
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Picsou: Enabling Replicated State Machines
to Communicate Efficiently

Reginald Frank, Micah Murray, Chawinphat Tankuranand, Junseo Yoo, Ethan Xu,
and Natacha Crooks, UC Berkeley; Suyash Gupta, University of Oregon;

Manos Kapritsos, University of Michigan

https://www.usenix.org/conference/osdi25/presentation/frank

Picsou: Enabling Replicated State Machines to Communicate Efficiently
Reginald Frank, Micah Murray,

Chawinphat Tankuranand, Junseo Yoo, Ethan Xu,
Natacha Crooks, Suyash Gupta†, Manos Kapritsos*

University of California, Berkeley; †University of Oregon; *University of Michigan

Abstract

Replicated state machines (RSMs) cannot communicate effec-

tively today as there is no formal framework or efficient pro-

tocol to do so. To address this issue, we introduce a new prim-

itive, Cross-Cluster Consistent Broadcast (C3B) and present

PICSOU, a practical implementation of the C3B primitive.

PICSOU draws inspiration from networking and TCP to allow

two RSMs to communicate with constant metadata overhead

in the failure-free case and a minimal number of message

resends in the case of failures. PICSOU is flexible and allows

both crash fault tolerant and Byzantine fault tolerant con-

sensus protocols to communicate. At the heart of PICSOU’s

good performance and generality is the concept of QUACKs

(quorum acknowledgments). QUACKs allow nodes in each

RSM to precisely determine when messages have definitely

been received, or likely lost. Our results are promising: we

obtain up to 24× better performance than prior solutions on

microbenchmarks and applications, ranging from disaster re-

covery to data reconciliation.

1 Introduction

Many organizations today use replicated state machines

(RSM) underpinned by consensus protocols to provide re-

liability, fault isolation, and disaster recovery. This includes

key-value stores [37, 50, 79], cluster managers [25], and mi-

croservices [21, 66, 70]. These RSMs frequently need to com-

municate with each other in an efficient and timely manner.

Etcd [37] to Etcd mirroring over Kafka, for instance, is a pop-

ular approach for disaster recovery across clusters [33]. Simi-

larly, autonomous organizations often run their replicated key-

value store locally for ease of management, but share access

with other entities. For example, conversations with govern-

ment agencies reveal that, for operational sovereignty, services

cannot be managed across agency borders. Instead, any shared

information must be communicated across RSMs and explic-

itly reconciled [75]. Furthermore, in the blockchain ecosys-

tem, there is a growing push towards interoperability, which re-

quires distinct RSMs (blockchains) to communicate [20, 90].

These examples speak of a common need: RSMs must

support the ability to efficiently and reliably exchange

messages with other RSMs that may or may not implement

the same consensus protocol internally.

Unfortunately, existing solutions are either ad-hoc, offer

vague or evolving guarantees [20], rely on a trusted third-

party [92]), or require an expensive all-to-all broadcast [9, 34].

For instance, Apache Kafka, the most popular approach for

exchanging data across organizations, internally relies on a

third RSM for safely sharing state.

All-to-all broadcast is even more problematic: while RSMs

usually run within the same datacenter, there exist many

RSMs which are geographically distributed. In these cases,

cross-RSM communication will take place over WAN, which

offers significantly reduced bandwidth at a much higher

dollar cost. This frequently causes communication to become

a bottleneck.

Any system that allows RSMs to communicate should satisfy

four requirements: 1) strong guarantees: there should be a

precise and formal way to discuss RSM-RSM communication

2) robustness under failures: actively malicious or crashed

nodes should neither affect correctness nor cause system

throughput to drop [32] 3) low-overhead in the common-case:

for efficiency, an RSM to RSM communication protocol

should send a single message with constant metadata in

the failure-free case 4) generality: arbitrary RSMs with

heterogeneous sizes, communication, and fault models should

be able to communicate. It should, for instance, be possible

to link a Byzantine Fault Tolerant (BFT) consensus protocol

with a Crash Fault Tolerant (CFT) consensus algorithm

To this effect, we first propose a new primitive, Cross-

Cluster Consistent Broadcast (C3B), which can be used

by two arbitrary RSMs to communicate. C3B generalizes

Reliable Broadcast to guarantee that if RSM A sends m, at

least one correct replica in RSM B should receive m.

We then introduce PICSOU, a practical C3B protocol that al-

lows arbitrary RSMs with heterogeneous communication and

failure models to communicate efficiently. Designing a C3B

protocol that provides good performance in the failure-free

case is fairly simple as a simple leader-to-leader broadcast

suffices. The challenges instead arise from designing an

efficient protocol that remains robust to failures [32]. The key

to PICSOU’s good and robust performance lies in observing

that the C3B problem shares similar goals to TCP [80].

TCP seeks to offer reliable, ordered delivery between two

hosts in a way that dynamically reacts to congestion and

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 39

anomalies in the network. To do so at low cost, TCP leverages

full-duplex communication and cumulative acknowledgments

(ACKs) to asynchronously detect when messages have been

received. In contrast, repeated ACKs of the same message

reveal message loss. PICSOU takes inspiration from these

techniques and modifies them to account for the differences

between C3B and TCP: 1) unlike TCP, which is exclusively

designed for point-to-point messaging, PICSOU must handle

many-to-many communication and disseminate knowledge

of failed/successful message deliveries across many nodes,

2) PICSOU must ensure that no Byzantine participant will

violate correctness or cause excessive retransmissions. In

contrast, TCP does not consider malicious failures.

To address these challenges, PICSOU introduces the

notion of QUACKs. A QUACK is a cumulative quorum

acknowledgment for a message m. It concisely communicates

the fact that all messages up to m have been reliably received

by at least one correct node; repeated QUACKs for m indicate

that the next message in the sequence was not received at the

receiving RSM.

Using QUACKs in PICSOU yields multiple benefits. First, it

ensures generality. It allows for PICSOU to seamlessly work

for crash fault tolerant systems as well as for both traditional

and stake-based Byzantine fault tolerant protocols. PICSOU

makes no synchrony or partial synchrony assumption.

Second, PICSOU’s QUACK-driven implementation has

low overhead. In the failure-free case, PICSOU sends each

message only once, and requires only two additional counters

per message. When failures do arise, PICSOU remains robust
as its resend strategy minimizes the number of messages

resent: no Byzantine node can unilaterally cause spurious

message retransmissions.

Our results confirm PICSOU’s strong guarantees. PICSOU

allows disparate protocols such as PBFT [28], Raft [69] and

Algorand [40] to communicate. On two real-world applica-

tions, Etcd Disaster Recovery [33] and a data reconciliation

application [75], PICSOU achieves 2× better performance

than Kafka. In our microbenchmarks, when consensus is not

the bottleneck, PICSOU achieves 3.2× better performance

than a traditional All-to-All broadcast for small networks

(4 nodes), and up to 24× for large networks (19 nodes). In

summary, this paper makes the following contributions:

1. We introduce Cross-Cluster Consistent Broadcast

primitive, which allows for two RSMs to communicate

robustly and efficiently.

2. We present PICSOU, a practical C3B protocol. Key

to PICSOU’s good performance is the use of QUACKs

(cumulative quorum acknowledgments), which precisely

determines when messages have definitely been

received, or likely lost.

3. We evaluate PICSOU on realistic workloads, showing

that it can successfully allow disparate RSMs to

communicate more effectively that prior solutions.

2 Formalising the C3B primitive

We first introduce and formalize the C3B primitive. C3B

is the blueprint for any communication protocol between

RSMs and should be sufficiently general to support various

communication and failure models.

2.1 System Model

We first discuss the necessary formalism. Consider a pair of

communicating RSMS. For the sake of exposition, we denote

the sending RSM as Rs and the receiving RSM as Rr. In

practice, communication between these RSMs is full-duplex:

both RSMs can send and receive messages.

Most modern RSMs are either crash fault tolerant (they

guarantee consensus when up to f nodes crash) or Byzantine
fault tolerant (they guarantee consensus when up to f nodes

behave arbitrarily). In line with PICSOU’s stated generality

and efficiency goals, we adopt the UpRight failure model [31].

It allows us to consider Byzantine nodes and crashed nodes in

a unified model, letting us design a system that optimizes for

each type of failure. In the UpRight failure model, Byzantine

nodes may exhibit commission failures; they may deviate

from the protocol. All other faulty nodes may suffer from

omission failures only: they follow the protocol but may fail

to send/receive messages. Crashed nodes, for instance, suffer

from permanent omission failures once crashed. Correct

nodes, by definition, never fail1. In this setup, each RSM

consists of n replicas. We denote the j-th replica at the i-th
RSM as Ri j (where i is either the sender or the receiver

RSM). Each RSM interacts with a set of clients, of which

arbitrarily many can be faulty.

We say that an RSM is safe despite up to r commission

failures and live despite up to u failures of any kind.

For example, using the UpRight model, we can describe

traditional BFT and CFT RSMs using just one equation:

2u+r+1; Setting u = r = f yields a 3f+1 BFT RSM and

setting r=0 yields a 2f+1 CFT RSM. Safety and liveness

of any RSM are defined as follows:

Safety. If two correct replicas Ri1 and Ri2 in RSM Ri commit

transactions T and T ′ at sequence number k, then T =T ′.
Liveness. If a client sends a transaction T to RSM Ri,

correct replicas in Ri will eventually commit T .

Note that we make no assumptions about the communication

model of the underlying RSM. We only assume messages

are eventually delivered and that the receiving RSM Rr can

verify whether a transaction was in fact committed by the

sender RSM Rs (more details in Section 3).

1This is of course a simplification, necessary to say anything about an

RSM. All practical systems assume that this f stays true at any given point

in time, and that the set of failed nodes only changes. It allows making state-

ments such as “f+1 votes ensure that at least one correct node participated”.

40 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We generalize our system model to support shares. The no-

tion of share is used in stake-based BFT consensus protocols

where the value of a share determines the decision-making
power of a replica [42]. For a replica Ri j in RSM Ri, we write

δi j to represent the replica’s stake; the total amount of share in

RSM Ri is then ∑|ni|
l=1δil . A stake-based consensus algorithm

is safe as long as replicas totaling no more than ri shares

deviate from the protocol. The system is live as long as no

more than ui shares fail to send/receive messages Traditional

CFT and BFT algorithms simply set all shares equal to one.

Adversary Model. We assume the existence of a standard

adversary which can corrupt arbitrary nodes, delay and re-

order messages but cannot break cryptographic primitives.

As is standard, we assume that reconfigurations are possi-

ble [7, 38] and that there exists a mechanism for an RSM to

reliably learn of the new configuration and/or share assign-

ments. We provide more detail on how such a mechanism can

be implemented in Section 4.4

2.2 Cross-Cluster Consistent Broadcast

The C3B primitive enables efficient and reliable communi-

cation between a sender RSM and a receiver RSM.

To formalize C3B, we first need to define two new

communication primitives that express exchanging messages

between RSMs. These operations are at a coarser granularity

than the traditional send and receive operations, which define

the operations performed by a specific node or replica.

Transmit. If a correct replica in Rs invokes C3B on message

m, we say that RSM Rs transmits message m to RSM Rr.

Deliver. If a correct replica from Rr outputs message m, we

say that RSM Rr delivers message m from Rs.

We can then define the two correctness properties that all

C3B implementations must satisfy:

Eventual Delivery. If RSM Rs transmits message m to

RSM Rr, then Rr will eventually deliver m.

Integrity. For every message m, an RSM Rr delivers m
from Rs if and only if Rs transmitted m to Rr.

Note that the deliver operation requires only that one correct

node receives the message, not that all correct nodes receive

it. This is by design: our goal is to make the C3B condition as

flexible as possible to suit application needs. In practice, it is

easy to strengthen this condition to either guarantee delivery

to all nodes or to establish ordering between RSMs, as correct

nodes in the receiving RSM can simply broadcast or invoke

consensus on delivered messages. In the name of generality,

the C3B primitive talks about a single message only, and

does not worry about ordering across messages. PICSOU,

nonetheless, uses knowledge of ordering for efficiency, as

we describe next.

3 Design Overview

PICSOU efficiently implements the C3B primitive while

remaining general and robust under failures. The design of

PICSOU is centered around three pillars:

(P1) Efficiency. In the (common) failure-free case, where

messages are received in a timely fashion, PICSOU should

only send a single copy of each message across RSMs, and

no more than O(n) copies within a cluster. Any additional

metadata sent as part of PICSOU should have constant size.

(P2) Generality. PICSOU should support RSMs of arbitrary

sizes, with diverse failure models and communication models,

including crash and Byzantine faults as well as synchronous

and asynchronous networks. The protocol logic must also

work well for both traditional BFT systems and newer Proof-

of-Stake protocols, where a replica’s share determines the

weight that its vote carries.

(P3) Robustness. PICSOU should remain robust to failures.

Crashed or malicious replicas should have minimal impact on

performance [32]. There is a tension here: while the protocol

should aggressively resend dropped messages to minimize

latency, Byzantine nodes should not cause correct nodes to

resend messages, which can spuriously hurt throughput.

Much like TCP flows, communication between RSMs is

streaming, long-running and often full-duplex. PICSOU thus

draws inspiration from TCP’s approach to congestion control

and message loss to guarantee efficiency and robustness.

Two ideas are central to TCP’s good performance: 1)

leveraging full-duplex communication and 2) cumulative

ACKing. In TCP, nodes simultaneously exchange messages,

and TCP leverages this bidirectional communication to

piggyback acknowledgments onto messages and minimize

bandwidth requirements. Cumulative ACKing then keeps

these acknowledgments small: with a single counter k, a

receiver informs a sender that it has received all packets

with sequence number up to k. Receiving a repeated counter

with value k instead informs the sender that the packet with

sequence number k+1 is either lost or delayed.

For efficiency, PICSOU also leverages full-duplex communi-

cation and cumulative ACKing. However, PICSOU must also

handle many-to-many communication as each RSM consists

of multiple replicas. For generality, PICSOU must support

crashed nodes, Byzantine nodes, as well as Byzantine nodes

whose stake determines their voting power; PICSOU makes

use of the UpRight fault model to simultaneously handle

crash and Byzantine nodes, and leverages the mathematics

of apportionment to work seamlessly with staked-based

systems. For robustness, PICSOU must ensure that replicas

cannot trigger spurious message retransmissions. PICSOU

uses QUACKs to determine when a message has definitely

been received or is likely lost.

Overview. PICSOU’s protocol logic can be divided into the

following logical components.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 41

(1) Consensus: On either side of PICSOU lies a replicated

state machine. Each RSM receives requests from clients and

runs a consensus protocol that commit these requests on each

RSM replica. PICSOU assumes two properties of consensus

to guarantee correctness: first, all replicas eventually receive

all messages, and second, all replicas agree on the content

of each slot in the log.

(2) Invoking PICSOU: If an RSM wants to transmit a

request, each replica forwards the committed request to

the co-located PICSOU library. RSMs are not required to

forward every committed message to PICSOU. This step is

application-specific. For example, if two organizations only

share a subset of their data, the RSM will only transmit

messages that touch these particular objects.

(3) Transmitting a message: PICSOU sends the message on

behalf of the sending RSM. In line with our stated efficiency

goals, PICSOU ensures that, in the absence of failures and

during periods of synchrony, a single sender forwards each

request to a single replica in the receiving RSM. To minimize

the risk of repeated failures caused by a faulty sender or

receiver, PICSOU carefully rotates sender-receiver pairs.

In doing so, it ensures that every sender will eventually

communicate with a correct receiver and vice-versa.

(4) Detecting successful or failed sends: PICSOU must

quickly determine whether a message has definitely been

received (and thus can be garbage collected) or has definitely

been dropped or delayed (distinguishing between message

drops and delays is not possible in an asynchronous system).

Failure detection must be accurate to prevent Byzantine nodes

from causing spurious re-transmissions; it must be efficient

and should not require additional communication between

nodes. PICSOU adapts TCP’s cumulative acknowledgment

approach to detect when messages have been received

or dropped, even when malicious replicas can lie. These

acknowledgments are piggybacked on incoming messages,

thus minimizing overhead.

(5) Retransmissions: When the protocol detects that a

message has been dropped (with high confidence), PICSOU

intelligently chooses the node responsible for resending the

message. Unfortunately, concurrent node failures can cause

multiple messages to be dropped simultaneously. To address

this issue, PICSOU includes (constant size) information about

which messages have been lost, allowing the protocol to

recover multiple dropped messages in parallel. Traditional

TCP can eschew this constraint as it assumes failures are rare

and considers point-to-point communication only.

Correctness We defer a full description of correctness and

proofs to Appendix A.1 and A.2 [1].

4 Protocol Design
We now describe each component of the protocol: trans-

mitting a message, detecting successful/failed sends, and

retransmissions. For clarity of exposition, we describe the

Figure 1: Example failure-free run in PICSOU

protocol as consisting of a sender RSM Rs and a receiver

RSM Rr proceeding in synchronous timesteps. In practice,

nodes operate independently and act as both the sender and

the receiver. We start by describing PICSOU’s behavior in the

common case (§4.1) before considering failures (§4.2). We

add support for stake in §5. We include protocol pseudocode

in Appendix A.3 [1].

4.1 Failure-free behavior
Sending a message. PICSOU’s send logic has three goals: 1)

minimize the number of nodes sending the same message 2)

maximize the chances that a message will be received quickly

3) asynchronously disseminate knowledge of received

messages to other nodes. PICSOU achieves these goals by

round-robin partitioning the set of requests across all sending

RSM replicas and rotating receiver nodes every round.

By definition, each replica in an RSM contains a log of

committed requests, a subset of which should be transmitted

to the other RSM. PICSOU assumes that each request

transmitted through PICSOU is of the form 〈m,k,k′〉Qs , where

m is a request committed at sequence number k by a quorum

of replicas in RSM Rs. Each protocol sets a specific threshold

t above which the request has acquired sufficiently many

42 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Time-step 1 (b) Time-step 2

(c) Time-step 3 (d) Time-step 4

(e) Time-step 5

Figure 2: Receiver’s view of events in Figure 1 in time-steps.

signatures Qs to be deemed committed. k′ is an optional se-

quence number that denotes the position of the message in the

stream of messages that will be transmitted through PICSOU.

k′ must be sequentially increasing; k′=⊥ indicates that the

message should not be transmitted. Including both k and k′
allows Rs to filter which messages will be transmitted to Rr.

PICSOU evenly partitions the task of transmitting committed

messages across all replicas such that each message is sent

by a single node: replica Rsl sends messages with sequence

number (k′ mod ns ≡ l). Additionally, each sender rotates

receivers on every send: if RSM Rr has size nr and replica

Rsl last sent to replica Rr j, then Rsl will next send to RrJ ,

where J ≡ j+1 mod nr. Node IDs themselves are assigned

by PICSOU using a verifiable source of randomness [40] such

that malicious nodes cannot choose specific positions in the

rotation. Note that, as is standard in TCP, we allow senders

to transmit a window of messages in parallel.

Receiving a message Upon receiving a message, the j-th
replica Rr j checks that the message 〈m, k, k′〉Qs is valid

(the message has provably been committed by the sender

RSM) and if so, broadcasts it to the other nodes in its RSM.

Importantly, the receiving node does not need to recommit

the message. It can simply apply it to its local state as

mandated by the application logic.

Rotating sender-receiver pairs in this way guarantees that

every pair of replicas will eventually exchange messages

and ensures that (1) information about the state of each

node is propagated to every other node in the system, and

(2) no sender is continuously sending to a faulty replica (or

vice-versa). This process is also essential to bounding the

number of retransmissions needed with failures (§4.2).

We illustrate PICSOU’s logic in Figure 1. For clarity of

exposition, we assume that 1) in each time-step, each replica

completes all relevant tasks in parallel, 2) all sent messages

are received in the next time-step, and 3) only one RSM sends,

(a) Time-step 1 (b) Time-step 3

(c) Time-step 5

Figure 3: Sender’s view of events in Figure 1 in time-steps.

the other only acks. In our implementation, acks are piggy-

backed on messages. Consider a system with ns = nr = 4

replicas (u=r=1). In time-step 1, replicas R11, R12, R13, and

R14 of RSM1 send messages m1, m2, m3, and m4 to receivers

R21, R22, R23, and R24, respectively. In time-step 2, these re-

ceivers internally broadcast these messages to the other nodes

in their RSM. Concurrently, R21, R22, R23, and R24 acknowl-

edge receipt of these messages and send ACK(1), ACK(0),
ACK(0), and ACK(0) to senders R11, R12, R13, and R14. We

discuss acknowledgments later in the section. In time-step

3, R11, R12, R13, and R14 rotate receivers and send messages

m5, m6, m7, and m8 to R22, R23, R24, and R21. In time-step 4,

receivers once again broadcast the received messages in their

RSM. Simultaneously, R21, R22, R23, and R24 rotate receivers

for their acknowledgements, and send ACK(4), ACK(5),
ACK(4), and ACK(4) to senders R12, R13, R14, and R11.

Detecting successful sends. To guarantee correctness,

committed messages must eventually be received by a correct

node in the receiving RSM. Every node in the sending RSM

(not just the sender) must thus learn whether a message has

definitely been received by a correct node. This is necessary

to preclude correct nodes from unnecessarily resending

messages. There are three primary challenges: (1) malicious

nodes may lie about the set of messages received, (2) for

efficiency, PICSOU should not require nodes within an RSM

to exchange information beyond the necessary message

broadcast, and (3) any additional metadata should be small.

PICSOU realizes these goals through cumulative quorum
acknowledgments (or QUACKs). A cumulative quorum

acknowledgment with value k proves to the sending RSM

that all messages with sequence number up to k have been

received by at least one correct replica. More specifically,

each replica, upon receiving a message with sequence number

k, inserts it into a sorted list containing all previously received

messages. The replica then identifies the highest message

mp in the list for which all messages with a smaller sequence

number have been received. It then crafts an acknowledgment

ACK(p) that cumulatively acknowledges receipt of messages

1 to p. PICSOU takes advantage of the full-duplex nature of

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 43

the protocol to piggyback these acknowledgments onto the

messages that the receiving RSM is itself sending to the send-

ing RSM. If no such message exists, the RSM sends a no-op.

On the sender side, each replica eventually receives mes-

sages and acknowledgments from all nr receiving replicas,

thanks to PICSOU’s round-robin strategy. Each replica

maintains an nr sized array that summarizes the highest ac-

knowledgment received from each replica of receiving RSM.

A message mp is QUACKed if at least ur + 1 replicas have

acknowledged receipt of all messages up to p. As there are

only ur failed replicas, one of these replicas must be correct.

We thus have the guarantee that this correct replica will

broadcast the message to all other remaining correct replicas.

Note that PICSOU additionally uses MACs to safely transmit

ACKs when configured to handle Byzantine failures (r>0).

Example. Continuing with our example in Figure 1, we

highlight the protocol logic for both the receiver RSM

(Figure 2) and the sender RSM (Figure 3). Each row in

Figure 2 describes a sorted list of messages received at each

replica, with the last column denoting the highest cumulative

acknowledgment for this node. At time-step 1, all lists are

empty and cumulative acknowledgment values are all set to

0 (2a). At time-step 2, receivers R21, R22, and R23 (2b) store

messages m1, m2 and m3. R21’s cumulative acknowledgment

counter thus increases to 1, while others stay at 0 as they

are still missing m1. R21, R22, and R23 thus send ACK(1),
ACK(0) and ACK(0) to the sender RSM. At time-step 3, each

receiver, thanks to the internal broadcast mechanism, receives

all four messages. All cumulative acknowledgment counters

thus go to 4 (2c). By time-step 4, receivers R21, R22, and R23

have all received m8, m5 and m6. R22 has received messages

m1 to m5, and thus updates its cumulative acknowledgment

to 5. In contrast, R21 and R23 have received messages m8

and m6 respectively, they are missing m5 and thus cannot

yet update their cumulative acknowledgment counter. R21,

R22, and R23 send ACK(4), ACK(5) and ACK(4) back to the

sending RSM. Finally, at time-step 5, the internal broadcast

mechanism disseminates all these messages; each replica can

update its cumulative acknowledgment to 8.

Now consider the sender-side logic (Figure 3), which

processes these cumulative acknowledgments and determines

when a QUACK has formed. Recall that a message is

QUACKed at a replica if this replica receives u + 1 = 2

acknowledgments for m. Initially, all QUACK counters

are empty (3a). At time-step 3 (3b), R11 records that it

has received an acknowledgment for m1 (ACK(1)) from

R21. At time-step 5, (3c), R11 receives ACK(4) from R24.

It updates its local array, indicating that it has received

acknowledgments for m1 by two unique nodes, and marks

m1 as QUACKed. It also records the received acks for m2, m3,

and m4. Similarly, all other replicas indicate that they have

received an ack for m1, m2, m3, and m4. Additionally, R13

indicates it received an ack for m5 as it received ACK(5).

Summary The joint techniques of full-duplex communica-

tion, cumulative acking, and rotation of sender/receiver pairs

allow PICSOU to ensure that all RSM replicas eventually

learn which committed requests have been delivered. The

protocol achieves this with only two additional counters and

with no additional communication between replicas of an

RSM beyond the necessary broadcast.

4.2 Handling Failures

Faulty replicas can: 1) fail to send or broadcast messages

sends and broadcasts, 2) send invalid messages to DDoS the

network, 3) collude to repeatedly drop messages, and 4) send

incorrect acknowledgments to break correctness or trigger

spurious retransmissions. PICSOU must effectively handle

these failures without sacrificing correctness or performance.

To this effect, PICSOU must quickly and reliably detect when
a message has definitely been dropped or delayed and quickly

retransmit it. The system must do so without any additional

communication beyond resending the message itself.

Detecting failed sends. The protocol once again leverages

QUACKs to detect failed sends. Recall that all sender repli-

cas eventually obtain a QUACK for every message that has

definitely been delivered. One can instead leverage duplicate

QUACKs to learn when a correct replica has not received a

specific message. In more detail, let us assume that a QUACK

for message mk has formed at Rsl . This QUACK indicates that

at least u+1 (at least one correct) replicas have received every

message up to message m with sequence number k. A dupli-

cate acknowledgment ACK(k) from one of these replicas im-

plies that this replica claims not to have received the message

at sequence number k+1. Once a duplicate QUACK forms for

the k-th message at replica Rsl , Rsl learns that a correct replica

is complaining about missing message (k+1), and thus that

the message has legitimately been lost or delayed. All other

replicas of the sending RSM Rs will eventually receive a du-

plicate QUACK and thus detect the failed exchange. The use

of the UpRight failure model, which distinguishes actively

malicious failures r from all other failures, allows us to reduce

the size of the duplicate QUACK: while the initial QUACK is

of size u+1, duplicate QUACKs must be of size r+1 as they

must be large enough to preclude actively malicious nodes

from triggering spurious resends. In a system with only crash

failures (when r =0), a single duplicate ACK() is sufficient

to trigger a message resend: nodes may crash but do not lie.

Retransmitting the dropped message. Upon detecting a

failed send, the message must be quickly retransmitted. Just

as a single replica was responsible for sending the initial

message, PICSOU ensures that a single replica is "elected"

as the re-transmitter. It does so without requiring additional

communication between replicas. The protocol logic hinges

on three observations: 1) all correct replicas know about

all the messages that must be transmitted (by definition of

an RSM) and know who initially sent the message, 2) all

44 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Time-step 5 (b) Time-step 7

(c) Time-step 9 (d) Time-step 11

(e) Time-step 13 (f) Time-step 15

Figure 4: Sender’s view of events. R11 fails after TS 2 in Figure 1.

correct replicas eventually learn about which messages have

been QUACKed, and 3) the number of repeated QUACKs

indicates the number of failed retransmissions. PICSOU uses

this information to compute the ID of the re-transmitter

as: sendernew = (senderoriginal + #retransmit) mod ns. Each

correct replica computes this function and retransmits the

message if its ID matches sendernew. Each retransmission

round thus has a single sender.

To illustrate, consider once again our initial example

(Figure 1), but this time, let us assume that sender replica

R11 fails in time-step 2, after sending message m1 but before

sending messages m5 and m9. As a result, no receiver receives

these messages. In Figure 4, we time-step through this failure

scenario. For simplicity, we assume that the receiving RSM

sends periodic acks every time-step. As before, all non-failed

replicas of RSM1 receive their first ACK(4) in time-step

5 (Figure 1); In time-step 7, all replicas receive a second

ACK(4) message, from a different node, allowing them

to mark messages m1 to m4 as QUACKed. They continue

receiving ACK(4) from distinct replicas in time-step 9 and

11. Receivers cannot acknowledge any message greater than

m4 as they are yet to receive m5. In time-step 13, the senders

receive their first duplicate ACK(4) message. By the end of

time-step 15, the senders have received at least rr + 1 = 2

duplicate ACK(4) messages, confirming that m5 is missing.

R12 proceeds to resend m5.

The pitfalls of sequential recovery. Unlike traditional TCP

in which message drops are not adversarial, faulty replicas

can carefully select which messages to drop. For instance,

in a n = 2u + r + 1 setup with u = r = 1, if a node omits

all received messages, every fourth message will need to be

resent. In this setup, PICSOU can hit a throughput bottleneck.

A QUACK conveys information about the lowest message

that has been dropped by the system, but says nothing about

later messages. This approach is optimal metadata-wise but

serializes recovery: if messages mi, mi+4, mi+8, etc. have

all been dropped, resending mi+8 first requires detecting the

failed send of message mi, retransmitting mi, QUACK mi,

before repeating the same process for mi+4. Only then can

the failed send of mi+8 be handled.

Parallel Cumulative Acknowledgments. To address this is-

sue, we must augment our cumulative acknowledgments with

a limited form of selective repeat [93]. Each receiver sends

both a cumulative acknowledgment and a list summarizing

the delivery status of up to φ messages past the sent cumu-

lative acknowledgment. The cumulative acknowledgment

counter concisely summarizes the set of contiguous messages

received so far. The φ-list instead captures any "in-flight"

missing messages. Sending φ-lists over the network is

efficient as the delivery status of each message takes at most

one bit to encode. This list can further be reduced with

techniques such as compression or bloom filters.

Sender replicas can now, concurrently, form QUACKs

for φ concurrent messages and thus retransmit φ messages

in parallel. This reduces latency without resorting to

eager message resends. The maximum size of φ-lists is an

experiment-specific parameter. The actual number of ele-

ments in a φ-list depends on the number of in-flight messages

at the time of sending a cumulative acknowledgment.

Analysis During periods of synchrony (when messages are

not dropped or delayed by the network), PICSOU retransmits

messages at most us+ur+1 times. This limitation is funda-

mental to all C3B protocols (Lemma 1 in Appendix [1]). The

number of resends can become a concern for latency if the

number of failures is large. In practice, however, the probabil-

ity of actually hitting this bound is small. Intuitively, in a CFT

or BFT system, each node is more likely than not to be cor-

rect. As such, the probability of continually selecting incorrect

nodes in every sender-receiver pair decreases exponentially

every retry. One can use this reasoning to provide strong

bounds on the maximum number of retries when the network

is well-behaved. We prove, for instance (in Appendix A.2 [1])

that PICSOU needs to resend a message at most eight times to

ensure that a message be delivered with 99% probability, and

at most 72 times to ensure a 100−10−9% success probability.

4.3 Garbage Collection

At first glance, garbage collecting messages in PICSOU

appears straightforward. The sending RSM, upon receiving a

QUACK for m, can garbage collect m as the message has been

received by a correct replica. Unfortunately, this approach

can lead to scenarios in which PICSOU stalls. Consider, for

instance, an execution in which sender Rsl sends a message

mk (at sequence number k) to replica Rr j of RSM Rr. Now,

consider the case in which Rr j is faulty and broadcasts mk
to precisely ur + 1 replicas, ur of which are faulty. These

replicas reply to the sender RSM that m has been successfully

received, allowing for a QUACK to form at the sender, and for

message m to be garbage collected. Unfortunately, if these

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 45

ur replicas then stop participating in the protocol, no QUACK

will ever form for any message with sequence number greater

than k (only one correct replica has seen m). Instead, the send-

ing RSM will receive repeated duplicate acknowledgments

for m, a message which it has already garbage collected!

We must consequently modify the garbage collection

algorithm slightly. If a sending replica ever receives a

duplicate QUACK for message mk′ where k′<k after having

quacked and garbage collected message mk, it includes, as

additional metadata, the sequence number k of its highest

quacked message. This information conveys to the receiving

RSM that all messages up until k (included) have been

received by some correct node in the receiving RSM, but

not necessarily the same one. Replicas in the receiving RSM,

after having received rs + 1 such messages (ensuring that

at least one correct node is in the set), can then either (1)

advance their cumulative acknowledgment counter to k and

mark message m as received, or (2) obtain m from other

replicas in the RSM. Only then can m be garbage collected.

We offer both strategies in PICSOU.

4.4 Reconfiguration

PICSOU assumes that reconfigurations are possible but rare. It

assumes that there exists a service indicating the set of nodes

associated with each configuration. This is standard prac-

tice in the literature [7, 37, 38]. Knowledge of membership

is either maintained internally in the RSM [87] or using an

external configuration service [37, 87]. Most existing state-of-

the-art blockchain systems [3, 10, 40, 51, 59, 67, 75, 83, 94]

also require known node membership. To deal with churn and

scale, these systems work in epochs where it is assumed both

node membership and relative stake are both publicly known

and fixed. PICSOU piggybacks on this assumption. PICSOU

then only needs to ensure that the set of ACKs received for a

particular message all match the same view and that the rele-

vant (u+1/r+1) threshold has been reached (for that view).

Messages acknowledged as delivered before a reconfigu-

ration occurs do not need to be resent. Reconfiguration in an

RSM, by definition, preserves any state across configurations.

Messages not acknowledged as delivered before the recon-

figuration begins must be resent as they may or may not have

persisted. After reconfiguration completes, PICSOU simply

resends messages for which it did not receive a quorum of

acknowledgments in the prior configuration.

5 Weighted RSMs – Stake

The current description of the protocol assumes that replicas

have equal weight in the system. When considering proof-

of-stake systems like Algorand, each replica can instead hold

differing amounts of stake or shares in the system. We write

δi j for the share of Ri j; the total amount of stake in RSM

Ri is then ΔiΔiΔi=∑ni
l=1δil . The RSM is safe as long as replicas

totalling no more than ri shares deviate from the protocol;

the RSM is live as long as replicas totalling no more than

ui shares omit messages. The existence of stakes changes:

(1) when a replica can establish a QUACK, and (2) to whom

a particular message must be sent.

5.1 Weighted QUACK

It is straightforward to modify QUACKs to deal with stake.

Each cumulative acknowledgment message simply becomes

weighted. The acknowledgment message from replica Ril
with share δil has a weight δil and a QUACK forms for

message m when the total weight of the cumulative QUACK

for m from RSM Ri is equal to ui+1.

5.2 Sending a message

Identifying the appropriate sender-receiver pair for sending a

message requires more care. Traditional BFT systems couple

voting power, physical node and computation power. This

is no longer the case with stake: different nodes can have

arbitrarily different stakes. This problem is compounded by

the fact that stake is unbounded and often in the billions [40].

A single physical node can effectively carry both arbitrarily

large or arbitrarily small stake.

We want to ensure that we maintain the same correctness

and performance guarantees as in non-staked systems.

Unfortunately, the round-robin approach we described in

§4.1 no longer works well. Consider for instance a system

with ni = 1000 total stake, spread over two machines. Ri1
is Byzantine and has δ1 =ui = 333, while Ri2 has δ2 = 667.

Using round-robin across these replicas disproportionately

favors Ri1 which represents only 33.3% of the shares in the

system, yet is tasked with sending/receiving half the total

messages. We must thus skew choosing sender-receiver pairs

towards nodes with higher stake. To highlight the challenges

involved, we first sketch two strawmen designs:

• Version 1: Skewed Round-Robin. The most straightforward

approach is to have replica Ril with stake δil use round-robin

scheduling to send δil messages on its turn. This is, eventu-

ally, completely fair since all nodes send precisely as many

messages as they have stake in the system. Unfortunately, this

solution suffers from very poor performance under failure as

it has no parallelism: if stake is in the order of billions in the

system, a single faulty node may fail to send large contiguous

portions of the message stream, triggering long message de-

livery delays. Rounding stake is unfortunately not an option:

as stake is unbounded, each physical node can, in effect, have

infinitely small (or arbitrarily large) stake in the system. One

physical node can have δl =1 while another has δl =1×109.

Rounding errors weaken liveness as more retransmissions

may be needed to identify a correct sender-receiver pair.

• Version 2: Lottery Scheduling. For our next attempt, we

consider lottery scheduling, a probabilistic scheduling algo-

rithm [89]. Each node is allocated a number of tickets accord-

ing to its stake; the scheduler then draws two random tickets to

46 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

choose the next sender and the next receiver. Lottery schedul-

ing addresses the parallelism concern mentioned above. Over

long periods of time, the protocol is completely fair, and each

sender-receiver sends/receives according to its stake. Unfortu-

nately, due to the randomized nature of the protocol, over short

periods of time, the proportion of sender and receiver pairs

chosen may skew significantly from their shares in the system.

Dynamic Sharewise Scheduler. Our solution must (1)

offer good parallelism; trustworthy replicas should be able to

send messages in a bounded unit of time, (2) ensure fairness

over both short and long periods; each node should send

messages proportional to its shares, and (3) tolerate arbitrary

stake values. These properties are exactly those that the

Linux Completely Fair Scheduler (CFS) seeks to enforce.

CFS defines a configurable time quantum during which each

process is guaranteed to be scheduled; each process then gets

CPU time proportional to its priority.

Our dynamic sharewise scheduler (DSS) adopts a similar

strategy with one key modification. As stake is unbounded,

DSS cannot guarantee as easily as CFS that all nodes will

send a message within a fixed time period t. Instead, DSS

maximizes the following objective: given a fixed time period

t, how can PICSOU schedule sender-receiver pairs such

that each node sends/receive messages proportionally to its

shares. While this may appear straightforward, the ability

for nodes to have arbitrarily large (or small) stake makes

reasoning about proportionality challenging. DSS turns to the

mathematics of apportionment to handle this issue [19, 81].

Note that PICSOU uses DSS to identify both senders and

receivers in the same way. For simplicity, we thus discuss

apportionment from the perspective of senders only.

Apportionment is used to fairly divide a finite resource be-

tween parties with different entitlements or weights2. For-

mally, an apportionment method M defines a multivalued

function M(�t,q). Here,�t represents the entitlement of node Ril ,

that is the amount of messages that it should send or receive.

In our case, this corresponds to its stake�til = δil . q denotes

the total number of messages that can be sent in the specified

time quantum t. DSS makes use of Hamilton’s method of

apportionment [19, 81], which proceeds in four steps:

• First, DSS finds the standard divisor (SDi), the ratio of

the total amount of stake over the number of messages in a

quantum, SDi=
ΔiΔiΔi
q . Intuitively, this defines how much stake

must "back" each message.

• Next, DSS computes the standard quota (SQil) for each

node Ril , SQil =
δil
SDi

, which indicates how many messages

each replica should send. As this number may not be a whole

number, DSS also computes the matching lower quota (LQil),

which takes the floor of the standard quota. The difference

between the standard quota and the lower quota is called the

penalty ratio PRil .

2It is, for instance, used to assign the number of seats per state in the US

House of Representatives.

DSS Stake q δ0 δ1 δ2 δ3 c0 c1 c2 c3

d1 100 100 25 25 25 25 25 25 25 25

d2 1000 100 250 250 250 250 25 25 25 25

d3 1000 100 214 262 262 262 22 26 26 26

d4 100 10 97 1 1 1 10 0 0 0

Figure 5: Apportionment Example. c0,...c3 refers to the number of
messages that must be sent (or received) by each node per quanta

• DSS adds up these lower quotas to find the number of

messages that will be sent qwhole=∑ni
l LQil , without worrying

about any unfairness introduced by rounding.

• If qwhole<q, that is if there is still space to send additional

messages, DSS decides to increment the allocation of each

Ril , in decreasing order of penalty ratio PRil .

Worked Example. Intuitively, the algorithm described

above splits messages fairly across nodes while minimizing

the degree of imbalance introduced by the need to round

stake up or down. Consider for instance the stake distribution

and message quanta in Figure 5. The first two scenarios are

straightforward as each replica has equal amounts of stake.

In both settings, running Hamilton methods, with a SD of

1 in d1 and of 10 in d2 reveals that each node should send

25 messages. d3 highlights where apportionment shines. In

this example, stake is not distributed equally among replicas.

The SD is 10 as before. Replicas obtain LQs respectively

of 21 for Ri0 (PRi0=0.4) and 26 for the other three replicas

(PRi1=PRi2=PRi3=0.2). The sum of all LQ yields only 99.

As such, there is one message left to assign after considering

the “easily partitionable” work. Ri0 has the highest PR and

is thus furthest away from a fair assignment. Hence, we

increase its message assignment by 1, from 21 to 22.

5.3 Retransmissions

Two issues remain to ensure eventual delivery with stake:

(1) the process of apportionment may select so few senders

and receivers (q < us + ur + 1) that reliable delivery is

not guaranteed. (2) if the total stake across both RSMs

is large, then all safe q > us + ur + 1 may be too large

to achieve parallelism. For example, if the total stake of

RSM Rs is ΔΔΔs = 4 and RSM Rr is ΔΔΔr = 4,000,000 then

q> us+ur +1= 1,333,335 which is an unrealistic number

of messages to generate in a time quantum.

The core issue present is that for reliable delivery, every

message mk, across all resends, must be sent and received

by nodes whose stake, together, exceeds us + ur + 1. This

couples the number of resends needed to the (effectively

unbounded) amount of stake in a network, and forces us to

use increasingly large time quanta. Consider two networks

with identical large stake values. If Rs and Rr both have

ΔΔΔs = ΔΔΔr = 4,000,000, with each node having 1,000,000

stake, each message send would pair replicas with 1,000,000

stake and we would reach us + ur + 1 = 2,666,667 stake

after 3 message sends even without apportionment. This

contrasts with our original example (ΔΔΔs=4,ΔΔΔr =4,000,000).

Each replica in Rs and Rr is equally trusted, but we require

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 47

(a) OST (b) LL (c) ATA

(d) KAFKA (e) OTU (f) PICSOU

Figure 6: C3B baseline summary.

us+ur +1= 1,333,335 resends solely because the relative
value of stake in the two RSMs has changed.

Thankfully, this is not fundamental. To sidestep this issue,

PICSOU proportionally scales up the weights of the two

communicating RSMs to their Least Common Multiple

(LCM), and handles failures with the scaled stake values

independent of apportionment. For instance, assume that

the total stake of RSM Rs is ΔΔΔs, RSM Rr is ΔΔΔr and the

LCM= lcm(ΔΔΔs,ΔΔΔr). PICSOU scales the two RSMs as follows:

1. Compute the multiplicative factor ψ for each RSM:

ψs=
LCM
ΔΔΔs

and ψr =
LCM
ΔΔΔr

.

2. Multiply the stake of each replica with the multiplicative

factor of its RSM.

Scaling up RSMs is only necessary during message failures,

allowing to keep message quanta small in the common-case.

A replica thus uses the scaled up RSM weights upon receiving

its first duplicate quack for a message m.

6 Evaluation
PICSOU aims to offer good performance in the common-case,

while remaining robust to faults when failures do arise. We

aim to answer the following three questions.

1. How does PICSOU perform in the common case (§6.1)?

2. How does PICSOU remain robust to failures (§6.2)?

3. How does PICSOU perform in real applications (§6.3)?

Implementation We implemented PICSOU in ≈ 4500

lines of C++20 code with Google Protobuf v3.10.0 for

serialization and NNG v1.5.2 for networking [2]. PICSOU

is designed to be a plug-and-play library that can be easily

integrated with existing RSMs. We evaluate PICSOU against

five other comparable protocols (Figure 6).

1. One-Shot (OST): In OST, a message is sent by a sin-

gle sender to a single receiver. OST is only meant as a per-

formance upper-bound. It does not satisfy C3B as message

delivery cannot be guaranteed.

2. All-To-All (ATA): In ATA, every replica in the sending

RSM sends all messages to all receiving replicas (O(ns×nr)
message complexity). Every correct receiver is guaranteed to

eventually receive the message.

3. Leader-To-Leader (LL): The leader of the sending RSM

sends a message to the leader of the receiving RSM, who then

internally broadcasts the message. This protocol does not

guarantee eventual delivery when leaders are faulty.

4. KAFKA: Apache KAFKA is the de-facto industry-

standard for exchanging data between services [56]. Produc-

ers write data to a Kafka cluster, while consumers read data

from it. Kafka, internally, uses Raft [69] to reliably dissemi-

nate messages to consumers. We use Kafka 2.13-3.7.0.

5. OTU: GeoBFT [42, 44] breaks down an RSM into a set

of sub-RSMs. Much like LL, GeoBFT’s cross-RSM commu-

nication protocol, OTU, has the leader of the sender RSM

send its messages to at least ur +1 receiver RSM replicas.

Each receiver then internally broadcast these messages. When

the leader is faulty, replicas timeout and request a resend.

OTU thus guarantees eventual delivery after at most us+1

resends in the worst-case (for O(ur∗us) total messages).

RSMs. We consider four representative RSMs.

1. File: An in-memory file from which a replica can

generate committed messages infinitely fast. This is a

baseline to artificially saturate the C3B protocols.

2. Raft [37]: A widely used CFT RSM, used in services

like Kubernetes Cluster. We run Etcd’s Raft version v3.0.

3. ResilientDB [45]: A high performance implementation

of PBFT [28], a well-known representative BFT protocol.

4. Algorand [40]: A popular POS blockchain protocol [40].

Experimental Setup. We deploy up to 45 GCP c2-standard-

8 nodes (Intel Cascade Lake, 8vCPU, 32 GiB RAM, 15

GBits/s). Each experiment runs for 180 seconds (30 second

warmup/cool down). All experiments run PICSOU with a

φ-list of 200k and 256 bits for 0.1kB and 1MB messages, re-

spectively (best results for our specific network setup). We

further assume that RSMs forward all messages to the other

RSM, as this represents a worst-case scenario for PICSOU.

As is standard [43, 68, 78, 84, 97], unless stated otherwise,

replicated operations in our experiments are no-ops , which

ensures that the bottleneck is not execution.

Metrics. RSM throughput is the number of consensus invo-

cations completed at an RSM per second; C3B throughput is

the number of completed C3B invocations per second. When

baselines, like OST, do not acknowledge received messages,

we calculate C3B throughput as the number of unique mes-

sages sent from sender RSM to receiver RSM.

6.1 File RSM Common Case Performance

Our first set of experiments aim to stress test the six C3B

protocols (PICSOU, OST, ATA, LL, OTU, and Kafka) with-
out failures. We use the “infinitely fast” File RSM to saturate

48 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

PICSOU ATA OST OTU LL KAFKA

4 7 10 13 16 19
100,000

1,000,000

10,000,000

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/
s)

(i) Message Size = 0.1 kB

4 7 10 13 16 19

10

100

1,000

10,000

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

(ii) Message Size = 1 MB

0.1 1 10 100 1,000

100

10,000

1,000,000

Message size (kB)

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

(iii) n=4 replicas

0.1 1 10 100 1,000

100

10,000

1,000,000

Message size (kB)

T
h
ro

u
g
h
p
u
t

(t
x
n
/
s)

(iv) n=19 replicas

Figure 7: Throughput of C3B protocols as a function of network size and message size

all C3B implementations. In all cases, we include the OST

line as the upper-bound of our networking implementation.

Varying number of replicas in each RSM. We first con-

sider the relative performance of PICSOU as a function of the

network size. We fix the message size to 0.1 kB and 1 MB

and increase the number of replicas in each RSM from 4 to

19 (Figure 7 (i)-(ii)). For small network sizes, PICSOU outper-

forms ATA by a factor of 2.5× (small messages) and 3.2×
(large messages) and in larger networks it increases to 6.6×
and 12.1×. PICSOU sends only a linear number of messages,

while ATA must send a quadratic number of messages. Like

PICSOU, LL and OTU send a linear number of messages, but

quickly bottleneck at the leader since it needs to send every

message. OST’s performance, as expected, increases with

network size as increasing the number of replicas increases

the number of parallel messages. Kafka performs significantly

worse in all cases, as it internally runs consensus.

Varying Message Size. In Figure 7 (iii)-(iv), we fix the size

of each RSM to n=4 (small) and n=19 replicas (large) and

increase the message size from 0.1 kB to 1 MB. As expected,

the performance of each C3B implementation drops as a lin-

ear function of the message size. Note that PICSOU performs

relatively better than other protocols for large message sizes

as they hide the moderate compute overheads introduced by

the system. For instance, on a large network PICSOU performs

over 12× better than ATA, LL, and OTU for large messages.

Instead, for small messages, PICSOU only performs 6.6×,

4.4×, and 4.9× better (respectively).

Impact of Stake Next, in Figure 8 (i), we study how well

PICSOU performs for weighted RSMs when stake distribution

becomes unequal. We fix the message size to 100 B.

Consider 1) two RSMs where the throughput is throttled
and one replica in each RSM gets increasingly more stake;

2) two RSMs where throughput is not throttled, but one

replica still gets a larger share of stake over time. Our aim

is to demonstrate that PICSOU does not lose any performance

under unequal stake distributions.

We run two experiments. First, we artificially throttle

the File RSM such that PICSOU cannot transmit over 1M

txns/s, regardless of the stake distribution (flat 1M lines on

the graph). Next, we allow each node to have access to an

unmodified File RSM. In these experiments PICSOU i refers

to the setting where the high-stake node has i× more stake

PICSOU ATA OST OTU LL

Picsou1 Picsou2 Picsou4 Picsou8
Picsou16 Picsou32 Picsou64

4 7 10 13 16 19
0

2,000,000

4,000,000

6,000,000

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

(i) Varying Stake

4 10 19

100

1000

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/s

)

(ii) Geographical RSMs

Figure 8: Impact of Stake and Geo-replication.

than other nodes. Initially, shifting the stake distribution to

one node does not affect performance as the high stake node

can handle the additional load. Eventually, however, this node

becomes a bottleneck, thus causing throughput to decrease.

Geo-replication In Figure 8(ii), we run geo-replicated

experiments by deploying one RSM in US-West and the

other RSM in Hong Kong (cross-region bandwidth, pair-wise

is 170 Mbits/sec, RTT 133 ms). We fix the message size to

1 MB and vary RSM size from 4 to 19. The lower bandwidth

across pairs of machines disproportionally affects ATA,

LL, and OTU. PICSOU outperforms ATA, by 12× (for

network size 4) and 44×, (for network size 19). Somewhat

counter-intuitively, the performance of both PICSOU and

OST increase as a function of network size; increasing the

number of receivers gives senders access to more bandwidth

in Google Cloud. PICSOU intentionally has its senders send

to multiple receivers and thus (artificially) outperforms OST,

which fixes unique sender-receiver pairs.

6.2 Impact of failures

We now consider performance under failures.

Crash Failures. In this experiment, we crash 33% of the

replicas in each RSM (Figure 9 (i)); message size set to

1 MB and φ-list size as 256. PICSOU’s performance drops

by a factor of 22.8% − 30.5%. This is expected: PICSOU,

by default, fully maxes out links with "useful" information.

Removing a third of the links thus removes a third of the

available bandwidth. Nonetheless, PICSOU continues to

outperform ATA, OTU, and LL by at least 2× on small

networks, and up to 8.9× on larger networks.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 49

PICSOU ATA OTU LL KAFKA φ0 φ64 φ128 φ192 φ256 PICSOU-Inf PICSOU-0 PICSOU-Delay ATA

4 7 10 13 16 19
0

300

600

900

1200

1500

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/
s)

(i) Crash Failures

4 7 10 13 16 19
0

300

600

900

1200

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/
s)

(ii) Failure φ List

4 7 10 13 16 19

100

1000

Replicas (per RSM)

T
h
ro

u
g
h
p
u
t

(t
x
n
/
s)

(iii) Byzantine Acking

Figure 9: Effects of Failures on PICSOU.

Byzantine Failures. Next, we consider the impact of Byzan-

tine failures in the system. While it is impossible to model

all arbitrary failures, we consider four main classes of attacks.

Malicious nodes can (1) send invalid, uncommitted messages,

(2) collude to drop long sequences of messages us + ur
times, (3) selectively drop messages, and (4) send incorrect

acknowledgments. The first attack amounts to a DDOS attack

(as correct replicas will discard invalid messages) and is thus

out of scope. PICSOU defends against the second attack by

assigning node IDs using a verified source of randomness (the

probability that all byzantine nodes get assigned contiguous

node IDs is negligible). We focus on the last two scenarios.

1. Impact of φ-list scaling on Byzantine failures. φ-lists

bound the possible performance drop from malicious nodes

selectively dropping messages. We again assume 33% of

replicas are faulty in both RSMs (Figure 9 (ii)), this time

Byzantine. We consider a message size of 1 MB. Our results

illustrate that the larger φ-list size helps PICSOU quickly

recover from Byzantine failures, despite the larger φ-list

increasing metadata sizes. We observe that a φ-list size of 256

is optimal for recovering from the 33% Byzantine attacks.

As the network gets larger, the time it takes to complete a full

broadcast gets longer, which increases the latency to confirm

a delivery. Thus, more messages can be dropped before we

can detect that they are dropped, hence the larger φ-list.

2. Sending incorrect acks. Malicious nodes can choose

to lie in their acknowledgments. We simulate this behavior

in Figure 9 (iii) by having malicious nodes send acks for

overly high sequence numbers (Picsou-Inf), overly low ones

(Picsou-0) or offset by φ (Picsou-Delay). We find that this

behavior is much less harmful than simply crashing. Correct

nodes wait for a quorum of ur + 1 matching acks in order

to consider the message delivered, and thus already assume

that u of those acks will be lies. Lying about an ack thus only

temporarily delays the formation of a quorum.

6.3 Application Case Study

We now study impact on real-world applications (Section 1).

Disaster Recovery. Disaster recovery (DR) ensures contin-

ued fault-tolerance in the presence of full datacenter outages,

and is a popular feature of modern cloud environments [14, 16,

33, 41]. DR deployments often implement cross-datacenter

RSM mirroring over Kafka, where the Kafka cluster is located

in the receiving datacenter. We run Etcd DR [33] by deploy-

ing two Etcd RSMs in two distinct datacenters, one in GCP

region us-west-4 and the other in us-east-5. Communication

is unidirectional for DR, since only a single sending RSM

is sending data to the mirrored RSM and the mirrored RSM

does not have any information to send back (other than acks).

Etcd DR invokes PICSOU on all put transactions and assigns

them a new, sequential, internal sequence number. This new

sequence number is necessary as DR only applies to a subset

of Etcd transactions (just puts, not gets or reconfiguration).

The receiving RSM thus simply applies all put transactions

in sequence number order.

In Figure 10 (i), we plot the throughput of Etcd DR (in

MB/s) with various C3B protocols for different message

sizes; each RSM has 5 replicas. OST achieves maximum

theoretical throughput for an Etcd cluster running a C3B pro-

tocol; ETCD is the baseline for maximum throughput from a

single Etcd RSM without any communication; one can only

transmit messages as fast as Etcd commits them. There are

two primary resource bottlenecks in the system: the cross-

region network bandwidth and Etcd’s disk goodput (since

it synchronously writes each transaction it commits to disk).

ATA broadcasts every message to all machines, so its through-

put is bottlenecked by the cross-region network bandwidth

(50 MB/s). Similarly, OTU and LL are bottlenecked because

they limit the number of nodes sending unique messages over

the network in parallel. In contrast, PICSOU shards the set of

messages across all sending nodes, so each node uses 50 MB/s

bandwidth to send 1/5-th of the messages (5 nodes per RSM).

Thus, PICSOU has an effective 250 MB/s of bandwidth avail-

able, resulting in saturating Raft’s disk goodput of 70 MB/s.

In case of KAFKA, we can only deploy 3 nodes, at most 3

shards, so it can achieve at most 150 MB/s. KAFKA can still

can achieve potentially the same goodput as PICSOU. How-

ever, in our testing, KAFKA was still unable to achieve optimal

performance given its sensitivity to high network latency.

Data Sharing and Reconciliation As described in §1

(Figure 10(ii)), there are operational and sovereignty concerns

associated with managing a single RSM across trust domains.

We implement the data reconciliation application described

in [75]. In this setup, two distinct entities, Agency A and

Agency B, run their own Etcd RSM but exchange data to

ensure that any shared state remains consistent. Specifically,

50 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

PICSOU ATA OST OTU LL KAFKA ETCD

.24 .5 2.0 4.0 19
0

20

40

60

Message size (kB)

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(i) Disaster Recovery

.24 .5 2.0 4.0 8.0 19
0

20

40

60

Message size (kB)
T

h
ro

u
g
h
p
u
t

(M
B

/s
)

(ii) Data Reconciliation

Figure 10: Disaster Recovery and Data Reconciliation.

each RSM sends key-value updates for shared data. The

receiver then checks whether the values match and takes

remedial action if not. Communication between RSMs

is bidirectional. ATA, LL, OTU, and PICSOU all behave

similarly to the performance discussed in the disaster

recovery experiment, albeit with a lower starting goodput

since there is extra processing time needed for looking up

keys and comparing their values. KAFKA had unusually low

performance since we were running into a known issue with

high latency KAFKA consumers which are not addressed in

these result. We are in the process of addressing this.

Decentralized Finance. Our final application implements a

blockchain bridge, designed to foster interoperability between

chains [29], for instance for asset transfer. We implement an

asset transfer application across three types of wallets: (1)

two POS Algorand chains, (2) two traditional permissioned

PBFT ResilientDB [44, 45] chains, and (3) interoperability

between ResilientDB to Algorand chains. Algorand’s base

throughput with another Algorand instance is 120 blocks/sec-

ond. ResilientDB’s base throughput when communicating

with another ResilientDB cluster is ≈6000 batches/second (of

size 5kB). The cross-chain throughput when Algorand sends

to ResilientDB is 135 blocks/second. PICSOU has minimal

impact on the throughput of any of the RSMs, with less than

15% decrease in throughput in the worst case. This decrease in

throughput is independent of node stake. Latency will instead

increase proportionally to network size – this property is fun-

damental to PICSOU’s high throughput, but may be unaccept-

able in some large scale blockchain or RSM deployments. (2)

PICSOU successfully handles throughput differences between

RSMs; the slow Algorand RSM efficiently communicates

with the much faster ResilientDB RSM.

7 Related Work
The problem of reliably sending messages within groups of

participants through reliable broadcast or group communi-
cation is well-studied [22, 24, 26, 39, 47, 48, 62, 76], in both

the CFT and BFT setting [4, 5, 23, 24, 26, 86]. These works

consider communication among groups but do not consider

communication between groups. PICSOU leverages the inter-

nal guarantees provided by these communication primitives

to build a group-to-group communication primitive, C3B.

Logging Systems. Shared logs are a popular way for reli-

ably exchanging messages [18, 27, 36, 52, 53, 56, 61, 88, 91].

Systems such as Kafka [56], RedPanda [73], Delos [17] have

become industry standards [17]. While these systems work

well in the CFT setting, they are not directly applicable to the

BFT setting: this log becomes a central point of attack. More-

over, most of these systems use relatively heavyweight fault

tolerance: Kafka, for instance, internally makes use of Raft.

Communication between RSMs. Two lines of work have

considered communication between RSMs, but in different

contexts. First, Aegean [6] makes a similar observation as this

paper: it highlights that replicated services rarely operate in a

vacuum and must instead frequently communicate. However,

Aegan solves a strictly orthogonal problem. It focuses on

how to correctly replicate services that can issue nested

requests to other (possibly replicated) services. Aegean

presents the design of a shim layer that exists between

replicated service and backend service and manages all

the communication/data storage. Second, Byzantine fault

tolerant communication between RSMs has been a topic of

interest in the context of sharded BFT systems that view each

shard as an independent RSM. These shards periodically

need to communicate with each other to process cross-shard

transactions [9, 35, 42, 58, 71, 74, 78, 98, 100]. Most of these

systems simply adopt the all-to-all communication pattern

between the shards that we evaluate in §6. GeoBFT [44] and

Steward [8] are two exceptions. Steward uses a hierarchical

consensus architecture; all communication between the

clusters is managed by a designated primary cluster, which

internally replicates requests via Paxos. GeoBFT uses OTU.

Blockchain bridges. With the rise of blockchain technology

and cryptocurrencies [11, 12, 13, 46, 54, 60, 64, 65, 77, 85]

there is a new found interest in blockchain interoperabil-

ity [20, 29, 30, 49, 55, 90, 92, 99]. These works focus on the

correct conversion of assets from one blockchain to the other.

They can be broadly clustered into two groups (1) blockchain
bridges, and (2) trusted operators. A blockchain bridge

requires a replica of the sending RSM to send a committed

contract to a replica of the receiving RSM. Recently, several

such blockchain bridges have popped up [15, 72, 82].

Unfortunately, they provide few formal guarantees, which

has led to massive financial attacks and hacks [92, 96, 99].

Moreover, these bridges continue to be impractical because

of their high cost [96]. Trusted operator systems are, in

contrast, much more practical [57, 90, 95], but as the name

suggests, they require centralized management. Works like

Thema [63] instead use BFT RSMs to communicate between

two non-replicated services.

8 Conclusion
This paper introduces the C3B primitive and proposes

PICSOU, an efficient implementation of C3B. We show that,

by borrowing techniques from TCP and adapting these to the

crash and BFT context, we can develop a solution that allows

RSMs to efficiently exchange messages.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 51

References
[1] Picsou: Appendix. https://arxiv.org/abs/2312.

11029.

[2] Picsou: Artifact. https://github.com/
gupta-suyash/BFT-RSM.

[3] The Aptos Blockchain: Safe, Scalable, and

Upgradeable Web3 Infrastructure. https:
//aptosfoundation.org/whitepaper#
view-whitepaper-pdf.

[4] Ittai Abraham, Srinivas Devadas, Danny Dolev,

Kartik Nayak, and Ling Ren. Synchronous byzantine

agreement with expected o(1) rounds, expected

communication, and optimal resilience. In Financial
Cryptography and Data Security: 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
February 18–22, 2019, Revised Selected Papers, page

320–334, Berlin, Heidelberg, 2019. Springer-Verlag.

[5] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun

Xiang. Good-case latency of byzantine broadcast:

A complete categorization. In Proceedings of the
2021 ACM Symposium on Principles of Distributed
Computing, PODC’21, page 331–341, New York, NY,

USA, 2021. Association for Computing Machinery.

[6] Remzi Can Aksoy and Manos Kapritsos. Aegean:

Replication beyond the client-server model. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 385–398, New

York, NY, USA, 2019. Association for Computing

Machinery.

[7] Algorand Foundation. General FAQ, 2022. https:
//www.algorand.foundation/general-faq.

[8] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan

Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,

and David Zage. Steward: Scaling byzantine fault-

tolerant replication to wide area networks. IEEE
Transactions on Dependable and Secure Computing,

7(1):80–93, 2010.

[9] Mohammad Javad Amiri, Divyakant Agrawal, and

Amr El Abbadi. SharPer: Sharding Permissioned
Blockchains Over Network Clusters, page 76–88.

Association for Computing Machinery, New York, NY,

USA, 2021.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov,

Christian Cachin, Konstantinos Christidis, Angelo

De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidha-

ran, Chet Murthy, Binh Nguyen, Manish Sethi, Gari

Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, Sharon Weed Cocco,

and Jason Yellick. Hyperledger Fabric: A distributed

operating system for permissioned blockchains. In

Proceedings of the Thirteenth EuroSys Conference,

pages 30:1–30:15. ACM, 2018.

[11] Maria Apostolaki. Routing Security of Cryptocurren-
cies. PhD thesis, ETH Zurich, Zürich, Switzerland,

2021.

[12] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien

Quéma. RBFT: Redundant byzantine fault tolerance.

In Proceedings of the 2013 IEEE 33rd International
Conference on Distributed Computing Systems, pages

297–306. IEEE, 2013.

[13] Alex Auvolat, Yérom-David Bromberg, Davide Frey,

and François Taïani. BASALT: A rock-solid founda-

tion for epidemic consensus algorithms in very large,

very open networks. CoRR, abs/2102.04063, 2021.

[14] AWS. Disaster Recovery of Workloads

on AWS: Recovery in the Cloud. https:
//docs.aws.amazon.com/whitepapers/latest/
disaster-recovery-workloads-on-aws/
disaster-recovery-options-in-the-cloud.
html.

[15] Axelar. Axelar network: Connecting applica-

tions with blockchain ecosystems, 2021. https:
//axelar.network/axelar_whitepaper.pdf.

[16] Azure. Backup and disaster recovery. https:
//azure.microsoft.com/en-us/solutions/
backup-and-disaster-recovery.

[17] Mahesh Balakrishnan, Jason Flinn, Chen Shen,

Mihir Dharamshi, Ahmed Jafri, Xiao Shi, Santosh

Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi,

Jingming Liu, Filip Gruszczynski, Xianan Zhang,

Huy Hoang, Ahmed Yossef, Francois Richard, and

Yee Jiun Song. Virtual consensus in delos. In 14th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 617–632.

USENIX Association, November 2020.

[18] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,

Ming Wu, Vijayan Prabhakaran, Michael Wei, John D

Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango:

Distributed data structures over a shared log. In

Proceedings of the twenty-fourth ACM symposium on
operating systems principles, pages 325–340, 2013.

[19] M.L. Balinski and H.P. Young. Chapter 15 apportion-

ment. In Operations Research and The Public Sector,

volume 6 of Handbooks in Operations Research and
Management Science, pages 529–560. Elsevier, 1994.

52 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[20] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro,

and Miguel Correia. A survey on blockchain interoper-

ability: Past, present, and future trends. ACM Comput.
Surv., 54(8), oct 2021.

[21] Philip A. Bernstein, Sebastian Burckhardt, Sergey

Bykov, Natacha Crooks, Jose M. Faleiro, Gabriel

Kliot, Alok Kumbhare, Muntasir Raihan Rahman,

Vivek Shah, Adriana Szekeres, and Jorgen Thelin.

Geo-distribution of actor-based services. Proc. ACM
Program. Lang., 1(OOPSLA), oct 2017.

[22] Kenneth P. Birman and Thomas A. Joseph. Reliable

communication in the presence of failures. ACM
Trans. Comput. Syst., 5(1):47–76, jan 1987.

[23] Gabriel Bracha. Asynchronous byzantine agreement

protocols. Inf. Comput., 75(2):130–143, 1987.

[24] Gabriel Bracha and Sam Toueg. Asynchronous consen-

sus and broadcast protocols. J. ACM, 32(4):824–840,

oct 1985.

[25] Brendan Burns, Joe Beda, Kelsey Hightower, and

Lachlan Evenson. Kubernetes: up and running. "

O’Reilly Media, Inc.", 2022.

[26] C. Cachin and J. A. Poritz. Secure intrusion-tolerant

replication on the internet. In Proceedings Inter-
national Conference on Dependable Systems and
Networks, page 167, Los Alamitos, CA, USA, jun

2002. IEEE Computer Society.

[27] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng

Zhu, Song Zheng, Yuhui Wang, and Guoqing Ma.

Polarfs: an ultra-low latency and failure resilient

distributed file system for shared storage cloud

database. Proceedings of the VLDB Endowment,
11(12):1849–1862, 2018.

[28] Miguel Castro and Barbara Liskov. Practical byzantine

fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002.

[29] Chainlink. Chainlink cross-chain interoperability

protocol, 2023.

[30] João Otávio Massari Chervinski, Diego Kreutz, Xiwei

Xu, and Jiangshan Yu. Analyzing the performance of

the inter-blockchain communication protocol. CoRR,

abs/2303.10844, 2023.

[31] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang

Wang, Lorenzo Alvisi, Mike Dahlin, and Taylor Riche.

Upright cluster services. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems
Principles, pages 277–290. ACM, 2009.

[32] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike

Dahlin, and Mirco Marchetti. Making byzantine

fault tolerant systems tolerate byzantine faults. In

Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, pages

153–168. USENIX, 2009.

[33] Confluent. Geo-replication with Cluster Linking on

Confluent Cloud, 2024.

[34] James C. Corbett, Jeffrey Dean, Michael Epstein,

Andrew Fikes, Christopher Frost, JJ Furman, Sanjay

Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene

Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,

David Mwaura, David Nagle, Sean Quinlan, Rajesh

Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s Globally-Distributed database. In

10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 261–264,

Hollywood, CA, October 2012. USENIX Association.

[35] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin,

Ee-Chien Chang, Qian Lin, and Beng Chin Ooi.

Towards scaling blockchain systems via sharding. In

Proceedings of the 2019 International Conference on
Management of Data, pages 123–140. ACM, 2019.

[36] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo

Alvisi, and Robbert Van Renesse. Scalog: Seamless

reconfiguration and total order in a scalable shared log.

In Proceedings of the 17th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI’20,

page 325–338, USA, 2020. USENIX Association.

[37] etcd. Etcd raft. https://github.com/etcd-io/
raft.

[38] Ethereum Foundation. Staking withdrawls, 2023.

[39] P.T. Eugster, R. Guerraoui, and P. Kouznetsov. /spl

delta/-reliable broadcast: a probabilistic measure

of broadcast reliabillity. In 24th International
Conference on Distributed Computing Systems, 2004.
Proceedings., pages 636–643, 2004.

[40] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios

Vlachos, and Nickolai Zeldovich. Algorand: Scaling

byzantine agreements for cryptocurrencies. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 51–68, New York, NY,

USA, 2017. Association for Computing Machinery.

[41] Google Cloud. What is a disaster recov-

ery plan? https://cloud.google.com/
learn/what-is-disaster-recovery?hl=en#
what-is-a-disaster-recovery-plan.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 53

[42] Suyash Gupta, Jelle Hellings, and Mohammad

Sadoghi. Fault-Tolerant Distributed Transactions on
Blockchain. Synthesis Lectures on Data Management.

Morgan & Claypool Publishers, 2021.

[43] Suyash Gupta, Jelle Hellings, and Mohammad

Sadoghi. RCC: resilient concurrent consensus for

high-throughput secure transaction processing. In 37th
IEEE International Conference on Data Engineering,
ICDE 2021, pages 1392–1403. IEEE, 2021.

[44] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and

Mohammad Sadoghi. ResilientDB: Global scale

resilient blockchain fabric. Proc. VLDB Endow.,
13(6):868–883, 2020.

[45] Suyash Gupta, Sajjad Rahnama, and Mohammad

Sadoghi. Permissioned blockchain through the look-

ing glass: Architectural and implementation lessons

learned. In 40th IEEE International Conference on
Distributed Computing Systems, ICDCS 2020, pages

754–764. IEEE, 2020.

[46] Suyash Gupta and Mohammad Sadoghi. Blockchain

transaction processing. In Encyclopedia of Big Data
Technologies, pages 1–11. Springer, 2019.

[47] Vassos Hadzilacos. Issues of Fault Tolerance in
Concurrent Computations (Databases, Reliability,
Transactions, Agreement Protocols, Distributed
Computing). PhD thesis, Harvard University, USA,

1985. AAI8520209.

[48] Vassos Hadzilacos and Sam Toueg. Fault-Tolerant
Broadcasts and Related Problems, page 97–145. ACM

Press/Addison-Wesley Publishing Co., USA, 1993.

[49] Maurice Herlihy. Atomic cross-chain swaps. CoRR,

abs/1801.09515, 2018.

[50] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang,

Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou,

Menglong Huang, Wan Wei, Cong Liu, Jian Zhang,

Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun,

Shuaipeng Yu, Lei Zhao, Nicholas Cameron, Liquan

Pei, and Xin Tang. Tidb: a raft-based htap database.

Proc. VLDB Endow., 13(12):3072–3084, aug 2020.

[51] IBM. Blockchain for supply chain solutions. https:
//www.ibm.com/blockchain-supply-chain.

[52] Zhipeng Jia and Emmett Witchel. Boki: Stateful

serverless computing with shared logs. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 691–707, 2021.

[53] Anuj Kalia, Michael Kaminsky, and David G An-

dersen. Design guidelines for high performance

{RDMA} systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 437–450, 2016.

[54] Dakai Kang, Suyash Gupta, Dahlia Malkhi, and Mo-

hammad Sadoghi. Hotstuff-1: Linear consensus with

one-phase speculation. CoRR, abs/2408.04728, 2024.

[55] Aggelos Kiayias and Dionysis Zindros. Proof-of-work

sidechains. In Financial Cryptography and Data Secu-
rity, pages 21–34, Cham, 2020. Springer International

Publishing.

[56] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka:

A distributed messaging system for log processing.

In Proceedings of the NetDB, volume 11, pages 1–7.

Athens, Greece, 2011.

[57] Jae Kwon and Ethan Buchman. A network of

distributed ledgers, 2016.

[58] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan

Long, and Andrew Yao. Scaling nakamoto consensus

to thousands of transactions per second, 2018.

[59] Shengyun Liu, Wenbo Xu, Chen Shan, Xiaofeng

Yan, Tianjing Xu, Bo Wang, Lei Fan, Fuxi Deng,

Ying Yan, and Hui Zhang. Flexible advancement in

asynchronous bft consensus. In Proceedings of the
29th Symposium on Operating Systems Principles,

SOSP ’23, page 264–280, New York, NY, USA, 2023.

Association for Computing Machinery.

[60] Yang Liu, Yuxi Zhang, Zhiyuan Lin, Zhaoguo Wang,

and Xuan Wang. Simulation method for blockchain

systems with a public chain. Sensors, 22(24):9750,

2022.

[61] Joshua Lockerman, Jose M. Faleiro, Juno Kim,

Soham Sankaran, Daniel J. Abadi, James Aspnes,

Siddhartha Sen, and Mahesh Balakrishnan. The

FuzzyLog: A partially ordered shared log. In 13th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 357–372,

Carlsbad, CA, October 2018. USENIX Association.

[62] D. Malkhi, M.K. Reiter, O. Rodeh, and Y. Sella.

Efficient update diffusion in byzantine environments.

In Proceedings 20th IEEE Symposium on Reliable
Distributed Systems, pages 90–98, 2001.

[63] M.G. Merideth, Arun Iyengar, T. Mikalsen, S. Tai,

I. Rouvellou, and P. Narasimhan. Thema: Byzantine-

fault-tolerant middleware for web-service applications.

In 24th IEEE Symposium on Reliable Distributed
Systems (SRDS’05), pages 131–140, 2005.

[64] Ines Messadi, Markus Horst Becker, Kai Bleeke,

Leander Jehl, Sonia Ben Mokhtar, and Rüdiger

54 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Kapitza. Splitbft: Improving byzantine fault tolerance

safety using trusted compartments. In Middleware
’22: 23rd International Middleware Conference, pages

56–68. ACM, 2022.

[65] Johnnatan Messias, Vabuk Pahari, Balakrishnan Chan-

drasekaran, Krishna P. Gummadi, and Patrick Loiseau.

Dissecting bitcoin and ethereum transactions: On the

lack of transaction contention and prioritization trans-

parency in blockchains. CoRR, abs/2302.06962, 2023.

[66] Microsoft. Azure service fabric, 2024.

[67] Microsoft. Microsoft Azure confidential ledger, 2025.

[68] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.

Kauri: Scalable BFT Consensus with Pipelined

Tree-Based Dissemination and Aggregation. In

Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page

35–48, New York, NY, USA, 2021. Association for

Computing Machinery.

[69] Diego Ongaro and John Ousterhout. In search of an

understandable consensus algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual
Technical Conference, pages 305–320. USENIX, 2014.

[70] Paxos. Blockchain infrastructure for enterprises, 2024.

[71] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv

Krishnan, and Mohammad Sadoghi. Ringbft: Resilient

consensus over sharded ring topology. In Proceedings
of the 25th International Conference on Extending
Database Technology, EDBT 2022, pages 2:298–2:311.

OpenProceedings.org, 2022.

[72] RainbrowBridge. Eth - near rainbow bridge, 2020.

[73] RedPanda. The state of streaming data, 2023.

[74] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel

Loghin, Meihui Zhang, Gang Chen, Qian Lin, and

Beng Chin Ooi. Blockchains vs. distributed databases:

Dichotomy and fusion. In SIGMOD ’21: International
Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, pages 1504–1517. ACM,

2021.

[75] Mark Russinovich, Edward Ashton, Christine Avanes-

sians, Miguel Castro, Amaury Chamayou, Sylvan

Clebsch, Manuel Costa, Cédric Fournet, Matthew

Kerner, Sid Krishna, Julien Maffre, Thomas Mosci-

broda, Kartik Nayak, Olya Ohrimenko, Felix Schuster,

Roy Schwartz, Alex Shamis, Olga Vrousgou, and

Christoph M. Wintersteiger. Ccf: A framework for

building confidential verifiable replicated services.

Technical Report MSR-TR-2019-16, Microsoft, April

2019.

[76] Fred B. Schneider, David Gries, and Richard D.

Schlichting. Fault-tolerant broadcasts. Sci. Comput.
Program., 4(1):1–15, may 1984.

[77] Lili Su, Quanquan C. Liu, and Neha Narula. The

power of random symmetry-breaking in nakamoto

consensus. In 35th International Symposium on
Distributed Computing, DISC 2021, October 4-8, 2021,
Freiburg, Germany (Virtual Conference), volume

209 of LIPIcs, pages 39:1–39:19. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2021.

[78] Florian Suri-Payer, Matthew Burke, Zheng Wang,

Yunhao Zhang, Lorenzo Alvisi, and Natacha Crooks.

Basil: Breaking up bft with acid (transactions). In

Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page

1–17, New York, NY, USA, 2021. Association for

Computing Machinery.

[79] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan

VanBenschoten, Jordan Lewis, Tobias Grieger, Kai

Niemi, Andy Woods, Anne Birzin, Raphael Poss,

Paul Bardea, Amruta Ranade, Ben Darnell, Bram

Gruneir, Justin Jaffray, Lucy Zhang, and Peter Mattis.

Cockroachdb: The resilient geo-distributed sql

database. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data,

SIGMOD ’20, page 1493–1509, New York, NY, USA,

2020. Association for Computing Machinery.

[80] Andrew S. Tanenbaum and David Wetherall.

Computer networks, 5th Edition. Pearson, 2011.

[81] Peter Tannenbaum. Excursions in modern mathe-
matics. Pearson, Upper Saddle River, NJ, 9 edition,

December 2008.

[82] Poly Team. Polynetwork: An interoperability protocol

for heterogeneous blockchains, 2015.

[83] The MystenLabs Team. The sui smart contracts

platform. https://docs.sui.io/paper/sui.pdf.

[84] Pasindu Tennage, Cristina Basescu, Lefteris Kokoris-

Kogias, Ewa Syta, Philipp Jovanovic, Vero Estrada-

Galinanes, and Bryan Ford. Quepaxa: Escaping the

tyranny of timeouts in consensus. In Proceedings of
the 29th Symposium on Operating Systems Principles,

SOSP ’23, page 281–297, New York, NY, USA, 2023.

Association for Computing Machinery.

[85] Sarah Tollman, Seo Jin Park, and John K. Ousterhout.

Epaxos revisited. In James Mickens and Renata

Teixeira, editors, 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2021, April 12-14, 2021, pages 613–632. USENIX

Association, 2021.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 55

[86] Sam Toueg. Randomized byzantine agreements. In

Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, PODC ’84, page

163–178, New York, NY, USA, 1984. Association for

Computing Machinery.

[87] Robbert Van Renesse and Deniz Altinbuken. Paxos

made moderately complex. ACM Comput. Surv., 47(3),

February 2015.

[88] Shivaram Venkataraman, Aurojit Panda, Kay Ouster-

hout, Michael Armbrust, Ali Ghodsi, Michael J

Franklin, Benjamin Recht, and Ion Stoica. Drizzle:

Fast and adaptable stream processing at scale. In

Proceedings of the 26th Symposium on Operating
Systems Principles, pages 374–389, 2017.

[89] Carl A. Waldspurger and William E. Weihl. Lottery

scheduling: Flexible Proportional-Share resource

management. In First Symposium on Operating
Systems Design and Implementation (OSDI 94),
Monterey, CA, November 1994. USENIX Association.

[90] Gang Wang, Qin Wang, and Shiping Chen. Exploring

blockchains interoperability: A systematic survey.

ACM Comput. Surv., 55(13s), jul 2023.

[91] Guozhang Wang, Joel Koshy, Sriram Subramanian,

Kartik Paramasivam, Mammad Zadeh, Neha Narkhede,

Jun Rao, Jay Kreps, and Joe Stein. Building a repli-

cated logging system with apache kafka. Proceedings
of the VLDB Endowment, 8(12):1654–1655, 2015.

[92] Xuechao Wang, Peiyao Sheng, Sreeram Kannan,

Kartik Nayak, and Pramod Viswanath. Trustboost:

Boosting trust among interoperable blockchains.

CoRR, abs/2210.11571, 2022.

[93] E. Weldon. An improved selective-repeat arq

strategy. IEEE Transactions on Communications,

30(3):480–486, 1982.

[94] Gavin Wood. Ethereum: A secure decentralised

generalised transaction ledger. 2015.

[95] Gavin Wood. Polkadot: Vision for a heterogeneous

multi-chain framework, 2016.

[96] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan

Zhang, Yupeng Zhang, Yongzheng Jia, Dan Boneh,

and Dawn Song. zkbridge: Trustless cross-chain

bridges made practical. In Heng Yin, Angelos Stavrou,

Cas Cremers, and Elaine Shi, editors, Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, pages 3003–3017.

ACM, 2022.

[97] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,

Guy Golan Gueta, and Ittai Abraham. HotStuff:

BFT consensus with linearity and responsiveness. In

Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 347–356. ACM, 2019.

[98] Mahdi Zamani, Mahnush Movahedi, and Mariana

Raykova. RapidChain: Scaling blockchain via full

sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications
Security, pages 931–948. ACM, 2018.

[99] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis

Zindros, Eleftherios Kokoris-Kogias, Pedro Moreno-

Sanchez, Aggelos Kiayias, and William J. Knottenbelt.

Sok: Communication across distributed ledgers. In

Nikita Borisov and Claudia Diaz, editors, Financial
Cryptography and Data Security, pages 3–36, Berlin,

Heidelberg, 2021. Springer Berlin Heidelberg.

[100] Yuanzhe Zhang, Shirui Pan, and Jiangshan Yu. Txallo:

Dynamic transaction allocation in sharded blockchain

systems. In 39th IEEE International Conference on
Data Engineering, ICDE, pages 721–733. IEEE, 2023.

56 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

