(2):91-122, May 1994.

= =
=T

=
K}

(SEV).

[32

13

Yuan, Yanzhao Zhang, and Brian Zill. Empowering azure storage with RDMA.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 49-67, Boston, MA, April 2023. USENIX Association.

[35] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay
Nagarajan, and Pramod Bhatotia. Avocado: A secure In-Memory distributed
storage system. In 2021 USENIX Annual Technical Conference (USENIX ATC 21),
pages 65-79. USENIX Association, 2021.

[36] Maurice Bailleu, Jérg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. SPEICHER: Securing lsm-based key-value stores using
shielded execution. In 17th USENIX Conference on File and Storage Technologies
(FAST), 2019.

[37] Sumeet Bajaj and Radu Sion. Trusteddb: a trusted hardware based database
with privacy and data confidentiality. In In Proceedings of the 2011 international
conference on Management of data, pages 205-216. ACM, 2011.

[38] Johannes Behl, Tobias Distler, and Riidiger Kapitza. Hybrids on steroids:
Sgx-based high performance bft. EuroSys ’17, page 222-237, New York, NY, USA,
2017. Association for Computing Machinery.

[39] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT
consensus. CoRR, abs/1807.04938, 2018.

[40] M. Castro, P. Druschel, A.-M. Kermarrec, and Antony Rowstron. Scribe: a
large-scale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications, 2002.

[41] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 2002.

[42] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially
synchronous blockchain. IACR Cryptol. ePrint Arch., 2018:981, 2018.

[43] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An extremely simple
synchronous blockchain. IACR Cryptol. ePrint Arch., 2018:980, 2018.

[44] Tushar Chandra, Vassos Hadzilacos, and Sam Toueg. An algorithm for replicated
objects with efficient reads. pages 325-334, 07 2016.

[45] Stephen Chong, K. Vikram, and Andrew C. Myers. Sif: Enforcing confidentiality
and integrity in web applications. In USENIX Security Symposium, 2007.

[46] David Chu, Aditya Balasubramanian, Dee Bao, Natacha Crooks, Heidi Howard,
Lucky E. Katahanas, and Soujanya Ponnapalli. Rollbaccine : Herd immunity
against storage rollback attacks in tees [technical report], 2025.

[47] David C. Y. Chu, Chris Liu, Natacha Crooks, Joseph M. Hellerstein, and Heidi
Howard. Bigger, not badder: Safely scaling bft protocols. In Proceedings of the 11th
Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC *24,
page 30-36, New York, NY, USA, 2024. Association for Computing Machinery.

[48] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz.
Attested append-only memory: Making adversaries stick to their word. SIGOPS
Oper. Syst. Rev., 41(6):189-204, oct 2007.

[49] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On the
(limited) power of non-equivocation. In Proceedings of the 2012 ACM Symposium
on Principles of Distributed Computing, PODC 12, page 301-308, New York, NY,
USA, 2012. Association for Computing Machinery.

[50] Alibaba Cloud. Alibaba Cloud’s Next-Generation Security Makes Gartner’s
Report. https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-
security-makes-gartners-report_595367. Last accessed: Jan, 2021.

[51] CCF documentation. https://microsoft.github.io/CCF/master/. Last accessed:
Jan, 2021.

[52] Victor Costan and Srinivas Devadas. Intel SGX Explained, 2016.

[53] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla Van
Der Merwe. A comprehensive symbolic analysis of tls 1.3. In Proceedings of the
2017 ACM SIGSAC conference on computer and communications security, pages
1773-1788, 2017.

[54] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated
analysis and verification of tls 1.3: 0-rtt, resumption and delayed authentication.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 470-485. IEEE, 2016.

[55] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. ACM

https://www.alibabacloud.com/product/baas
https://www.alibabacloud.com/product/baas
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://aws.amazon.com/blockchain/
https://www.scylladb.com/users/case-study-ge-healthcare-takes-dynamodb-on-premises-with-scyllas-project-alternator/
https://www.scylladb.com/users/case-study-ge-healthcare-takes-dynamodb-on-premises-with-scyllas-project-alternator/
https://aws.amazon.com/solutions/case-studies/hess-corporation/
https://aws.amazon.com/solutions/case-studies/hess-corporation/
https://www.cockroachlabs.com/blog/netflix-at-cockroachdb/
https://globalbanks.com/how-are-databases-used-in-banking/
https://globalbanks.com/how-are-databases-used-in-banking/
https://rocksdb.org/docs/support/faq.html
https://github.com/hyperledger/fabric/tree/main/orderer#service-types
https://github.com/hyperledger/fabric/tree/main/orderer#service-types
https://www.ibm.com/blockchain
http://dpdk.org/
 https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
 https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.oracle.com/blockchain/
https://github.com/intel/linux-sgx/issues/424
https://github.com/intel/linux-sgx/issues/424
https://github.com/tamarin-prover/tamarin-prover/blob/develop/examples/classic/TLS_Handshake.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/examples/classic/TLS_Handshake.spthy
https://www.intel.co.uk/content/www/uk/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.co.uk/content/www/uk/en/support/articles/000057968/software/intel-security-products.html
https://azure.microsoft.com/en-us/solutions/web3
https://microsoft.github.io/CCF/master/

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

[56

(57

[58

o
20,

[60

[61

(62

o
S

=y
=

o
&

[69

[70

71

[72

[73

(74]

[75]

[76

[77

[78

SIGOPS Operating Systems Review (SIGOPS), 2007.

Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. Damysus:
Streamlined bft consensus leveraging trusted components. In Proceedings of
the Seventeenth European Conference on Computer Systems, EuroSys 22, page
1-16, New York, NY, USA, 2022. Association for Computing Machinery.
Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. Oneshot:
View-adapting streamlined bft protocols with trusted execution environments.
In 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1022-1033, 2024.

Carole Delporte-Gallet, Hugues Fauconnier, Felix Freiling, Lucia Penso, and
Andreas Tielmann. From crash-stop to permanent omission: Automatic trans-
formation and weakest failure detectors. volume 4731, pages 165-178, 09 2007.
Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198-208, 1983.

JohnR.Douceur. The sybil attack. In Peter Druschel, Frans Kaashoek, and Antony
Rowstron, editors, Peer-to-Peer Systems, pages 251-260, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion
Hodson. FaRM: Fast remote memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises:
Distributed transactions with consistency, availability, and performance. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
page 54-70, New York, NY, USA, 2015. Association for Computing Machinery.
Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. J. ACM, 35(2):288-323, apr 1988.

Vitor Enes, Carlos Baquero, Tuanir Franca Rezende, Alexey Gotsman, Matthieu
Perrin, and Pierre Sutra. State-machine replication for planet-scale systems
(extended version), 2020.

C. Fetzer and F. Cristian. A highly available local leader election service. IEEE
Transactions on Software Engineering, 25(5):603-618, 1999.

Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004.
Vasilis Gavrielatos, Antonis Katsarakis, and Vijay Nagarajan. Odyssey: The
impact of modern hardware on strongly-consistent replication protocols. In
Proceedings of the 16th European Conference on Computer Systems EuroSys’21,
page 245-260, United States, April 2021. Association for Computing Machinery
(ACM). 16th ACM EuroSys Conference on Computer Systems, EuroSys 2021
; Conference date: 26-04-2021 Through 28-04-2021.

Hemant Ghayvat, Sharnil Pandya, Pronaya Bhattacharya, Mohd Zuhair, Mamoon
Rashid, Saqib Hakak, and Kapal Dev. Cp-bdhca: Blockchain-based confidentiality-
privacy preserving big data scheme for healthcare clouds and applications. IEEE
Journal of Biomedical and Health Informatics, 26(5):1937-1948, 2022.

Dimitra Giantsidi, Maurice Bailleu, Natacha Crooks, and Pramod Bhatotia. Treaty:
Secure distributed transactions. In 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 14-27, 2022.
Dimitra Giantsidi, Emmanouil Giortamis, Nathaniel Tornow, Florin Dinu, and
Pramod Bhatotia. Flexlog: A shared log for stateful serverless computing. In
Proceedings of the 32nd International Symposium on High-Performance Parallel
and Distributed Computing, HPDC ’23, page 195-209, New York, NY, USA, 2023.
Association for Computing Machinery.

Dimitra Giantsidi, Julian Pritzi, Felix Gust, Antonios Katsarakis, Atsushi Koshiba,
and Pramod Bhatotia. TNIC: A Trusted NIC Architecture: A hardware-network
substrate for building high-performance trustworthy distributed systems, page
1282-1301. Association for Computing Machinery, New York, NY, USA, 2025.
Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha
Crooks. Autobahn: Seamless high speed bft. In Proceedings of the ACM SIGOPS
30th Symposium on Operating Systems Principles, SOSP 24, page 1-23, New York,
NY, USA, 2024. Association for Computing Machinery.

Introducing Google Cloud Confidential Computing with Confidential VMs.
https://cloud.google.com/blog/products/identity-security/introducing-google-
cloud-confidential-computing-with-confidential-vms. Last accessed: Jan, 2021.
C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. In Proceedings of the Twelfth ACM Symposium
on Operating Systems Principles, SOSP ’89, page 202-210, New York, NY, USA,
1989. Association for Computing Machinery.

C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. SIGOPS Oper. Syst. Rev., 23(5):202-210, nov 1989.
Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono,
Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2014.

Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Moham-
mad Sadoghi. Dissecting bft consensus: In trusted components we trust! In Pro-
ceedings of the Eighteenth European Conference on Computer Systems, EuroSys "23,

page 521-539, New York, NY, USA, 2023. Association for Com€1 ting Machinery.
Marcus Hihnel, Weidong Cui, and Marcus Peinado. High-resolution side

channels for untrusted operating systems. In Proceedings of the USENIX Annual

14

[79

[80]

[81

[82
[83

[84

[85

[86

[87

[88

[89

[90

[o1

[92

[93

[94

[95

[96

[97

[98

[99

[100

[101

[102

Dimitra Giantsidi et al.

Technical Conference (ATC), 2017.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst.

Chi Ho, Danny Dolev, and Robbert Van Renesse. Making distributed applications
robust. pages 232-246, 12 2007.

Chi Ho, Robbert Van Renesse, Mark Bickford, and Danny Dolev. Nysiad: Practical
protocol transformation to tolerate byzantine failures. In 5th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 08), San Francisco, CA,
2008. USENIX Association.

Heidi Howard. Distributed consensus revised. PhD thesis, 09 2018.

J.Huang, X. Ouyang, J. Jose, M. Wasi-ur-Rahman, H. Wang, M. Luo, H. Subramoni,
C. Murthy, and D. K. Panda. High-Performance Design of HBase with RDMA
over InfiniBand. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium (IPDPS), 2012.

Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong Zhou, and Yingnong
Dang. Capturing and enhancing in situ system observability for failure detection.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 1-16, Carlsbad, CA, October 2018. USENIX Association.
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference.
Hyperledger Fabric. BFT-smart in Hyperledger Fabric. Last accessed: November
14, 2025.

Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-
us/sgx. Last accessed: Jan, 2021.

Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman.
Derecho: Fast state machine replication for cloud services. ACM Trans. Comput.
Syst., 36(2), apr 2019.

J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur-Rahman, N. S.
Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda. Memcached Design on
High Performance RDMA Capable Interconnects. In International Conference
on Parallel Processing (ICPP), 2011.

Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be
General and Fast. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016.

Rudiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schréder-Preikschat, and Klaus Stengel.
Cheapbft: Resource-efficient byzantine fault tolerance. In Proceedings of the 7th
ACM European Conference on Computer Systems, EuroSys ’12, page 295-308, New
York, NY, USA, 2012. Association for Computing Machinery.

Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: A Fast,
Fault-Tolerant and Linearizable Replication Protocol. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jachyuk Huh.
ShieldStore: Shielded In-Memory Key-Value Storage with SGX. In Proceedings
of the Fourteenth EuroSys Conference 2019 (EuroSys), 2019.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. Zyzzyva: Speculative byzantine fault tolerance. ACM Trans. Comput.
Syst., 27(4), jan 2010.

Tsung-Ting Kuo, Hyeon-Eui Kim, and Lucila Ohno-Machado. Blockchain
distributed ledger technologies for biomedical and health care applications.
Journal of the American Medical Informatics Association, 24(6):1211-1220, 09 2017.
Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. SGXBOUNDS: Memory Safety for
Shielded Execution. In Proceedings of the 12th ACM European Conference on
Computer Systems (EuroSys), 2017.

Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric Xing, Pramod
Bhatotia, and Mona Vij. Gramine-tdx: A lightweight os kernel for confidential
vms. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS ’24, page 4598-4612, New York, NY, USA, 2024.
Association for Computing Machinery.

Avinash Lakshman and Prashant Malik. Cassandra: structured storage system
on a p2p network. In Proceedings of the 28th ACM Symposium on Principles of
distributed computing (PODC). ACM, 2009.

Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690-691, 1979.
Leslie Lamport. The part-time parliament. ~ACM Trans. Comput. Syst.,
16(2):133-169, may 1998.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst., 1982.

RECIPE : Hardware-Accelerated Replication Protocols

[103

[104
[105

[106

[107]

[108

[109

[110

[111

[112

[113

[114

[115

[116

[117

[118]

[119

[120

[121

[122

[123

[124

[125

[126

[127

[128

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and Dawn Song.
Keystone: an open framework for architecting trusted execution environments.
In Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys), 2020.

LevelDB. http://leveldb.org/. Last accessed: Dec, 2018.

Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. Trinc:
Small trusted hardware for large distributed systems. In NSDI, volume 9, pages
1-14, 2009.

Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. Scalable byzantine
consensus via hardware-assisted secret sharing. CoRR, abs/1612.04997, 2016.

N. A. Lynch and A. A. Shvartsman. Robust emulation of shared memory
using dynamic quorum-acknowledged broadcasts. In Proceedings of IEEE 27th
International Symposium on Fault Tolerant Computing (FtCS), 1997.

Mads Frederik Madsen and Seren Debois. On the subject of non-equivocation:
Defining non-equivocation in synchronous agreement systems. In Proceedings
of the 39th Symposium on Principles of Distributed Computing, PODC ’20, page
159-168, New York, NY, USA, 2020. Association for Computing Machinery.
Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin
prover for the symbolic analysis of security protocols. In Proceedings of the 25th
International Conference on Computer Aided Verification (CAV), 2013.

Melanox. RDMA Aware Networks Programming User Manual. Last accessed:
November 14, 2025.

Ralph C. Merkle. Secure communications over insecure channels. Commun.
ACM, 21(4):294-299, apr 1978.

Ines Messadi, Markus Horst Becker, Kai Bleeke, Leander Jehl, Sonia Ben Mokhtar,
and Rudiger Kapitza. Splitbft: Improving byzantine fault tolerance safety
using trusted compartments. In Proceedings of the 23rd ACM/IFIP International
Middleware Conference, Middleware "22, page 56-68, New York, NY, USA, 2022.
Association for Computing Machinery.

Microsoft Azure. Azure confidential computing. https://azure.microsoft.com/en-
us/solutions/confidential-compute/. Last accessed: Jan, 2021.

Masanori Misono, Dimitrios Stavrakakis, Nuno Santos, and Pramod Bhatotia.
Confidential vms explained: An empirical analysis of amd sev-snp and intel tdx.
Proc. ACM Meas. Anal. Comput. Syst., 8(3), December 2024.

Christopher Mitchell, Yifeng Geng, and Jinyang Li. Pilaf: Using One-Sided
RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. Atc ’13,2013.
Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference (ATC), 2013.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more
consensus in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP *13, page 358-372, New York,
NY, USA, 2013. Association for Computing Machinery.

Jianyu Niu, Xiaoqing Wen, Guanlong Wu, Shengqi Liu, Jiangshan Yu, and
Yingian Zhang. Achilles: Efficient tee-assisted bft consensus via rollback resilient
recovery. In Proceedings of the Twentieth European Conference on Computer
Systems, EuroSys "25, page 193-210, New York, NY, USA, 2025. Association for

Computing Machinery.

National Library of Medicine. Beyond the hipaa privacy
rule: Enhancing privacy, improving health through research.
https://www.ncbi.nlm.nih.gov/books/NBK9579/. Last accessed: Novem-
ber 14, 2025.

Rui Oliveira, José Pereira, and André Schiper. Primary-backup replication: From
a time-free protocol to a time-based implementation. pages 14-23, 02 2001.
Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (ATC), 2014.

Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and
Mendel Rosenblum. Fast crash recovery in ramcloud. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, page
29-41, New York, NY, USA, 2011. Association for Computing Machinery.
Ricardo Padilha and Fernando Pedone. Belisarius: Bft storage with confiden-
tiality. In 2011 IEEE 10th International Symposium on Network Computing and
Applications, pages 9-16, 2011.

Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping Trust in
Commodity Computers. In Proceedings of the 2010 IEEE Symposium on Security
and Privacy (S&P), 2010.

Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping Trust in
Modern Computers. Springer, August 2011.

Marius Poke, Torsten Hoefler, and Colin W. Glass. Allconcur: Leaderless
concurrent atomic broadcast (extended version). ArXiv, abs/1608.05866, 2016.
Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
CryptDB: protecting confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(SOSP), 2011.

Daniel Porto, Joao Leitao, Cheng Li, Allen Clement, Aniket Kate, Flavio Junqueira,
and Rodrigo Rodrigues. Visigoth fault tolerance. In Proceedings of the Tenth

15

[137

[138

[139

[140

[141

[142

[143

[144

[145

[146

[147

[148

[149

— =
SR
- S

[152]

[153

Middleware ’25, December 15-19, 2025, Nashville, TN, USA

European Conference on Computer Systems (EuroSys), 2015.
C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A Secure Database using SGX

(S&P). In IEEE Symposium on Security and Privacy, 2018.

Redis. https://redis.io/.

Benjamin C. Reed and Flavio Paiva Junqueira. A simple totally ordered broadcast
protocol. In LADIS 08, 2008.

Robbert Van Renesse and Fred B. Schneider. Chain replication for supporting
high throughput and availability. In 6th Symposium on Operating Systems Design
& Implementation (OSDI 04), San Francisco, CA, 2004. USENIX Association.
RISC-V. Keystone Open-source Secure Hardware Enclave. https://keystone-
enclave.org/. Last accessed: Jan, 2021.

RocksDB, A persistent key-value store. https://rocksdb.org/. Last accessed: Dec,
2018.

Patrick Sabanic, Masanori Misono, Teofil Bodea, Julian Pritzi, Michael Hackl, Dim-
itrios Stavrakakis, and Pramod Bhatotia. Confidential serverless computing, 2025.
Alex Shamis, Peter Pietzuch, Burcu Canakci, Miguel Castro, Cedric Fournet,
Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Antoine Delignat-Lavaud,
Matthew Kerner, Julien Maffre, Olga Vrousgou, Christoph M. Wintersteiger,
Manuel Costa, and Mark Russinovich. IA-CCF: Individual accountability for
permissioned ledgers. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 467-491, Renton, WA, April 2022. USENIX
Association.

Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. Graphjet: Real-time content recommendations at twitter. Proc. VLDB Endow.,
9(13):1281-1292, sep 2016

Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing page faults from telling your secrets. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, ASIA CCS 16,
page 317-328, New York, NY, USA, 2016. Association for Computing Machinery.
Livio Soares and Michael Stumm. FlexSC: Flexible System Call Scheduling with
Exception-less System Calls. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2010.

Jodo Sousa and Alysson Bessani. From byzantine consensus to bft state machine
replication: A latency-optimal transformation. Proceedings - 9th European
Dependable Computing Conference, EDCC 2012, 05 2012.

Dimitrios Stavrakakis, Dimitra Giantsidi, Maurice Bailleu, Philip Sandig, Shady
Issa, and Pramod Bhatotia. Anchor: A library for building secure persistent
memory systems. Proc. ACM Manag. Data, 1(4), December 2023.

Guangda Sun, Mingliang Jiang, Xin Zhe Khooi, Yunfan Li, and Jialin Li. Neobft:
Accelerating byzantine fault tolerance using authenticated in-network ordering.
In Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM °23, page
239-254, New York, NY, USA, 2023. Association for Computing Machinery.
Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi,
and Natacha Crooks. Basil. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles CD-ROM. ACM, oct 2021.

Jeff Terrace and Michael J. Freedman. Object storage on craq: High-throughput
chain replication for read-mostly workloads. In Proceedings of the 2009 Conference
on USENIX Annual Technical Conference, USENIX09, page 11, USA, 2009. USENIX
Association.

Jorg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod Bhatotia,
and Peter Pietzuch. Rkt-io: A direct i/o stack for shielded execution. In Proceedings
of the Sixteenth European Conference on Computer Systems (ACM EuroSys 21), 2021.
Bohdan Trach, Rasha Fageh, Oleksii Oleksenko, Wojciech Ozga, Pramod Bhatotia,
and Christof Fetzer. T-lease: A trusted lease primitive for distributed systems.
In Proceedings of the 11th ACM Symposium on Cloud Computing, SoCC 20, page
387-400, New York, NY, USA, 2020. Association for Computing Machinery.
Robbert Van Renesse and Deniz Altinbuken. Paxos made moderately complex.
ACM Comput. Surv., 47(3), feb 2015.

Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Pasca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web.
Proc. VLDB Endow., 4(9):528-538, jun 2011.

Giuliana Veronese, Miguel Correia, Alysson Bessani, Lau Lung, and Paulo
Verissimo. Efficient byzantine fault-tolerance. Computers, IEEE Transactions
on, 62:16-30, 01 2013.

Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40-44, jan 2009.
Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yingian Zhang. Engraft:
Enclave-guarded raft on byzantine faulty nodes. CCS ’22, page 2841-2855, New
York, NY, USA, 2022. Association for Computing Machinery.

Ofir Weisse, Valeria Bertacco, and Todd Austin. Regaining lost cycles with
hotcalls: A fast interface for sgx secure enclaves. SIGARCH Comput. Archit. News,
45(2):81-93, jun 2017.

Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael Reiter. Brief
Announcement: Communication-Efficient BFT Using Small Trusted Hardware
to Tolerate Minority Corruption. In Seth Gilbert, editor, 35th International
Symposium on Distributed Computing (DISC 2021), volume 209 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 62:1-62:4, Dagstuhl,
Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

	Abstract
	1 Introduction
	2 Background
	2.1 The CFT Vs. BFT Conundrum
	2.2 Modern Hardware in the Context of BFT

	3 System Model
	4 Recipe Overview
	4.1 Architecture Overview
	4.2 Transformation Requirements
	4.3 Recipe Primitives In a Nutshell
	4.4 System Design Challenges

	5 Recipe Protocol
	5.1 Normal Operation
	5.2 View Change
	5.3 Transferable Authentication
	5.4 Recovery
	5.5 Recipe liveness and safety properties

	6 Recipe Library
	7 Recipe Analysis and Formal Verification
	7.1 Requirements Analysis
	7.2 Correctness Analysis
	7.3 Formal Verification of the Recipe Protocol

	8 Evaluation
	8.1 How to Apply the Recipe Library?
	8.2 Recipe in Action for CFT Protocols
	8.3 Evaluation Analysis

	9 Related Work
	10 Conclusion
	References

