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Abstract

Replicated state machines (RSMs) cannot communicate effec-
tively today as there is no formal framework or efficient pro-
tocol to do so. To address this issue, we introduce a new prim-
itive, Cross-Cluster Consistent Broadcast (C3B) and present
P1csou, a practical implementation of the C3B primitive.
P1CcSouU draws inspiration from networking and TCP to allow
two RSMs to communicate with constant metadata overhead
in the failure-free case and a minimal number of message
resends in the case of failures. PICSOU is flexible and allows
both crash fault tolerant and Byzantine fault tolerant con-
sensus protocols to communicate. At the heart of PICSOU’s
good performance and generality is the concept of QUACKS
(quorum acknowledgments). QUACKs allow nodes in each
RSM to precisely determine when messages have definitely
been received, or likely lost. Our results are promising: we
obtain up to 24 x better performance than prior solutions on
microbenchmarks and applications, ranging from disaster re-
covery to data reconciliation.

1 Introduction

Many organizations today use replicated state machines
(RSM) underpinned by consensus protocols to provide re-
liability, fault isolation, and disaster recovery. This includes
key-value stores [37, 50, 79], cluster managers [25], and mi-
croservices [21, 66, 70]. These RSMs frequently need to com-
municate with each other in an efficient and timely manner.
Etcd [37] to Etcd mirroring over Kafka, for instance, is a pop-
ular approach for disaster recovery across clusters [33]. Simi-
larly, autonomous organizations often run their replicated key-
value store locally for ease of management, but share access
with other entities. For example, conversations with govern-
ment agencies reveal that, for operational sovereignty, services
cannot be managed across agency borders. Instead, any shared
information must be communicated across RSMs and explic-
itly reconciled [75]. Furthermore, in the blockchain ecosys-
tem, there is a growing push towards interoperability, which re-
quires distinct RSMs (blockchains) to communicate [20, 90].

These examples speak of a common need: RSMs must
support the ability to efficiently and reliably exchange
messages with other RSMs that may or may not implement
the same consensus protocol internally.

Unfortunately, existing solutions are either ad-hoc, offer
vague or evolving guarantees [20], rely on a trusted third-
party [92]), or require an expensive all-to-all broadcast [9, 34].
For instance, Apache Kafka, the most popular approach for
exchanging data across organizations, internally relies on a
third RSM for safely sharing state.

All-to-all broadcast is even more problematic: while RSMs
usually run within the same datacenter, there exist many
RSMs which are geographically distributed. In these cases,
cross-RSM communication will take place over WAN, which
offers significantly reduced bandwidth at a much higher
dollar cost. This frequently causes communication to become
a bottleneck.

Any system that allows RSMs to communicate should satisfy
four requirements: 1) strong guarantees: there should be a
precise and formal way to discuss RSM-RSM communication
2) robustness under failures: actively malicious or crashed
nodes should neither affect correctness nor cause system
throughput to drop [32] 3) low-overhead in the common-case:
for efficiency, an RSM to RSM communication protocol
should send a single message with constant metadata in
the failure-free case 4) generality: arbitrary RSMs with
heterogeneous sizes, communication, and fault models should
be able to communicate. It should, for instance, be possible
to link a Byzantine Fault Tolerant (BFT) consensus protocol
with a Crash Fault Tolerant (CFT) consensus algorithm

To this effect, we first propose a new primitive, Cross-
Cluster Consistent Broadcast (C3B), which can be used
by two arbitrary RSMs to communicate. C3B generalizes
Reliable Broadcast to guarantee that if RSM A sends m, at
least one correct replica in RSM B should receive m.

We then introduce P1CSOU, a practical C3B protocol that al-
lows arbitrary RSMs with heterogeneous communication and
failure models to communicate efficiently. Designing a C3B
protocol that provides good performance in the failure-free
case is fairly simple as a simple leader-to-leader broadcast
suffices. The challenges instead arise from designing an
efficient protocol that remains robust to failures [32]. The key
to PICSOU’s good and robust performance lies in observing
that the C3B problem shares similar goals to TCP [80].
TCP seeks to offer reliable, ordered delivery between two
hosts in a way that dynamically reacts to congestion and
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anomalies in the network. To do so at low cost, TCP leverages
full-duplex communication and cumulative acknowledgments
(ACKs) to asynchronously detect when messages have been
received. In contrast, repeated ACKs of the same message
reveal message loss. PICSOU takes inspiration from these
techniques and modifies them to account for the differences
between C3B and TCP: 1) unlike TCP, which is exclusively
designed for point-to-point messaging, PICSOU must handle
many-to-many communication and disseminate knowledge
of failed/successful message deliveries across many nodes,
2) P1cSOU must ensure that no Byzantine participant will
violate correctness or cause excessive retransmissions. In
contrast, TCP does not consider malicious failures.

To address these challenges, PICSOU introduces the
notion of QUACKs. A QUACK is a cumulative quorum
acknowledgment for a message m. It concisely communicates
the fact that all messages up to m have been reliably received
by at least one correct node; repeated QUACKs for m indicate
that the next message in the sequence was not received at the
receiving RSM.

Using QUACKs in PICSOU yields multiple benefits. First, it
ensures generality. It allows for PICSOU to seamlessly work
for crash fault tolerant systems as well as for both traditional
and stake-based Byzantine fault tolerant protocols. PICSOU
makes no synchrony or partial synchrony assumption.
Second, P1CSOU’s QUACK-driven implementation has
low overhead. In the failure-free case, PICSOU sends each
message only once, and requires only two additional counters
per message. When failures do arise, PICSOU remains robust
as its resend strategy minimizes the number of messages
resent: no Byzantine node can unilaterally cause spurious
message retransmissions.

Our results confirm PICSOU’s strong guarantees. PICSOU
allows disparate protocols such as PBFT [28], Raft [69] and
Algorand [40] to communicate. On two real-world applica-
tions, Etcd Disaster Recovery [33] and a data reconciliation
application [75], PICSOU achieves 2x better performance
than Kafka. In our microbenchmarks, when consensus is not
the bottleneck, PICSOU achieves 3.2 better performance
than a traditional All-to-All broadcast for small networks
(4 nodes), and up to 24 x for large networks (19 nodes). In
summary, this paper makes the following contributions:

1. We introduce Cross-Cluster Consistent Broadcast
primitive, which allows for two RSMs to communicate
robustly and efficiently.

2. We present PICSOU, a practical C3B protocol. Key
to PICSOU’s good performance is the use of QUACKs
(cumulative quorum acknowledgments), which precisely
determines when messages have definitely been
received, or likely lost.

3. We evaluate PICSOU on realistic workloads, showing
that it can successfully allow disparate RSMs to
communicate more effectively that prior solutions.

2 Formalising the C3B primitive

We first introduce and formalize the C3B primitive. C3B
is the blueprint for any communication protocol between
RSMs and should be sufficiently general to support various
communication and failure models.

2.1 System Model

We first discuss the necessary formalism. Consider a pair of
communicating RSMS. For the sake of exposition, we denote
the sending RSM as R and the receiving RSM as &,. In
practice, communication between these RSMs is full-duplex:
both RSMs can send and receive messages.

Most modern RSMs are either crash fault tolerant (they
guarantee consensus when up to f nodes crash) or Byzantine
fault tolerant (they guarantee consensus when up to f nodes
behave arbitrarily). In line with PICSOU’s stated generality
and efficiency goals, we adopt the UpRight failure model [31].
It allows us to consider Byzantine nodes and crashed nodes in
a unified model, letting us design a system that optimizes for
each type of failure. In the UpRight failure model, Byzantine
nodes may exhibit commission failures; they may deviate
from the protocol. All other faulty nodes may suffer from
omission failures only: they follow the protocol but may fail
to send/receive messages. Crashed nodes, for instance, suffer
from permanent omission failures once crashed. Correct
nodes, by definition, never fail'. In this setup, each RSM
consists of n replicas. We denote the j-th replica at the i-th
RSM as R;; (where i is either the sender or the receiver
RSM). Each RSM interacts with a set of clients, of which
arbitrarily many can be faulty.

We say that an RSM is safe despite up to r commission
failures and live despite up to u failures of any kind.
For example, using the UpRight model, we can describe
traditional BFT and CFT RSMs using just one equation:
2u—+r+1; Setting u =r =f yields a 3f+1 BFT RSM and
setting r =0 yields a 2f+1 CFT RSM. Safety and liveness
of any RSM are defined as follows:

Safety. If two correctreplicas R;; and R;» in RSM &; commit
transactions 7 and T’ at sequence number k, then T=T".

Liveness. If a client sends a transaction 7 to RSM &;,
correct replicas in &; will eventually commit 7.

Note that we make no assumptions about the communication
model of the underlying RSM. We only assume messages
are eventually delivered and that the receiving RSM &, can
verify whether a transaction was in fact committed by the
sender RSM R (more details in Section 3).

IThis is of course a simplification, necessary to say anything about an
RSM. All practical systems assume that this f stays true at any given point
in time, and that the set of failed nodes only changes. It allows making state-
ments such as “f+1 votes ensure that at least one correct node participated”.
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We generalize our system model to support shares. The no-
tion of share is used in stake-based BFT consensus protocols
where the value of a share determines the decision-making
power of a replica [42]. For areplica R;; in RSM %&;, we write
d;j to represent the replica’s stake; the total amount of share in
RSM R; is then 2}‘2‘18,7. A stake-based consensus algorithm
is safe as long as replicas totaling no more than r; shares
deviate from the protocol. The system is live as long as no
more than u; shares fail to send/receive messages Traditional
CFT and BFT algorithms simply set all shares equal to one.

Adversary Model. We assume the existence of a standard
adversary which can corrupt arbitrary nodes, delay and re-
order messages but cannot break cryptographic primitives.
As is standard, we assume that reconfigurations are possi-
ble [7, 38] and that there exists a mechanism for an RSM to
reliably learn of the new configuration and/or share assign-
ments. We provide more detail on how such a mechanism can
be implemented in Section 4.4

2.2 Cross-Cluster Consistent Broadcast

The C3B primitive enables efficient and reliable communi-
cation between a sender RSM and a receiver RSM.

To formalize C3B, we first need to define two new
communication primitives that express exchanging messages
between RSMs. These operations are at a coarser granularity
than the traditional send and receive operations, which define
the operations performed by a specific node or replica.

Transmit. If a correct replica in & invokes C3B on message
m, we say that RSM Ry transmits message m to RSM R,.

Deliver. If a correct replica from &, outputs message m, we
say that RSM R, delivers message m from XK.

We can then define the two correctness properties that all
C3B implementations must satisfy:

Eventual Delivery. If RSM 2R, transmits message m to
RSM R, then R, will eventually deliver m.

Integrity. For every message m, an RSM R, delivers m
from R if and only if K transmitted m to ;.

Note that the deliver operation requires only that one correct
node receives the message, not that all correct nodes receive
it. This is by design: our goal is to make the C3B condition as
flexible as possible to suit application needs. In practice, it is
easy to strengthen this condition to either guarantee delivery
to all nodes or to establish ordering between RSMs, as correct
nodes in the receiving RSM can simply broadcast or invoke
consensus on delivered messages. In the name of generality,
the C3B primitive talks about a single message only, and
does not worry about ordering across messages. PICSOU,
nonetheless, uses knowledge of ordering for efficiency, as
we describe next.

3 Design Overview

PICSOU efficiently implements the C3B primitive while
remaining general and robust under failures. The design of
P1CSOU is centered around three pillars:

(P1) Efficiency. In the (common) failure-free case, where
messages are received in a timely fashion, PICSOU should
only send a single copy of each message across RSMs, and
no more than O(n) copies within a cluster. Any additional
metadata sent as part of PICSOU should have constant size.

(P2) Generality. P1cSOU should support RSMs of arbitrary
sizes, with diverse failure models and communication models,
including crash and Byzantine faults as well as synchronous
and asynchronous networks. The protocol logic must also
work well for both traditional BFT systems and newer Proof-
of-Stake protocols, where a replica’s share determines the
weight that its vote carries.

(P3) Robustness. PICSOU should remain robust to failures.
Crashed or malicious replicas should have minimal impact on
performance [32]. There is a tension here: while the protocol
should aggressively resend dropped messages to minimize
latency, Byzantine nodes should not cause correct nodes to
resend messages, which can spuriously hurt throughput.

Much like TCP flows, communication between RSMs is
streaming, long-running and often full-duplex. P1CSOU thus
draws inspiration from TCP’s approach to congestion control
and message loss to guarantee efficiency and robustness.

Two ideas are central to TCP’s good performance: 1)
leveraging full-duplex communication and 2) cumulative
ACKing. In TCP, nodes simultaneously exchange messages,
and TCP leverages this bidirectional communication to
piggyback acknowledgments onto messages and minimize
bandwidth requirements. Cumulative ACKing then keeps
these acknowledgments small: with a single counter k, a
receiver informs a sender that it has received all packets
with sequence number up to k. Receiving a repeated counter
with value k instead informs the sender that the packet with
sequence number k-1 is either lost or delayed.

For efficiency, P1ICSOU also leverages full-duplex communi-
cation and cumulative ACKing. However, PICSOU must also
handle many-to-many communication as each RSM consists
of multiple replicas. For generality, PICSOU must support
crashed nodes, Byzantine nodes, as well as Byzantine nodes
whose stake determines their voting power; PICSOU makes
use of the UpRight fault model to simultaneously handle
crash and Byzantine nodes, and leverages the mathematics
of apportionment to work seamlessly with staked-based
systems. For robustness, PICSOU must ensure that replicas
cannot trigger spurious message retransmissions. PICSOU
uses QUACKs to determine when a message has definitely
been received or is likely lost.

Overview. PICSOU’s protocol logic can be divided into the
following logical components.
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(1) Consensus: On either side of PICSOU lies a replicated
state machine. Each RSM receives requests from clients and
runs a consensus protocol that commit these requests on each
RSM replica. PICSOU assumes two properties of consensus
to guarantee correctness: first, all replicas eventually receive
all messages, and second, all replicas agree on the content
of each slot in the log.

(2) Invoking Picsou: If an RSM wants to transmit a
request, each replica forwards the committed request to
the co-located PICSOU library. RSMs are not required to
forward every committed message to PICSOU. This step is
application-specific. For example, if two organizations only
share a subset of their data, the RSM will only transmit
messages that touch these particular objects.

(3) Transmitting a message: PICSOU sends the message on
behalf of the sending RSM. In line with our stated efficiency
goals, PICSOU ensures that, in the absence of failures and
during periods of synchrony, a single sender forwards each
request to a single replica in the receiving RSM. To minimize
the risk of repeated failures caused by a faulty sender or
receiver, PICSOU carefully rotates sender-receiver pairs.
In doing so, it ensures that every sender will eventually
communicate with a correct receiver and vice-versa.

(4) Detecting successful or failed sends: PICSOU must
quickly determine whether a message has definitely been
received (and thus can be garbage collected) or has definitely
been dropped or delayed (distinguishing between message
drops and delays is not possible in an asynchronous system).
Failure detection must be accurate to prevent Byzantine nodes
from causing spurious re-transmissions; it must be efficient
and should not require additional communication between
nodes. PIcsou adapts TCP’s cumulative acknowledgment
approach to detect when messages have been received
or dropped, even when malicious replicas can lie. These
acknowledgments are piggybacked on incoming messages,
thus minimizing overhead.

(5) Retransmissions: When the protocol detects that a
message has been dropped (with high confidence), PICSOU
intelligently chooses the node responsible for resending the
message. Unfortunately, concurrent node failures can cause
multiple messages to be dropped simultaneously. To address
this issue, PICSOU includes (constant size) information about
which messages have been lost, allowing the protocol to
recover multiple dropped messages in parallel. Traditional
TCP can eschew this constraint as it assumes failures are rare
and considers point-to-point communication only.

Correctness We defer a full description of correctness and
proofs to Appendix A.1 and A.2 [1].

4 Protocol Design

We now describe each component of the protocol: trans-
mitting a message, detecting successful/failed sends, and
retransmissions. For clarity of exposition, we describe the

Time-step 1: RSM 1
* R,;sends m, to R,,
* Rj,sendsm, toR,, R,
* R,;sends m;to Ry,

* R, sends m, to R,,

Time-step 2: Ry,
* R, broadcasts m; and
sends Ack(1) to R,

* R,, broadcasts m, and
sends Ack(0) to R,

* R,;broadcasts m; and
sends Ack(0) to R,

* R,,broadcasts m,and | [ Ris

sends Ack(0) to R,

R13

Time-step 3:

* R, sends msto R,,
* Rj,sends m, to R,y
* Rj;sendsm; toR,,
* Ry;sends mgto R,

Time-step 4:

* R, broadcasts msand
sends Ack(4) to R,

* R,,broadcasts mg and
sends Ack(5) to Ry

* R,;broadcasts m, and
sends Ack(4) toR,

* R,,broadcasts mgand
sends Ack(4) to R,

Figure 1: Example failure-free run in PICSOU

protocol as consisting of a sender RSM R, and a receiver
RSM R, proceeding in synchronous timesteps. In practice,
nodes operate independently and act as both the sender and
the receiver. We start by describing PICSOU’s behavior in the
common case (§4.1) before considering failures (§4.2). We
add support for stake in §5. We include protocol pseudocode
in Appendix A.3 [1].

4.1 Failure-free behavior

Sending a message. PICSOU’s send logic has three goals: 1)
minimize the number of nodes sending the same message 2)
maximize the chances that a message will be received quickly
3) asynchronously disseminate knowledge of received
messages to other nodes. PICSOU achieves these goals by
round-robin partitioning the set of requests across all sending
RSM replicas and rotating receiver nodes every round.

By definition, each replica in an RSM contains a log of
committed requests, a subset of which should be transmitted
to the other RSM. PICSOU assumes that each request
transmitted through PICSOU is of the form (m.,k,k’)q,, where
m is a request committed at sequence number k by a quorum
of replicas in RSM RK;. Each protocol sets a specific threshold
t above which the request has acquired sufficiently many
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Ry 0 | |Ry [m, 1 Y, || iy ||l || iy || il | (0l || 0y || (00 0ty | iy || Mty || 60 || il | Al || 100y || ey
R,, 0 | |Ry m, 0 Rj; Ryl 1
Ry3 0 ||Ry m; 0 Ry, R;»
Ry 0 | Ry my 0 Ry; Ry
Ry Ryy

(a) Time-step 1 (b) Time-step 2
R, m,; | m, [m;|m, 4 | |Ry|m, |m, [my|m, mg| 4 (@) Tlme_Step] (b) Tlme—step3
Ro,|my | m, | my|m, 4 | |Ry[m; | m, | my|my|ms 5 m; | m, [ my| my |ms | mg|m, [ mg
Ry;|m; | m, [my [ m, 4 | [Ry3[my [m, [m; | m, mg 4 Ryl2|1]1]1 m;
R,y my | my [my; [my 4 | |Ryy[my |m, [my|my, m; 4 Rl 1| 1]1]1

Ry 1[1]1]1]1
(c) Time-step 3 (d) Time-step 4 Ra|1|1]1]1

Ry my | my | my| my |my | mg | m, | mg

R,,|m; [m, [m; | m, | ms|m, | m, | mg

R,;|m; [m, [m; | m, | ms | mg | m, | mg

| 0| oo| oo

R,y m; [m, [ m; | m, | ms | my | m; | mg

(e) Time-step 5

Figure 2: Receiver’s view of events in Figure 1 in time-steps.

signatures Qs to be deemed committed. &’ is an optional se-
quence number that denotes the position of the message in the
stream of messages that will be transmitted through P1csou.
k' must be sequentially increasing; k' = L indicates that the
message should not be transmitted. Including both k and k’
allows Z; to filter which messages will be transmitted to ;.

P1CsoU evenly partitions the task of transmitting committed
messages across all replicas such that each message is sent
by a single node: replica Ry; sends messages with sequence
number (k' mod ng = [). Additionally, each sender rotates
receivers on every send: if RSM R, has size n, and replica
Ry last sent to replica R,;, then Ry; will next send to R,;,
where J = j+ 1 mod n,. Node IDs themselves are assigned
by PICSOU using a verifiable source of randomness [40] such
that malicious nodes cannot choose specific positions in the
rotation. Note that, as is standard in TCP, we allow senders
to transmit a window of messages in parallel.

Receiving a message Upon receiving a message, the j-th
replica R,; checks that the message (m, k, k')q, is valid
(the message has provably been committed by the sender
RSM) and if so, broadcasts it to the other nodes in its RSM.
Importantly, the receiving node does not need to recommit
the message. It can simply apply it to its local state as
mandated by the application logic.

Rotating sender-receiver pairs in this way guarantees that
every pair of replicas will eventually exchange messages
and ensures that (1) information about the state of each
node is propagated to every other node in the system, and
(2) no sender is continuously sending to a faulty replica (or
vice-versa). This process is also essential to bounding the
number of retransmissions needed with failures (§4.2).

We illustrate PIcSOU’s logic in Figure 1. For clarity of
exposition, we assume that 1) in each time-step, each replica
completes all relevant tasks in parallel, 2) all sent messages
are received in the next time-step, and 3) only one RSM sends,

(c) Time-step 5

Figure 3: Sender’s view of events in Figure 1 in time-steps.

the other only acks. In our implementation, acks are piggy-
backed on messages. Consider a system with ng =n, =4
replicas (u=r =1). In time-step 1, replicas R, R2, Ry3,and
R4 of RSM; send messages my, my, mz, and my to receivers
R11, R22, Ro3, and Ryy, respectively. In time-step 2, these re-
ceivers internally broadcast these messages to the other nodes
in their RSM. Concurrently, Ro;, R22, R23, and Rogq acknowl-
edge receipt of these messages and send ACK(1), ACK(0),
Ack(0), and ACK(0) to senders Rjq, Ri2, Ry3, and Ry4. We
discuss acknowledgments later in the section. In time-step
3, Ri1, Ry2, Ry3, and Ry4 rotate receivers and send messages
ms, mg, my, and mg to Ros, Ra3, Rog, and Ry;. In time-step 4,
receivers once again broadcast the received messages in their
RSM. Simultaneously, R»1, R22, R23, and Ro4 rotate receivers
for their acknowledgements, and send ACK(4), ACK(5),
ACK(4), and ACK(4) to senders Ri», Ry3, R4, and Ry;.

Detecting successful sends. To guarantee correctness,
committed messages must eventually be received by a correct
node in the receiving RSM. Every node in the sending RSM
(not just the sender) must thus learn whether a message has
definitely been received by a correct node. This is necessary
to preclude correct nodes from unnecessarily resending
messages. There are three primary challenges: (1) malicious
nodes may lie about the set of messages received, (2) for
efficiency, PICSOU should not require nodes within an RSM
to exchange information beyond the necessary message
broadcast, and (3) any additional metadata should be small.
PICSOU realizes these goals through cumulative quorum
acknowledgments (or QUACKs). A cumulative quorum
acknowledgment with value k proves to the sending RSM
that all messages with sequence number up to k have been
received by at least one correct replica. More specifically,
each replica, upon receiving a message with sequence number
k, inserts it into a sorted list containing all previously received
messages. The replica then identifies the highest message
m,, in the list for which all messages with a smaller sequence
number have been received. It then crafts an acknowledgment
ACK(p) that cumulatively acknowledges receipt of messages
1 to p. PICSOU takes advantage of the full-duplex nature of
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the protocol to piggyback these acknowledgments onto the
messages that the receiving RSM is itself sending to the send-
ing RSM. If no such message exists, the RSM sends a no-op.

On the sender side, each replica eventually receives mes-
sages and acknowledgments from all n, receiving replicas,
thanks to PICSOU’s round-robin strategy. Each replica
maintains an n, sized array that summarizes the highest ac-
knowledgment received from each replica of receiving RSM.
A message m, is QUACKed if at least u, + 1 replicas have
acknowledged receipt of all messages up to p. As there are
only u, failed replicas, one of these replicas must be correct.
We thus have the guarantee that this correct replica will
broadcast the message to all other remaining correct replicas.
Note that PIcSOU additionally uses MACs to safely transmit
ACKs when configured to handle Byzantine failures (r > 0).

Example. Continuing with our example in Figure 1, we
highlight the protocol logic for both the receiver RSM
(Figure 2) and the sender RSM (Figure 3). Each row in
Figure 2 describes a sorted list of messages received at each
replica, with the last column denoting the highest cumulative
acknowledgment for this node. At time-step 1, all lists are
empty and cumulative acknowledgment values are all set to
0 (2a). At time-step 2, receivers Rap, Ro2, and Rz (2b) store
messages mp, my and m3. Ry;’s cumulative acknowledgment
counter thus increases to 1, while others stay at 0 as they
are still missing m;. Ry, Raz, and Rp3 thus send ACK(1),
Ack(0) and ACK(0) to the sender RSM. At time-step 3, each
receiver, thanks to the internal broadcast mechanism, receives
all four messages. All cumulative acknowledgment counters
thus go to 4 (2¢). By time-step 4, receivers Ray, Ros, and Ro3
have all received mg, ms and mg. Ry has received messages
my to ms, and thus updates its cumulative acknowledgment
to 5. In contrast, R»; and Ry3 have received messages mg
and mg respectively, they are missing ms and thus cannot
yet update their cumulative acknowledgment counter. R,y
Ry, and Ry3 send ACK(4), ACK(5) and ACK(4) back to the
sending RSM. Finally, at time-step 5, the internal broadcast
mechanism disseminates all these messages; each replica can
update its cumulative acknowledgment to 8.

Now consider the sender-side logic (Figure 3), which
processes these cumulative acknowledgments and determines
when a QUACK has formed. Recall that a message is
QUACKed at a replica if this replica receives u + 1 = 2
acknowledgments for m. Initially, all QUACK counters
are empty (3a). At time-step 3 (3b), Ry; records that it
has received an acknowledgment for m; (ACK(1)) from
Ry;. At time-step 5, (3¢), Ry; receives ACK(4) from Rys.
It updates its local array, indicating that it has received
acknowledgments for m; by two unique nodes, and marks
m; as QUACKed. It also records the received acks for m,, ms,
and my. Similarly, all other replicas indicate that they have
received an ack for my, my, msz, and my. Additionally, R3
indicates it received an ack for ms as it received ACK(5).

Summary The joint techniques of full-duplex communica-
tion, cumulative acking, and rotation of sender/receiver pairs
allow PICSOU to ensure that all RSM replicas eventually
learn which committed requests have been delivered. The
protocol achieves this with only two additional counters and
with no additional communication between replicas of an
RSM beyond the necessary broadcast.

4.2 Handling Failures

Faulty replicas can: 1) fail to send or broadcast messages
sends and broadcasts, 2) send invalid messages to DDoS the
network, 3) collude to repeatedly drop messages, and 4) send
incorrect acknowledgments to break correctness or trigger
spurious retransmissions. PICSOU must effectively handle
these failures without sacrificing correctness or performance.
To this effect, PICSOU must quickly and reliably detect when
a message has definitely been dropped or delayed and quickly
retransmit it. The system must do so without any additional
communication beyond resending the message itself.

Detecting failed sends. The protocol once again leverages
QUACKSs to detect failed sends. Recall that all sender repli-
cas eventually obtain a QUACK for every message that has
definitely been delivered. One can instead leverage duplicate
QUACKS to learn when a correct replica has not received a
specific message. In more detail, let us assume that a QUACK
for message my, has formed at Ry;. This QUACK indicates that
at least u+1 (at least one correct) replicas have received every
message up to message m with sequence number k. A dupli-
cate acknowledgment ACK (k) from one of these replicas im-
plies that this replica claims not to have received the message
at sequence number k+ 1. Once a duplicate QUACK forms for
the k-th message at replica Ry;, Ry; learns that a correct replica
is complaining about missing message (k+1), and thus that
the message has legitimately been lost or delayed. All other
replicas of the sending RSM R, will eventually receive a du-
plicate QUACK and thus detect the failed exchange. The use
of the UpRight failure model, which distinguishes actively
malicious failures r from all other failures, allows us to reduce
the size of the duplicate QUACK: while the initial QUACK is
of size u+1, duplicate QUACKS must be of size r+1 as they
must be large enough to preclude actively malicious nodes
from triggering spurious resends. In a system with only crash
failures (when r =0), a single duplicate ACK() is sufficient
to trigger a message resend: nodes may crash but do not lie.

Retransmitting the dropped message. Upon detecting a
failed send, the message must be quickly retransmitted. Just
as a single replica was responsible for sending the initial
message, PICSOU ensures that a single replica is "elected"
as the re-transmitter. It does so without requiring additional
communication between replicas. The protocol logic hinges
on three observations: 1) all correct replicas know about
all the messages that must be transmitted (by definition of
an RSM) and know who initially sent the message, 2) all
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Figure 4: Sender’s view of events. Ry fails after TS 2 in Figure .

correct replicas eventually learn about which messages have
been QUACKed, and 3) the number of repeated QUACKS
indicates the number of failed retransmissions. PICSOU uses
this information to compute the ID of the re-transmitter
as: senderye, = (senderriginal + #retransmir) mod ny. Each
correct replica computes this function and retransmits the
message if its ID matches sendery,,,,. Each retransmission
round thus has a single sender.

To illustrate, consider once again our initial example
(Figure 1), but this time, let us assume that sender replica
Ry fails in time-step 2, after sending message m but before
sending messages ms and myg. As a result, no receiver receives
these messages. In Figure 4, we time-step through this failure
scenario. For simplicity, we assume that the receiving RSM
sends periodic acks every time-step. As before, all non-failed
replicas of RSM receive their first ACK(4) in time-step
5 (Figure 1); In time-step 7, all replicas receive a second
ACK(4) message, from a different node, allowing them
to mark messages mj to ms as QUACKed. They continue
receiving ACK(4) from distinct replicas in time-step 9 and
11. Receivers cannot acknowledge any message greater than
my as they are yet to receive ms. In time-step 13, the senders
receive their first duplicate ACK(4) message. By the end of
time-step 15, the senders have received at least r, +1 =2

duplicate ACK(4) messages, confirming that ms is missing.

R» proceeds to resend ms.

The pitfalls of sequential recovery. Unlike traditional TCP
in which message drops are not adversarial, faulty replicas
can carefully select which messages to drop. For instance,
inan=2u+r+1 setup with u =r = 1, if a node omits
all received messages, every fourth message will need to be

resent. In this setup, PICSOU can hit a throughput bottleneck.

A QUACK conveys information about the lowest message
that has been dropped by the system, but says nothing about
later messages. This approach is optimal metadata-wise but
serializes recovery: if messages m;, m;i4, mjyg, etc. have

all been dropped, resending m; g first requires detecting the
failed send of message m;, retransmitting m;, QUACK m;,
before repeating the same process for m;4. Only then can
the failed send of m;, g be handled.

Parallel Cumulative Acknowledgments. To address this is-
sue, we must augment our cumulative acknowledgments with
a limited form of selective repeat [93]. Each receiver sends
both a cumulative acknowledgment and a list summarizing
the delivery status of up to ¢ messages past the sent cumu-
lative acknowledgment. The cumulative acknowledgment
counter concisely summarizes the set of contiguous messages
received so far. The ¢-list instead captures any "in-flight"
missing messages. Sending ¢-lists over the network is
efficient as the delivery status of each message takes at most
one bit to encode. This list can further be reduced with
techniques such as compression or bloom filters.

Sender replicas can now, concurrently, form QUACKS
for ¢ concurrent messages and thus retransmit ¢ messages
in parallel. This reduces latency without resorting to
eager message resends. The maximum size of ¢-lists is an
experiment-specific parameter. The actual number of ele-
ments in a ¢-list depends on the number of in-flight messages
at the time of sending a cumulative acknowledgment.

Analysis During periods of synchrony (when messages are
not dropped or delayed by the network), PICSOU retransmits
messages at most ug+u,+ 1 times. This limitation is funda-
mental to all C3B protocols (Lemma 1 in Appendix [1]). The
number of resends can become a concern for latency if the
number of failures is large. In practice, however, the probabil-
ity of actually hitting this bound is small. Intuitively, in a CFT
or BFT system, each node is more likely than not to be cor-
rect. As such, the probability of continually selecting incorrect
nodes in every sender-receiver pair decreases exponentially
every retry. One can use this reasoning to provide strong
bounds on the maximum number of retries when the network
is well-behaved. We prove, for instance (in Appendix A.2 [1])
that PICSOU needs to resend a message at most eight times to
ensure that a message be delivered with 99% probability, and
at most 72 times to ensure a 100— 10~°% success probability.

4.3 Garbage Collection

At first glance, garbage collecting messages in PICSOU
appears straightforward. The sending RSM, upon receiving a
QUACK for m, can garbage collect m as the message has been
received by a correct replica. Unfortunately, this approach
can lead to scenarios in which PICcSoU stalls. Consider, for
instance, an execution in which sender Ry; sends a message
my (at sequence number k) to replica R, ; of RSM &;. Now,
consider the case in which R,; is faulty and broadcasts my
to precisely u, + 1 replicas, u, of which are faulty. These
replicas reply to the sender RSM that m has been successfully
received, allowing for a QUACK to form at the sender, and for
message m to be garbage collected. Unfortunately, if these
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u, replicas then stop participating in the protocol, no QUACK
will ever form for any message with sequence number greater
than k (only one correct replica has seen m). Instead, the send-
ing RSM will receive repeated duplicate acknowledgments
for m, a message which it has already garbage collected!

We must consequently modify the garbage collection
algorithm slightly. If a sending replica ever receives a
duplicate QUACK for message my where k' <k after having
quacked and garbage collected message my, it includes, as
additional metadata, the sequence number k of its highest
quacked message. This information conveys to the receiving
RSM that all messages up until k (included) have been
received by some correct node in the receiving RSM, but
not necessarily the same one. Replicas in the receiving RSM,
after having received r; + 1 such messages (ensuring that
at least one correct node is in the set), can then either (1)
advance their cumulative acknowledgment counter to k and
mark message m as received, or (2) obtain m from other
replicas in the RSM. Only then can m be garbage collected.
We offer both strategies in PICSOU.

4.4 Reconfiguration

P1csou assumes that reconfigurations are possible but rare. It
assumes that there exists a service indicating the set of nodes
associated with each configuration. This is standard prac-
tice in the literature [7, 37, 38]. Knowledge of membership
is either maintained internally in the RSM [87] or using an
external configuration service [37, 87]. Most existing state-of-
the-art blockchain systems [3, 10, 40, 51, 59, 67, 75, 83, 94]
also require known node membership. To deal with churn and
scale, these systems work in epochs where it is assumed both
node membership and relative stake are both publicly known
and fixed. PICSOU piggybacks on this assumption. PICSOU
then only needs to ensure that the set of ACKs received for a
particular message all match the same view and that the rele-
vant (u+1/r+1) threshold has been reached (for that view).

Messages acknowledged as delivered before a reconfigu-
ration occurs do not need to be resent. Reconfiguration in an
RSM, by definition, preserves any state across configurations.
Messages not acknowledged as delivered before the recon-
figuration begins must be resent as they may or may not have
persisted. After reconfiguration completes, PICSOU simply
resends messages for which it did not receive a quorum of
acknowledgments in the prior configuration.

5 Weighted RSMs - Stake

The current description of the protocol assumes that replicas
have equal weight in the system. When considering proof-
of-stake systems like Algorand, each replica can instead hold
differing amounts of stake or shares in the system. We write
d;; for the share of R;;; the total amount of stake in RSM
R; is then A; :Z}i] 8;;. The RSM is safe as long as replicas
totalling no more than r; shares deviate from the protocol,

the RSM is live as long as replicas totalling no more than
u; shares omit messages. The existence of stakes changes:
(1) when a replica can establish a QUACK, and (2) to whom
a particular message must be sent.

5.1 Weighted QUACK

It is straightforward to modify QUACKSs to deal with stake.
Each cumulative acknowledgment message simply becomes
weighted. The acknowledgment message from replica Ry
with share 8; has a weight §; and a QUACK forms for
message m when the total weight of the cumulative QUACK
for m from RSM &; is equal to u;+ 1.

5.2 Sending a message

Identifying the appropriate sender-receiver pair for sending a
message requires more care. Traditional BFT systems couple
voting power, physical node and computation power. This
is no longer the case with stake: different nodes can have
arbitrarily different stakes. This problem is compounded by
the fact that stake is unbounded and often in the billions [40].
A single physical node can effectively carry both arbitrarily
large or arbitrarily small stake.

We want to ensure that we maintain the same correctness
and performance guarantees as in non-staked systems.
Unfortunately, the round-robin approach we described in
§4.1 no longer works well. Consider for instance a system
with n; = 1000 total stake, spread over two machines. R;
is Byzantine and has 8; =u; =333, while Rj; has 6, = 667.
Using round-robin across these replicas disproportionately
favors R;; which represents only 33.3% of the shares in the
system, yet is tasked with sending/receiving half the total
messages. We must thus skew choosing sender-receiver pairs
towards nodes with higher stake. To highlight the challenges
involved, we first sketch two strawmen designs:

* Version 1: Skewed Round-Robin. The most straightforward
approach is to have replica R;; with stake §;; use round-robin
scheduling to send §; messages on its turn. This is, eventu-
ally, completely fair since all nodes send precisely as many
messages as they have stake in the system. Unfortunately, this
solution suffers from very poor performance under failure as
it has no parallelism: if stake is in the order of billions in the
system, a single faulty node may fail to send large contiguous
portions of the message stream, triggering long message de-
livery delays. Rounding stake is unfortunately not an option:
as stake is unbounded, each physical node can, in effect, have
infinitely small (or arbitrarily large) stake in the system. One
physical node can have &, = 1 while another has § =1 x10°.
Rounding errors weaken liveness as more retransmissions
may be needed to identify a correct sender-receiver pair.

o Version 2: Lottery Scheduling. For our next attempt, we
consider lottery scheduling, a probabilistic scheduling algo-
rithm [89]. Each node is allocated a number of tickets accord-
ing to its stake; the scheduler then draws two random tickets to
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choose the next sender and the next receiver. Lottery schedul-
ing addresses the parallelism concern mentioned above. Over
long periods of time, the protocol is completely fair, and each
sender-receiver sends/receives according to its stake. Unfortu-
nately, due to the randomized nature of the protocol, over short
periods of time, the proportion of sender and receiver pairs
chosen may skew significantly from their shares in the system.

Dynamic Sharewise Scheduler. Our solution must (1)
offer good parallelism; trustworthy replicas should be able to
send messages in a bounded unit of time, (2) ensure fairness
over both short and long periods; each node should send
messages proportional to its shares, and (3) tolerate arbitrary
stake values. These properties are exactly those that the
Linux Completely Fair Scheduler (CFS) seeks to enforce.
CFS defines a configurable time quantum during which each
process is guaranteed to be scheduled; each process then gets
CPU time proportional to its priority.

Our dynamic sharewise scheduler (DSS) adopts a similar
strategy with one key modification. As stake is unbounded,
DSS cannot guarantee as easily as CFS that all nodes will
send a message within a fixed time period ¢. Instead, DSS
maximizes the following objective: given a fixed time period
t, how can PI1CSOU schedule sender-receiver pairs such
that each node sends/receive messages proportionally to its
shares. While this may appear straightforward, the ability
for nodes to have arbitrarily large (or small) stake makes
reasoning about proportionality challenging. DSS turns to the
mathematics of apportionment to handle this issue [19, 81].
Note that PIcSOU uses DSS to identify both senders and
receivers in the same way. For simplicity, we thus discuss
apportionment from the perspective of senders only.

Apportionment is used to fairly divide a finite resource be-
tween parties with different entitlements or weights”. For-
mally, an apportionment method M defines a multivalued
function M(7,q). Here, f represents the entitlement of node R,
that is the amount of messages that it should send or receive.
In our case, this corresponds to its stake 7y = 8;;. ¢ denotes
the total number of messages that can be sent in the specified
time quantum ¢. DSS makes use of Hamilton’s method of
apportionment [19, 81], which proceeds in four steps:

e First, DSS finds the standard divisor (SD;), the ratio of
the total amount of stake over the number of messages in a
quantum, SD; = 4 Intuitively, this defines how much stake
must "back" each message.

e Next, DSS computes the standard quota (SQ;;) for each
node R;;, SQ;; = %, which indicates how many messages
each replica should send. As this number may not be a whole
number, DSS also computes the matching lower quota (LQj),
which takes the floor of the standard quota. The difference
between the standard quota and the lower quota is called the
penalty ratio PR;;.

21t is, for instance, used to assign the number of seats per state in the US
House of Representatives.

DSS Stake q 80 31 62 83 co | 2 3
d, 100 100 25 25 25 25 25 | 25| 25 | 25
d> 1000 | 100 250 | 250 | 250 | 250 25 | 25| 25 | 25
d3 1000 | 100 214 | 262 | 262 | 262 22 | 26 | 26 | 26
dy 100 10 97 1 1 1 10 | 0 0 0

Figure 5: Apportionment Example. cg,...c3 refers to the number of
messages that must be sent (or received) by each node per quanta

e DSS adds up these lower quotas to find the number of
messages that will be sent g7, = Z?i LQj;, without worrying
about any unfairness introduced by rounding.

o If gynole < g, that is if there is still space to send additional
messages, DSS decides to increment the allocation of each
Rj;, in decreasing order of penalty ratio PR;;.

Worked Example. Intuitively, the algorithm described
above splits messages fairly across nodes while minimizing
the degree of imbalance introduced by the need to round
stake up or down. Consider for instance the stake distribution
and message quanta in Figure 5. The first two scenarios are
straightforward as each replica has equal amounts of stake.
In both settings, running Hamilton methods, with a SD of
1 in d; and of 10 in d; reveals that each node should send
25 messages. d3 highlights where apportionment shines. In
this example, stake is not distributed equally among replicas.
The SD is 10 as before. Replicas obtain LQs respectively
of 21 for Rjp (PRjp=0.4) and 26 for the other three replicas
(PRj1 =PRj=PR;3=0.2). The sum of all LQ yields only 99.
As such, there is one message left to assign after considering
the “easily partitionable” work. R;p has the highest PR and
is thus furthest away from a fair assignment. Hence, we
increase its message assignment by 1, from 21 to 22.

5.3 Retransmissions

Two issues remain to ensure eventual delivery with stake:
(1) the process of apportionment may select so few senders
and receivers (¢ < uy + u, + 1) that reliable delivery is
not guaranteed. (2) if the total stake across both RSMs
is large, then all safe ¢ > u; + u, + 1 may be too large
to achieve parallelism. For example, if the total stake of
RSM R is Ay = 4 and RSM R, is A, = 4,000,000 then
q >ug+u,+1=1,333,335 which is an unrealistic number
of messages to generate in a time quantum.

The core issue present is that for reliable delivery, every
message my, across all resends, must be sent and received
by nodes whose stake, together, exceeds ug + u, + 1. This
couples the number of resends needed to the (effectively
unbounded) amount of stake in a network, and forces us to
use increasingly large time quanta. Consider two networks
with identical large stake values. If &; and &, both have
Ay = A, = 4,000,000, with each node having 1,000,000
stake, each message send would pair replicas with 1,000,000
stake and we would reach u; +u, + 1 = 2,666,667 stake
after 3 message sends even without apportionment. This
contrasts with our original example (A; =4,A, =4,000,000).
Each replica in & and R, is equally trusted, but we require
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Figure 6: C3B baseline summary.

u;+u,+ 1 =1,333,335 resends solely because the relative
value of stake in the two RSMs has changed.

Thankfully, this is not fundamental. To sidestep this issue,
PICcsSoU proportionally scales up the weights of the two
communicating RSMs to their Least Common Multiple
(LCM), and handles failures with the scaled stake values
independent of apportionment. For instance, assume that
the total stake of RSM &, is A;, RSM R, is A, and the
LCM =1cm(A;,A,). PICSOU scales the two RSMs as follows:

1. Compute the multiplicative factor y for each RSM:

LCM LCM
WS:T and Wr:Tr

2. Multiplgl the stake of each replica with the multiplicative
factor of its RSM.
Scaling up RSMs is only necessary during message failures,
allowing to keep message quanta small in the common-case.
A replica thus uses the scaled up RSM weights upon receiving

its first duplicate quack for a message m.

6 Evaluation

Picsou aims to offer good performance in the common-case,
while remaining robust to faults when failures do arise. We
aim to answer the following three questions.

1. How does P1cSOU perform in the common case (§6.1)?

2. How does P1CSOU remain robust to failures (§6.2)?

3. How does P1cSOU perform in real applications (§6.3)?

Implementation We implemented PICSOU in ~ 4500
lines of C++20 code with Google Protobuf v3.10.0 for
serialization and NNG v1.5.2 for networking [2]. PICSOU
is designed to be a plug-and-play library that can be easily
integrated with existing RSMs. We evaluate PICSOU against
five other comparable protocols (Figure 6).

1. One-Shot (OST): In OST, a message is sent by a sin-
gle sender to a single receiver. OST is only meant as a per-
formance upper-bound. It does not satisfy C3B as message
delivery cannot be guaranteed.

2. All-To-All (ATA): In ATA, every replica in the sending
RSM sends all messages to all receiving replicas (O(ng xn,)
message complexity). Every correct receiver is guaranteed to
eventually receive the message.

3. Leader-To-Leader (LL): The leader of the sending RSM
sends a message to the leader of the receiving RSM, who then
internally broadcasts the message. This protocol does not
guarantee eventual delivery when leaders are faulty.

4. KAFKA: Apache KAFKA is the de-facto industry-
standard for exchanging data between services [56]. Produc-
ers write data to a Kafka cluster, while consumers read data
from it. Kafka, internally, uses Raft [69] to reliably dissemi-
nate messages to consumers. We use Kafka 2.13-3.7.0.

5. OTU: GeoBFT [42, 44] breaks down an RSM into a set
of sub-RSMs. Much like LL, GeoBFT’s cross-RSM commu-
nication protocol, OTU, has the leader of the sender RSM
send its messages to at least u, + 1 receiver RSM replicas.
Each receiver then internally broadcast these messages. When
the leader is faulty, replicas timeout and request a resend.
OTU thus guarantees eventual delivery after at most us+ 1
resends in the worst-case (for O(u, *uy) total messages).

RSMs. We consider four representative RSMs.

1. File: An in-memory file from which a replica can
generate committed messages infinitely fast. This is a
baseline to artificially saturate the C3B protocols.

2. Raft [37]: A widely used CFT RSM, used in services
like Kubernetes Cluster. We run Etcd’s Raft version v3.0.

3. ResilientDB [45]: A high performance implementation
of PBFT [28], a well-known representative BFT protocol.

4. Algorand [40]: A popular POS blockchain protocol [40].

Experimental Setup. We deploy up to 45 GCP c2-standard-
8 nodes (Intel Cascade Lake, 8vCPU, 32 GiB RAM, 15
GBits/s). Each experiment runs for 180 seconds (30 second
warmup/cool down). All experiments run PICSOU with a
0-list of 200k and 256 bits for 0.1kB and 1MB messages, re-
spectively (best results for our specific network setup). We
further assume that RSMs forward all messages to the other
RSM, as this represents a worst-case scenario for PICSOU.
As is standard [43, 68, 78, 84, 97], unless stated otherwise,
replicated operations in our experiments are no-ops , which
ensures that the bottleneck is not execution.

Metrics. RSM throughput is the number of consensus invo-
cations completed at an RSM per second; C3B throughput is
the number of completed C3B invocations per second. When
baselines, like OST, do not acknowledge received messages,
we calculate C3B throughput as the number of unique mes-
sages sent from sender RSM to receiver RSM.

6.1 File RSM Common Case Performance

Our first set of experiments aim to stress test the six C3B
protocols (P1csou, OST, ATA, LL, OTU, and Kafka) with-
out failures. We use the “infinitely fast” File RSM to saturate
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Figure 7: Throughput of C3B protocols as a function of network size and message size

all C3B implementations. In all cases, we include the OST
line as the upper-bound of our networking implementation.

Varying number of replicas in each RSM. We first con-
sider the relative performance of PICSOU as a function of the
network size. We fix the message size to 0.1 kB and 1 MB
and increase the number of replicas in each RSM from 4 to
19 (Figure 7 (i)-(ii)). For small network sizes, PICSOU outper-
forms ATA by a factor of 2.5 x (small messages) and 3.2x
(large messages) and in larger networks it increases to 6.6x
and 12.1x. PICSOU sends only a linear number of messages,
while ATA must send a quadratic number of messages. Like
Picsou, LL and OTU send a linear number of messages, but
quickly bottleneck at the leader since it needs to send every
message. OST’s performance, as expected, increases with
network size as increasing the number of replicas increases
the number of parallel messages. Kafka performs significantly
worse in all cases, as it internally runs consensus.

Varying Message Size. In Figure 7 (iii)-(iv), we fix the size
of each RSM to n=4 (small) and n =19 replicas (large) and
increase the message size from 0.1 kB to 1 MB. As expected,
the performance of each C3B implementation drops as a lin-
ear function of the message size. Note that PICSOU performs
relatively better than other protocols for large message sizes
as they hide the moderate compute overheads introduced by
the system. For instance, on a large network PICSOU performs
over 12x better than ATA, LL, and OTU for large messages.
Instead, for small messages, PICSOU only performs 6.6x%,
4.4x, and 4.9 better (respectively).

Impact of Stake Next, in Figure 8 (i), we study how well
Picsou performs for weighted RSMs when stake distribution
becomes unequal. We fix the message size to 100 B.

Consider 1) two RSMs where the throughput is throttled
and one replica in each RSM gets increasingly more stake;
2) two RSMs where throughput is not throttled, but one
replica still gets a larger share of stake over time. Our aim
is to demonstrate that PICSOU does not lose any performance
under unequal stake distributions.

We run two experiments. First, we artificially throttle
the File RSM such that PICSOU cannot transmit over 1M
txns/s, regardless of the stake distribution (flat 1M lines on
the graph). Next, we allow each node to have access to an
unmodified File RSM. In these experiments PICSOU i refers
to the setting where the high-stake node has i x more stake
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Figure 8: Impact of Stake and Geo-replication.

than other nodes. Initially, shifting the stake distribution to
one node does not affect performance as the high stake node
can handle the additional load. Eventually, however, this node
becomes a bottleneck, thus causing throughput to decrease.

Geo-replication In Figure 8(ii), we run geo-replicated
experiments by deploying one RSM in US-West and the
other RSM in Hong Kong (cross-region bandwidth, pair-wise
is 170 Mbits/sec, RTT 133 ms). We fix the message size to
1 MB and vary RSM size from 4 to 19. The lower bandwidth
across pairs of machines disproportionally affects ATA,
LL, and OTU. Picsou outperforms ATA, by 12x (for
network size 4) and 44 x, (for network size 19). Somewhat
counter-intuitively, the performance of both PICSOU and
OST increase as a function of network size; increasing the
number of receivers gives senders access to more bandwidth
in Google Cloud. PICSOU intentionally has its senders send
to multiple receivers and thus (artificially) outperforms OST,
which fixes unique sender-receiver pairs.

6.2 Impact of failures

We now consider performance under failures.

Crash Failures. In this experiment, we crash 33% of the
replicas in each RSM (Figure 9 (i)); message size set to
I MB and ¢-list size as 256. PICSOU’s performance drops
by a factor of 22.8% — 30.5%. This is expected: PICSOU,
by default, fully maxes out links with "useful" information.
Removing a third of the links thus removes a third of the
available bandwidth. Nonetheless, PICSOU continues to
outperform ATA, OTU, and LL by at least 2x on small
networks, and up to 8.9x on larger networks.
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Figure 9: Effects of Failures on PICSOU.

Byzantine Failures. Next, we consider the impact of Byzan-
tine failures in the system. While it is impossible to model
all arbitrary failures, we consider four main classes of attacks.
Malicious nodes can (1) send invalid, uncommitted messages,
(2) collude to drop long sequences of messages u; + u,
times, (3) selectively drop messages, and (4) send incorrect
acknowledgments. The first attack amounts to a DDOS attack
(as correct replicas will discard invalid messages) and is thus
out of scope. PICSOU defends against the second attack by
assigning node IDs using a verified source of randomness (the
probability that all byzantine nodes get assigned contiguous
node IDs is negligible). We focus on the last two scenarios.

1. Impact of ¢-list scaling on Byzantine failures. ¢-lists
bound the possible performance drop from malicious nodes
selectively dropping messages. We again assume 33% of
replicas are faulty in both RSMs (Figure 9 (ii)), this time
Byzantine. We consider a message size of 1 MB. Our results
illustrate that the larger ¢-list size helps PICSOU quickly
recover from Byzantine failures, despite the larger ¢-list
increasing metadata sizes. We observe that a ¢-list size of 256
is optimal for recovering from the 33% Byzantine attacks.
As the network gets larger, the time it takes to complete a full
broadcast gets longer, which increases the latency to confirm
a delivery. Thus, more messages can be dropped before we
can detect that they are dropped, hence the larger ¢-list.

2. Sending incorrect acks. Malicious nodes can choose
to lie in their acknowledgments. We simulate this behavior
in Figure 9 (iii) by having malicious nodes send acks for
overly high sequence numbers (Picsou-Inf), overly low ones
(Picsou-0) or offset by ¢ (Picsou-Delay). We find that this
behavior is much less harmful than simply crashing. Correct
nodes wait for a quorum of u, + 1 matching acks in order
to consider the message delivered, and thus already assume
that u of those acks will be lies. Lying about an ack thus only
temporarily delays the formation of a quorum.

6.3 Application Case Study

We now study impact on real-world applications (Section 1).

Disaster Recovery. Disaster recovery (DR) ensures contin-
ued fault-tolerance in the presence of full datacenter outages,
and is a popular feature of modern cloud environments [14, 16,
33, 41]. DR deployments often implement cross-datacenter
RSM mirroring over Kafka, where the Kafka cluster is located

in the receiving datacenter. We run Etcd DR [33] by deploy-
ing two Etcd RSMs in two distinct datacenters, one in GCP
region us-west-4 and the other in us-east-5. Communication
is unidirectional for DR, since only a single sending RSM
is sending data to the mirrored RSM and the mirrored RSM
does not have any information to send back (other than acks).

Etcd DR invokes P1ICSOU on all put transactions and assigns
them a new, sequential, internal sequence number. This new
sequence number is necessary as DR only applies to a subset
of Etcd transactions (just puts, not gets or reconfiguration).
The receiving RSM thus simply applies all put transactions
in sequence number order.

In Figure 10 (i), we plot the throughput of Etcd DR (in
MB/s) with various C3B protocols for different message
sizes; each RSM has 5 replicas. OST achieves maximum
theoretical throughput for an Etcd cluster running a C3B pro-
tocol; ETCD is the baseline for maximum throughput from a
single Etcd RSM without any communication; one can only
transmit messages as fast as Etcd commits them. There are
two primary resource bottlenecks in the system: the cross-
region network bandwidth and Eted’s disk goodput (since
it synchronously writes each transaction it commits to disk).
ATA broadcasts every message to all machines, so its through-
put is bottlenecked by the cross-region network bandwidth
(50 MB/s). Similarly, OTU and LL are bottlenecked because
they limit the number of nodes sending unique messages over
the network in parallel. In contrast, PICSOU shards the set of
messages across all sending nodes, so each node uses 50 MB/s
bandwidth to send 1/5-th of the messages (5 nodes per RSM).
Thus, PICSOU has an effective 250 MB/s of bandwidth avail-
able, resulting in saturating Raft’s disk goodput of 70 MB/s.
In case of KAFKA, we can only deploy 3 nodes, at most 3
shards, so it can achieve at most 150 MB/s. KAFKA can still
can achieve potentially the same goodput as PICSOU. How-
ever, in our testing, KAFKA was still unable to achieve optimal
performance given its sensitivity to high network latency.

Data Sharing and Reconciliation As described in §1
(Figure 10(ii)), there are operational and sovereignty concerns
associated with managing a single RSM across trust domains.
We implement the data reconciliation application described
in [75]. In this setup, two distinct entities, Agency A and
Agency B, run their own Etcd RSM but exchange data to
ensure that any shared state remains consistent. Specifically,
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Figure 10: Disaster Recovery and Data Reconciliation.

each RSM sends key-value updates for shared data. The
receiver then checks whether the values match and takes
remedial action if not. Communication between RSMs
is bidirectional. ATA, LL, OTU, and P1csou all behave
similarly to the performance discussed in the disaster
recovery experiment, albeit with a lower starting goodput
since there is extra processing time needed for looking up
keys and comparing their values. KAFKA had unusually low
performance since we were running into a known issue with
high latency KAFKA consumers which are not addressed in
these result. We are in the process of addressing this.

Decentralized Finance. Our final application implements a
blockchain bridge, designed to foster interoperability between
chains [29], for instance for asset transfer. We implement an
asset transfer application across three types of wallets: (1)
two POS Algorand chains, (2) two traditional permissioned
PBFT ResilientDB [44, 45] chains, and (3) interoperability
between ResilientDB to Algorand chains. Algorand’s base
throughput with another Algorand instance is 120 blocks/sec-
ond. ResilientDB’s base throughput when communicating
with another ResilientDB cluster is ~6000 batches/second (of
size SkB). The cross-chain throughput when Algorand sends
to ResilientDB is 135 blocks/second. PICSOU has minimal
impact on the throughput of any of the RSMs, with less than
15% decrease in throughput in the worst case. This decrease in
throughput is independent of node stake. Latency will instead
increase proportionally to network size — this property is fun-
damental to PICSOU’s high throughput, but may be unaccept-
able in some large scale blockchain or RSM deployments. (2)
P1csou successfully handles throughput differences between
RSMs; the slow Algorand RSM efficiently communicates
with the much faster ResilientDB RSM.

7 Related Work

The problem of reliably sending messages within groups of
participants through reliable broadcast or group communi-
cation is well-studied [22, 24, 26, 39, 47, 48, 62, 76], in both
the CFT and BFT setting [4, 5, 23, 24, 26, 86]. These works
consider communication among groups but do not consider
communication between groups. PICSOU leverages the inter-
nal guarantees provided by these communication primitives
to build a group-to-group communication primitive, C3B.

Logging Systems. Shared logs are a popular way for reli-

ably exchanging messages [18, 27, 36, 52, 53, 56, 61, 88, 91].
Systems such as Kafka [56], RedPanda [73], Delos [17] have
become industry standards [17]. While these systems work
well in the CFT setting, they are not directly applicable to the
BFT setting: this log becomes a central point of attack. More-
over, most of these systems use relatively heavyweight fault
tolerance: Kafka, for instance, internally makes use of Raft.

Communication between RSMs. Two lines of work have
considered communication between RSMs, but in different
contexts. First, Aegean [6] makes a similar observation as this
paper: it highlights that replicated services rarely operate in a
vacuum and must instead frequently communicate. However,
Aegan solves a strictly orthogonal problem. It focuses on
how to correctly replicate services that can issue nested
requests to other (possibly replicated) services. Aegean
presents the design of a shim layer that exists between
replicated service and backend service and manages all
the communication/data storage. Second, Byzantine fault
tolerant communication between RSMs has been a topic of
interest in the context of sharded BFT systems that view each
shard as an independent RSM. These shards periodically
need to communicate with each other to process cross-shard
transactions [9, 35, 42, 58, 71, 74, 78, 98, 100]. Most of these
systems simply adopt the all-to-all communication pattern
between the shards that we evaluate in §6. GeoBFT [44] and
Steward [8] are two exceptions. Steward uses a hierarchical
consensus architecture; all communication between the
clusters is managed by a designated primary cluster, which
internally replicates requests via Paxos. GeoBFT uses OTU.

Blockchain bridges. With the rise of blockchain technology
and cryptocurrencies [11, 12, 13, 46, 54, 60, 64, 65, 77, 85]
there is a new found interest in blockchain interoperabil-
ity [20, 29, 30, 49, 55, 90, 92, 99]. These works focus on the
correct conversion of assets from one blockchain to the other.
They can be broadly clustered into two groups (1) blockchain
bridges, and (2) trusted operators. A blockchain bridge
requires a replica of the sending RSM to send a committed
contract to a replica of the receiving RSM. Recently, several
such blockchain bridges have popped up [15, 72, 82].
Unfortunately, they provide few formal guarantees, which
has led to massive financial attacks and hacks [92, 96, 99].
Moreover, these bridges continue to be impractical because
of their high cost [96]. Trusted operator systems are, in
contrast, much more practical [57, 90, 95], but as the name
suggests, they require centralized management. Works like
Thema [63] instead use BFT RSMs to communicate between
two non-replicated services.

8 Conclusion

This paper introduces the C3B primitive and proposes
P1CSoOU, an efficient implementation of C3B. We show that,
by borrowing techniques from TCP and adapting these to the
crash and BFT context, we can develop a solution that allows
RSMs to efficiently exchange messages.
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