
Just Say NO to Paxos Overhead:
Replacing Consensus with Network Ordering

Jialin Li Ellis Michael Naveen Kr. Sharma Adriana Szekeres Dan R. K. Ports
University of Washington

{lijl, emichael, naveenks, aaasz, drkp}@cs.washington.edu

Abstract

Distributed applications use replication, implemented by
protocols like Paxos, to ensure data availability and trans-
parently mask server failures. This paper presents a new
approach to achieving replication in the data center with-
out the performance cost of traditional methods. Our work
carefully divides replication responsibility between the
network and protocol layers. The network orders requests
but does not ensure reliable delivery – using a new primi-
tive we call ordered unreliable multicast (OUM). Imple-
menting this primitive can be achieved with near-zero-cost
in the data center. Our new replication protocol, Network-
Ordered Paxos (NOPaxos), exploits network ordering to
provide strongly consistent replication without coordi-
nation. The resulting system not only outperforms both
latency- and throughput-optimized protocols on their re-
spective metrics, but also yields throughput within 2%
and latency within 16 µs of an unreplicated system – pro-
viding replication without the performance cost.

1 Introduction
Server failures are a fact of life for data center applica-
tions. To guarantee that critical services always remain
available, today’s applications rely on fault-tolerance tech-
niques like state machine replication. These systems use
application-level consensus protocols such as Paxos to
ensure the consistency of replicas’ states. Unfortunately,
these protocols require expensive coordination on every
request, imposing a substantial latency penalty and limit-
ing system scalability. This paper demonstrates that repli-
cation in the data center need not impose such a cost by
introducing a new replication protocol with performance
within 2% of an unreplicated system.

It is well known that the communication model funda-
mentally affects the difficulty of consensus. Completely
asynchronous and unordered networks require the full
complexity of Paxos; if a network could provide a totally
ordered atomic broadcast primitive, ensuring replica con-
sistency would become a trivial matter. Yet this idea has
yielded few gains in practice since traditional ordered-
multicast systems are themselves equivalent to consensus;
they simply move the same coordination expense to a
different layer.

We show that a new division of responsibility between

the network and the application can eliminate nearly all
replication overhead. Our key insight is that the commu-
nication layer should provide a new ordered unreliable
multicast (OUM) primitive – where all receivers are guar-
anteed to process multicast messages in the same order,
but messages may be lost. This model is weak enough to
be implemented efficiently, yet strong enough to dramati-
cally reduce the costs of a replication protocol.

The ordered unreliable multicast model enables our
new replication protocol, Network-Ordered Paxos. In nor-
mal cases, NOPaxos avoids coordination entirely by re-
lying on the network to deliver messages in the same
order. It requires application-level coordination only to
handle dropped packets, a fundamentally simpler prob-
lem than ordering requests. The resulting protocol is sim-
ple, achieves near-optimal throughput and latency, and
remains robust to network-level failures.

We describe several ways to build the OUM communi-
cations layer, all of which offer net performance benefits
when combined with NOPaxos. In particular, we achieve
an essentially zero-overhead implementation by relying
on the network fabric itself to sequence requests, using
software-defined networking technologies and the ad-
vanced packet processing capabilities of next-generation
data center network hardware [10, 49, 59]. We achieve
similar throughput benefits (albeit with a smaller latency
improvement) using an endpoint-based implementation
that requires no specialized hardware or network design.

By relying on the OUM primitive, NOPaxos avoids
all coordination except in rare cases, eliminating nearly
all the performance overhead of traditional replication
protocols. It provides throughput within 2% and latency
within 16 µs of an unreplicated system, demonstrating
that there need not be a tradeoff between enforcing strong
consistency and providing maximum performance.

This paper makes four specific contributions:

1. We define the ordered unreliable multicast model for
data center networks and argue that it strikes an ef-
fective balance between providing semantics strong
enough to be useful to application-level protocols yet
weak enough to be implemented efficiently.

2. We demonstrate how to implement this network model
in the data center by presenting three implementations:

1

(1) an implementation in P4 [9] for programmable
switches, (2) a middlebox-style prototype using a Cav-
ium Octeon network processor, and (3) a software-
based implementation that requires no specialized
hardware but imposes slightly higher latency.

3. We introduce NOPaxos, an algorithm which provides
state machine replication on an ordered, unreliable net-
work. Because NOPaxos relies on the OUM primitive,
it avoids the need to coordinate on every incoming re-
quest to ensure a total ordering of requests. Instead, it
uses application-level coordination only when requests
are lost in the network or after certain failures of server
or network components.

4. We evaluate NOPaxos on a testbed using our Open-
Flow/Cavium prototype and demonstrate that it outper-
forms classic leader-based Paxos by 54% in latency
and 4.7× in throughput. It simultaneously provides
42% better latency and 24% better throughput than
latency- and throughput-optimized protocols respec-
tively, circumventing a classic tradeoff.

2 Separating Ordering from Reliable De-
livery in State Machine Replication

We consider the problem of state machine replication [56].
Replication, used throughout data center applications,
keeps key services consistent and available despite the in-
evitability of failures. For example, Google’s Chubby [11]
and Apache ZooKeeper [24] use replication to build a
highly available lock service that is widely used to coor-
dinate access to shared resources and configuration infor-
mation. It is also used in many storage services to prevent
system outages or data loss [8, 16, 54].

Correctness for state machine replication requires a sys-
tem to behave as a linearizable [23] entity. Assuming that
the application code at the replicas is deterministic, estab-
lishing a single totally ordered set of operations ensures
that all replicas remain in a consistent state. We divide
this into two separate properties:

1. Ordering: If some replica processes request a before
b, no replica processes b before a.

2. Reliable Delivery: Every request submitted by a client
is either processed by all replicas or none.

Our research examines the question: Can the respon-
sibility for either of these properties be moved from the
application layer into the network?

State of the art. Traditional state machine replica-
tion uses consensus protocol – e.g., Paxos [33, 34] or
Viewstamped Replication [42, 48] – to achieve agree-
ment on operation order. Most deployments of Paxos-
based replicated systems use the Multi-Paxos optimiza-
tion [34] (equivalent to Viewstamped Replication), where

one replica is the designated leader and assigns an order
to requests. Its normal operation proceeds in four phases:
clients submit requests to the leader; the leader assigns a
sequence number and notifies the other replicas; a major-
ity of other replicas acknowledge; and the leader executes
the request and notifies the client.

These protocols are designed for an asynchronous net-
work, where there are no guarantees that packets will be
received in a timely manner, in any particular order, or
even delivered at all. As a result, the application-level
protocol assumes responsibility for both ordering and
reliability.

The case for ordering without reliable delivery. If
the network itself provided stronger guarantees, the full
complexity of Paxos-style replication would be unneces-
sary. At one extreme, an atomic broadcast primitive (i.e., a
virtually synchronous model) [6, 27] ensures both reliable
delivery and consistent ordering, which makes replication
trivial. Unfortunately, implementing atomic broadcast is a
problem equivalent to consensus [14] and incurs the same
costs, merely in a different layer.

This paper envisions a middle ground: an ordered but
unreliable network. We show that a new division of re-
sponsibility – providing ordering in the network layer but
leaving reliability to the replication protocol – leads to
a more efficient whole. What makes this possible is that
an ordered unreliable multicast primitive can be imple-
mented efficiently and easily in the network, yet funda-
mentally simplifies the task of the replication layer.

We note that achieving reliable delivery despite the
range of possible failures is a formidable task, and the
end-to-end principle suggests that it is best left to the appli-
cation [15, 55]. However, ordering without a guarantee of
reliability permits a straightforward, efficient implemen-
tation: assigning sequence numbers to messages and then
discarding those that arrive out of sequence number order.
We show in §3 that this approach can be implemented at
almost no cost in data center network hardware.

At the same time, providing an ordering guarantee sim-
plifies the replication layer dramatically. Rather than agree
on which request should be executed next, it needs to en-
sure only all-or-nothing delivery of each message. We
show that this enables a simpler replication protocol that
can execute operations without inter-replica coordination
in the common case when messages are not lost, yet can
recover quickly from lost messages.

Prior work has considered an asynchronous network
that provides ordering and reliability in the common case
but does not guarantee either. Fast Paxos [36] and related
systems [29, 45, 50] provide agreement in one fewer mes-
sage delay when requests usually arrive at replicas in the
same order, but they require more replicas and/or larger
quorum sizes. Speculative Paxos [53] takes this further by
having replicas speculatively execute operations without

2

Paxos [33, 34, 48] Fast Paxos [36] Paxos+batching Speculative Paxos [53] NOPaxos

Network ordering No Best-effort No Best-effort Yes
Latency 4 3 4+ 2 2

Messages at bottleneck 2n 2n 2+ 2n
b 2 2

Quorum size > n/2 > 2n/3 > n/2 > 3n/4 > n/2

Reordering/Dropped packet penalty low medium low high low

Table 1: Comparison of NOPaxos to prior systems.

coordination, eliminating another message delay and a
throughput bottleneck at the cost of significantly reduced
performance (including application-level rollback) when
the network violates its best-effort ordering property. Our
approach avoids these problems by strengthening network
semantics. Table 1 summarizes the properties of these
protocols.

3 Ordered Unreliable Multicast
We have argued for a separation of concerns between or-
dering and reliable delivery. Towards this end, we seek to
design an ordered but unreliable network. In this section,
we precisely define the properties that this network pro-
vides, and show how it can be realized efficiently using
in-network processing.

We are not the first to argue for a network with ordered
delivery semantics. Prior work has observed that some
networks often deliver requests to replicas in the same
order [50,58], that data center networks can be engineered
to support a multicast primitive that has this property [53],
and that it is possible to use this fact to design protocols
that are more efficient in the common case [29, 36, 53].
We contribute by demonstrating that it is possible to build
a network with ordering guarantees rather than proba-
bilistic or best-effort properties. As we show in §5, doing
so can support simpler and more efficient protocols.

Figure 1 shows the architecture of an OUM/NOPaxos
deployment. All components reside in a single data cen-
ter. OUM is implemented by components in the net-
work along with a library, libOUM, that runs on senders
and receivers. NOPaxos is a replication system that uses
libOUM; clients use libOUM to send messages, and repli-
cas use libOUM to receive clients’ messages.

3.1 Ordered Unreliable Multicast Properties

We begin by describing the basic primitive provided by
our networking layer: ordered unreliable multicast. More
specifically, our model is an asynchronous, unreliable
network that supports ordered multicast with multicast
drop detection. These properties are defined as follows:

• Asynchrony: There is no bound on the latency of mes-
sage delivery.

• Unreliability: The network does not guarantee that
any message will ever be delivered to any recipient.

networksequencercontroller

Client App
libnopaxos

libOUM

Client App
libnopaxos

libOUM libnopaxoslibnopaxos
Replica App
libnopaxos

libOUM
. . .

Figure 1: Architecture of NOPaxos.

• Ordered Multicast: The network supports a multicast
operation such that if two messages, m and m′, are
multicast to a set of processes, R, then all processes
in R that receive m and m′ receive them in the same
order.

• Multicast Drop Detection: If some message, m, is
multicast to some set of processes, R, then either: (1)
every process in R receives m or a notification that
there was a dropped message before receiving the
next multicast, or (2) no process in R receives m or
a dropped message notification for m.1

The asynchrony and unreliability properties are stan-
dard in network design. Ordered multicast is not: exist-
ing multicast mechanisms do not exhibit this property,
although Mostly-Ordered Multicast provides it on a best-
effort basis [53]. Importantly, our model requires that any
pair of multicast messages successfully sent to the same
group are always delivered in the same order to all re-
ceivers – unless one of the messages is not received. In
this case, however, the receiver is notified.

3.2 OUM Sessions and the libOUM API

Our OUM primitive is implemented using a combination
of a network-layer sequencer and a communication library
called libOUM. libOUM’s API is a refinement of the
OUM model described above. An OUM group is a set of
receivers and is identified by an IP address. We explain
group membership changes in §5.2.5.

libOUM introduces an additional concept, sessions.
For each OUM group, there are one or more sessions,
which are intervals during which the OUM guarantees

1 This second case can be thought of as a sender omission, whereas
the first case can be thought of as a receiver omission, with the added
drop notification guarantee.

3

libOUM Sender Interface
• send(addr destination, byte[] message) — send a mes-

sage to the given OUM group

libOUM Receiver Interface
• getMessage() — returns the next message, a DROP-

NOTIFICATION, or a SESSION-TERMINATED error
• listen(int sessionNum, int messageNum) — resets

libOUM to begin listening in OUM session sessionNum for
message messageNum

Figure 2: The libOUM interface.

hold. Conceptually, the stream of messages being sent
to a particular group is divided into consecutive OUM
sessions. From the beginning of an OUM session to the
time it terminates, all OUM guarantees apply. However,
OUM sessions are not guaranteed to terminate at the same
point in the message stream for each multicast receiver:
an arbitrary number of messages at the end of an OUM
session could be dropped without notification, and this
number might differ for each multicast receiver. Thus,
each multicast recipient receives a prefix of the messages
assigned to each OUM session, where some messages are
replaced with drop notifications.

Sessions are generally long-lived. However, rare, excep-
tional network events (sequencer failures) can terminate
them. In this case, the application is notified of session
termination and then must ensure that it is in a consistent
state with the other receivers before listening for the next
session. In this respect, OUM sessions resemble TCP con-
nections: they guarantee ordering within their lifetime,
but failures may cause them to end.

Applications access OUM sessions via the libOUM
interface (Figure 2). The receiver interface provides a
getMessage() function, which returns either a message
or a DROP-NOTIFICATION during an OUM session. When
an OUM session terminates, getMessage() returns a
special value, SESSION-TERMINATED, until the user of
libOUM starts the next OUM session. To begin listen-
ing to the next OUM session and receiving its messages
and DROP-NOTIFICATIONs, the receiver calls listen(int
newSessionNum, 0). To start an OUM session at a par-
ticular position in the message stream, the receiver can
call listen(int sessionNum, int messageNum). Users
of libOUM must ensure that all OUM receivers begin lis-
tening to the new session in a consistent state.

4 OUM Design and Implementation
We implement OUM in the context of a single data center
network. The basic design is straightforward: the net-
work routes all packets destined for a given OUM group
through a single sequencer, a low-latency device that
serves one purpose: to add a sequence number to each
packet before forwarding it to its destination. Since all
packets have been marked with a sequence number, the

libOUM library can ensure ordering by discarding mes-
sages that are received out of order and detect and report
dropped messages by noticing gaps in the sequence num-
ber.

Achieving this design poses three challenges. First, the
network must serialize all requests through the sequencer;
we use software-defined networking (SDN) to provide this
network serialization (§4.1). Second, we must implement
a sequencer capable of high throughput and low latency.
We present three such implementations in §4.2: a zero-
additional-latency implementation for programmable data
center switches, a middlebox-like prototype using a net-
work processor, and a pure-software implementation. Fi-
nally, the system must remain robust to failures of network
components, including the sequencer (§4.3).

4.1 Network Serialization

The first aspect of our design is network serialization,
where all OUM packets for a particular group are routed
through a sequencer on the common path. Network seri-
alization was previously used to implement a best-effort
multicast [53]; we adapt that design here.

Our design targets a data center that uses software-
defined networking, as is common today. Data center
networks are engineered networks constructed with a par-
ticular topology – generally some variant of a multi-rooted
tree. A traditional design calls for a three-level tree topol-
ogy where many top-of-rack switches, each connecting
to a few dozen server, are interconnected via aggregation
switches that themselves connect through core switches.
More sophisticated topologies, such as fat-tree or Clos
networks [1,22,43,46] extend this basic design to support
large numbers of physical machines using many commod-
ity switches and often provide full bisection bandwidth.
Figure 3 shows the testbed we use, implementing a fat-
tree network [1].

Software-defined networking additionally allows the
data center network to be managed by a central controller.
This controller can install custom forwarding, filtering,
and rewriting rules in switches. The current generation of
SDN switches, e.g., OpenFlow [44], allow these rules to
be installed at a per-flow granularity, matching on a fixed
set of packet headers.

To implement network serialization, we assign each
OUM group a distinct address in the data center network
that senders can use to address messages to the group. The
SDN controller installs forwarding rules for this address
that route messages through the sequencer, then to group
members.

To do this, the controller must select a sequencer for
each group. In the most efficient design, switches them-
selves are used as sequencers (§4.2.1). In this case, the
controller selects a switch that is a common ancestor of all
destination nodes in the tree hierarchy to avoid increasing

4

path lengths, e.g., a root switch or an aggregation switch
if all receivers are in the same subtree. For load balancing,
different OUM groups are assigned different sequencers,
e.g., using hash-based partitioning.

Figure 3 shows an example of network serialization for-
warding paths in a 12-switch, 3-level fat tree network. Se-
quencers are implemented as network processors (§4.2.2)
connected to root switches. Messages from a client ma-
chine are first forwarded upward to the designated se-
quencer – here, attached to the leftmost root switch – then
distributed downward to all recipients.

Network serialization could create longer paths than
traditional IP multicast because all traffic must be routed
to the sequencer, but this effect is minimal in practice. We
quantified this latency penalty using packet-level network
simulation. The simulated network contained 2,560 end-
hosts and 119 switches configured in a 3-level fat tree
network, with background traffic modeled on Microsoft
data centers [4]. Each client sent multicast messages to
a random group of 5 receivers. In 88% of cases, net-
work serialization added no additional latency for the
message to be received by a quorum of 3 receivers; the
99th-percentile was less than 5 µs of added latency. This
minimal increase in latency is due to the fact that the se-
quencer is a least- common-ancestor switch of the replica
group, and most packets have to traverse that switch any-
way to reach a majority of the group.

4.2 Implementing the Sequencer

The sequencer plays a simple but critical role: assigning a
sequence number to each message destined for a particular
OUM group, and writing that sequence number into the
packet header. This establishes a total order over packets
and is the key element that elevates our design from a
best-effort ordering property to an ordering guarantee.
Even if packets are dropped (e.g., due to congestion or
link failures) or reordered (e.g., due to multipath effects)
in the network, receivers can use the sequence numbers
to ensure that they process packets in order and deliver
drop notifications for missing packets.

Sequencers maintain one counter per OUM group. For
every packet destined for that group, they increment the
counter and write it into a designated field in the packet
header. The counter must be incremented by 1 on each
packet (as opposed to a timestamp, which monotonically
increases but may have gaps). This counter lets libOUM
return DROP-NOTIFICATIONs when it notices gaps in the
sequence numbers of incoming messages. Sequencers
also maintain and write into each packet the OUM ses-
sion number that is used to handle sequencer failures; we
describe its use in §4.3.

Our sequencer design is general; we discuss three pos-
sible implementations here. The most efficient one targets
upcoming programmable network switches, using the

Root Layer
(Arista 7150S)

Aggr. Layer
(HP 6600)

ToR Layer
(HP 6600)

10 Gbps

1 Gbps

1 Gbps

Cavium
Processor

Figure 3: Testbed network topology. Green lines indicate the
upward path from a client to the sequencer, and orange lines
indicate the downward path from the sequencer to receivers.

switch itself as the sequencer, incurring no latency cost
(§4.2.1). As this hardware is not yet available, we describe
a prototype that uses a network processor to implement
a middlebox-like sequencer (§4.2.2). Finally, we discuss
using an end-host as a sequencer (§4.2.3).

4.2.1 In-Switch Sequencing

Ideally, switches themselves could serve as sequencers.
The benefit of doing so is latency: packets could be se-
quenced by one of the switches through which they al-
ready transit, rather than having to be redirected to a
dedicated device. Moreover, switching hardware is highly
optimized for low-latency packet processing, unlike end-
hosts.

Using a switch as a sequencer is made possible by the
increasing ability of data center switches to perform flexi-
ble, per-packet computations. An emerging class of switch
architectures – such as Reconfigurable Match Tables [10],
Intel’s FlexPipe [49], and Cavium’s XPliant [59] – allow
the switch’s behavior to be controlled on a per-packet
granularity, supporting the parsing and matching of ar-
bitrary packet fields, rewriting of packet contents, and
maintaining of small amounts of state between packets.
Exposed through high-level languages like P4 [9], this
increased flexibility lets us consider network switches
as not simply forwarding elements, but as devices with
computational ability.

We implemented our switch sequencing functionality
in the P4 language, which allows it to be compiled and
deployed to upcoming programmable switches as well as
software switches. Our implementation uses the recon-
figurable parser capabilities of these switches to define a
custom packet header that includes the OUM sequence
and session numbers. It uses stateful memory (register
arrays) to store the current sequence number for every
OUM group and increments it on each packet. Complete
NOPaxos P4 code is available in [39].

5

Programmable switches capable of this processing are
not yet commercially available, although we expect them
to be within the next year. Therefore, we cannot evaluate
their performance, but there is reason to believe they can
execute this processing with no measurable increase in la-
tency. As evidence, Intel’s FlexPipe chips (now available,
e.g., in the Arista 7150 switch) can modify packets to in-
clude the egress timestamp with zero latency cost [2, 49].

We note that a network switch provides orders-of-
magnitude lower latency and greater reliability [21] than
an end-host. Today’s fastest cut-through switches can con-
sistently process packets in approximately 300 ns [2],
while a typical Linux server has median latency in the 10–
100 µs range and 99.9th-percentile latency over 5 ms [40].
This trend seems unlikely to change: even with high-
performance server operating systems [3,52], NIC latency
remains an important factor [20]. At the same time, the
limited computational model of the switch requires a care-
ful partitioning of functionality between the network and
application. The OUM model offers such a design.

4.2.2 Hardware Middlebox Prototype Sequencing

Because available switches do not provide the necessary
flexibility to run P4 programs, we implemented a proto-
type using existing OpenFlow switches and a network
processor.

This prototype is part of the testbed that we use to eval-
uate our OUM model and its uses for distributed protocols.
This testbed simulates the 12-switch, 3-layer fat-tree net-
work configuration depicted in Figure 3. We implemented
it on three physical switches by using VLANs and ap-
propriate OpenFlow forwarding rules to emulate separate
virtual switches: two HP 6600 switches implement the
ToR and aggregation tiers, and one Arista 7050S switch
implements the core tier.

We implemented the sequencer as a form of middlebox
using a Cavium Octeon II CN68XX network processor.
This device contains 32 MIPS64 cores and supports 10
Gb/s Ethernet I/O. Users can customize network func-
tionality by loading C binaries that match, route, drop
or modify packets going through the processor. Onboard
DRAM maintains per-group state. We attached the mid-
dlebox to the root switches and installed OpenFlow rules
to redirect OUM packets to the middlebox.

This implementation does not provide latency as low
as the switch-based sequencer; routing traffic through
the network processor adds latency. We measured this
latency to be 8 µs in the median case and 16 µs in the
99th percentile. This remains considerably lower than
implementing packet processing in an end-host.

4.2.3 End-host Sequencing

Finally, we also implemented the sequencing function-
ality on a conventional server. While this incurs higher

latency, it allows the OUM abstraction to be implemented
without any specialized hardware. Nevertheless, using a
dedicated host for network-level sequencing can still pro-
vide throughput, if not latency, benefits as we demonstrate
in §6. We implemented a simple Linux program that uses
raw sockets to access packet headers.

4.2.4 Sequencer Scalability

Since all OUM packets for a particular group go through
the sequencer, a valid concern is whether the sequencer
will become the performance bottleneck. Switches and
network processors are designed to process packets at line
rate and thus will not become the bottleneck for a single
OUM group (group receivers are already limited by the
link bandwidth). Previous work [28] has demonstrated
that an end-host sequencer using RDMA can process
close to 100 million requests per second, many more
than any single OUM group can process. We note that
different OUM groups need not share a sequencer, and
therefore deployment of multiple OUM groups can scale
horizontally.

4.3 Fault Tolerance

Designating a sequencer and placing it on the common
path for all messages to a particular group introduces an
obvious challenge: what if it fails or becomes unreach-
able? If link failures or failures of other switches render
the sequencer unreachable, local rerouting mechanisms
may be able to identify an alternate path [43]. However, if
the sequencer itself fails, or local rerouting is not possible,
replacing the sequencer becomes necessary.

In our design, the network controller monitors the se-
quencer’s availability. If it fails or no longer has a path
to all OUM group members, the controller selects a dif-
ferent switch. It reconfigures the network to use this new
sequencer by updating routes in other switches. During
the reconfiguration period, multicast messages may not
be delivered. However, failures of root switches happen
infrequently [21], and rerouting can be completed within
a few milliseconds [43], so this should not significantly
affect system availability.

We must also ensure that the ordering guarantee of
multicast messages is robust to sequencer failures. This
requires the continuous, ordered assignment of sequence
numbers even when the network controller fails over to a
new sequencer.

To address this, we introduce a unique, monotonically
increasing session number, incremented each time se-
quencer failover occurs. When the controller detects a
sequencer failure, it updates the forwarding rules and
contacts the new sequencer to set its local session num-
ber to the appropriate value. As a result, the total or-
der of messages follows the lexicographical order of the
〈session-number, sequence-number〉 tuple, and clients

6

can still discard packets received out of order.
Once libOUM receives a message with a session num-

ber higher than the receiver is listening for, it realizes that
a new sequencer is active and stops delivering messages
from the old session. However, libOUM does not know if
it missed any packets from the old sequencer. As a result,
it cannot deliver DROP-NOTIFICATIONs during a session
change. Instead, it delivers a SESSION-TERMINATED no-
tification, exposing this uncertainty to the application.
NOPaxos, for example, resolves this by executing a view
change (§5.2.3) so that replicas agree on exactly which
requests were received in the old session.

The network controller must ensure that session num-
bers for any given group monotonically increase, even
across controller failures. Many design options are avail-
able, for example using timestamps as session numbers, or
recording session numbers in stable or replicated storage.
Our implementation uses a Paxos-replicated controller
group, since SDN controller replication is already com-
mon in practice [26, 31]. We note that our replication
protocol, NOPaxos (§5), is completely decoupled from
controller replication, and the controller updates only on
sequencer failures, not for every NOPaxos request.

5 NOPaxos
NOPaxos, or Network-Ordered Paxos, is a new replication
protocol which leverages the Ordered Unreliable Multi-
cast sessions provided by the network layer.

5.1 Model

NOPaxos replicas communicate over an asynchronous
network that provides OUM sessions (via libOUM).
NOPaxos requires the network to provide ordered but
unreliable delivery of multicast messages within a ses-
sion. In the normal case, these messages are deliv-
ered sequentially and are not dropped; however, it re-
mains robust to dropped packets (presented as DROP-
NOTIFICATION through libOUM). NOPaxos is also robust
to SESSION-TERMINATED notifications that occur if the
sequencer fails. These network anomalies do not affect
NOPaxos’s safety guarantees, and we discuss how they
affect NOPaxos’s performance in §6.

NOPaxos assumes a crash failure model. It uses 2 f +1
replicas, where f replicas are allowed to fail. However, in
the presence of more than f failures, the system still guar-
antees safety. Furthermore, NOPaxos guarantees safety
even in an asynchronous network with no bound on mes-
sage latency (provided the OUM guarantees continue to
hold).

NOPaxos provides linearizability of client requests. It
provides at-most-once semantics using the standard mech-
anism of maintaining a table of the most recent request
from each client [42].

5.2 Protocol

Overview. NOPaxos is built on top of the guarantees
of the OUM network primitive. During a single OUM
session, REQUESTs broadcast to the replicas are totally
ordered but can be dropped. As a result, the replicas have
to agree only on which REQUESTs to execute and which
to permanently ignore, a simpler task than agreeing on
the order of requests. Conceptually, this is equivalent to
running multiple rounds of binary consensus. However,
NOPaxos must explicitly run this consensus only when
DROP-NOTIFICATIONs are received. To switch OUM ses-
sions (in the case of sequencer failure), the replicas must
agree on the contents of their shared log before they start
listening to the new session.

To these ends, NOPaxos uses a view-based approach:
each view has a single OUM session-num and a single
replica acting as leader. The leader executes requests and
drives the agreement to skip a dropped request. That is,
it decides which of the sequencer’s REQUESTs to ignore
and treat as NO-OPs. The view ID is a tuple 〈leader-num,
session-num〉. Here, leader-num is incremented each time
a new leader is needed; the current leader of any view is
leader-num (mod n); and session-num is the latest ses-
sion ID from libOUM. View IDs in NOPaxos are partially
ordered.2 However, the IDs of all views that successfully
start will be comparable.

In the normal case, the replicas receive a REQUEST
from libOUM. The replicas then reply to the client, the
leader replying with the result of the REQUEST, so the
client’s REQUEST is processed in only a single round-trip.
NOPaxos uses a single round-trip in the normal case be-
cause, like many speculative protocols, the client checks
the durability of requests. However, unlike most specula-
tive protocols, NOPaxos clients have a guarantee regard-
ing ordering of operations; they need only check that the
operation was received.

When replicas receive a DROP-NOTIFICATION from
libOUM, they first try to recover the missing REQUEST
from each other. Failing that, the leader initiates a round of
agreement to commit a NO-OP into the corresponding slot
in the log. Finally, NOPaxos uses a view change protocol
to handle leader failures and OUM session termination
while maintaining consistency.

Outline. NOPaxos consists of four subprotocols:

• Normal Operations (§5.2.1): NOPaxos processes
client REQUESTs in a single round-trip in the normal
case.

• Gap Agreement (§5.2.2): NOPaxos ensures correctness
in the face of DROP-NOTIFICATIONs by having the

2 That is, v1 ≤ v2 iff both v1’s leader-num and session-num are less
than or equal to v2’s.

7

Replica:
• replica-num — replica number
• status — one of Normal or ViewChange
• view-id = 〈leader-num, session-num〉— the view number, a

tuple of the current leader number and OUM session number,
partially ordered, initially 〈0, 0〉

• session-msg-num — the number of messages (REQUESTs or
DROP-NOTIFICATIONs) received in this OUM session

• log — client REQUESTs and NO-OPs in sequential order
• sync-point — the latest synchronization point

Figure 4: Local state of NOPaxos replicas.

replicas reach agreement on which sequence numbers
should be permanently dropped.

• View Change (§5.2.3): NOPaxos ensures correctness in
the face of leader failures or OUM session termination
using a variation of a standard view change protocol.

• Synchronization (§5.2.4): Periodically, the leader syn-
chronizes the logs of all replicas.

Figure 4 illustrates the state maintained at each
NOPaxos replica. Replicas tag all messages sent to each
other with their current view-id, and while in the Nor-
mal Operations, Gap Agreement, and Synchronization
subprotocols, replicas ignore all messages from different
views. Only in the View Change protocol do replicas with
different view-ids communicate.

5.2.1 Normal Operations

In the normal case when replicas receive REQUESTs in-
stead of DROP-NOTIFICATIONs, client requests are com-
mitted and executed in a single phase. Clients broad-
cast 〈REQUEST, op, request-id〉 to all replicas through
libOUM, where op is the operation they want to execute,
and request-id is a unique id used to match requests and
their responses.

When each replica receives the client’s REQUEST, it
increments session-msg-num and appends op to the log. If
the replica is the leader of the current view, it executes the
op (or looks up the previous result if it is a duplicate of a
completed request). Each replica then replies to the client
with 〈REPLY, view-id, log-slot-num, request-id, result〉,
where log-slot-num is the index of op in the log. If the
replica is the leader, it includes the result of the operation;
NULL otherwise.

The client waits for REPLYs to the REQUEST with
matching view-ids and log-slot-nums from f + 1 repli-
cas, where one of those replicas is the leader of the view.
This indicates that the request will remain persistent even
across view changes. If the client does not receive the
required REPLYs within a timeout, it retries the request.

5.2.2 Gap Agreement

NOPaxos replicas always process operations in order.
When a replica receives a DROP-NOTIFICATION from
libOUM (and increments its session-msg-num), it must
either recover the contents of the missing request or pre-
vent it from succeeding before moving on to subsequent
requests. Non-leader replicas do this by contacting the
leader for a copy of the request. If the leader itself re-
ceives a DROP-NOTIFICATION, it coordinates to commit
a NO-OP operation in place of that request:

1. If the leader receives a DROP-NOTIFICATION, it in-
serts a NO-OP into its log and sends a 〈GAP-COMMIT,
log-slot〉 to the other replicas, where log-slot is the slot
into which the NO-OP was inserted.

2. When a non-leader replica receives the GAP-COMMIT
and has filled all log slots up to the one specified by the
leader, it inserts a NO-OP into its log at the specified lo-
cation3 (possibly overwriting a REQUEST) and replies
to the leader with a 〈GAP-COMMIT-REP, log-slot〉.

3. The leader waits for f GAP-COMMIT-REPs (retrying if
necessary).

Clients need not be notified explicitly when a NO-OP
has been committed in place of one of their requests.
They simply retry their request after failing to receive a
quorum of responses. Note that the retried operation will
be considered a new request and will have a new slot in the
replicas’ logs. Replicas identify duplicate client requests
by checking if they have processed another request with
the same client-id and request-id, as is commonly done
in other protocols.

This protocol ensures correctness because clients do
not consider an operation completed until they receive
a response from the leader, so the leader can propose a
NO-OP regardless of whether the other replicas received
the REQUEST. However, before proceeding to the next
sequence number, the leader must ensure that a majority
of replicas have learned of its decision to commit a NO-
OP. When combined with the view change protocol, this
ensures that the decision persists even if the leader fails.

As an optimization, the leader can first try to contact
the other replicas to obtain a copy of the REQUEST and ini-
tiate the gap commit protocol only if no replicas respond
before a timeout. While not necessary for correctness, this
reduces the number of NO-OPs.

3 If the replica had not already filled log-slot in its log or received a
DROP-NOTIFICATION for that slot when it inserted the NO-OP, it ignores
the next REQUEST or DROP-NOTIFICATION from libOUM (and incre-
ments session-msg-num), maintaining consistency between its position
in the OUM session and its log.

8

5.2.3 View Change

During each view, a NOPaxos group has a particular
leader and OUM session number. NOPaxos must perform
view changes to ensure progress in two cases: (1) when
the leader is suspected of having failed (e.g, by failing to
respond to pings), or (2) when a replica detects the end
of an OUM session. To successfully replace the leader
or move to a new OUM session, NOPaxos runs a view
change protocol. This protocol ensures that all successful
operations from the old view are carried over into the new
view and that all replicas start the new view in a consistent
state.

NOPaxos’s view change protocol resembles that used
in Viewstamped Replication [42]. The principal differ-
ence is that NOPaxos views serve two purposes, and so
NOPaxos view IDs are therefore a tuple of 〈leader-num,
session-num〉 rather than a simple integer. A view change
can increment either one. However, NOPaxos ensures
that each replica’s leader-num and session-num never go
backwards. This maintains a total order over all views
that successfully start.

1. A replica initiates a view change when: (1) it sus-
pects that the leader in its current view has failed;
(2) it receives a SESSION-TERMINATED notification
from libOUM; or (3) it receives a VIEW-CHANGE or
VIEW-CHANGE-REQ message from another replica
with a higher leader-num or session-num. In all cases,
the replica appropriately increments the leader-num
and/or session-num in its view-id and sets its status
to ViewChange. If the replica incremented its session-
num, it resets its session-msg-num to 0.

It then sends 〈VIEW-CHANGE-REQ, view-id〉 to the
other replicas and 〈VIEW-CHANGE, view-id, v′,
session-msg-num, log〉 to the leader of the new view,
where v′ is the view ID of the last view in which its
status was Normal. While in ViewChange status, the
replica ignores all replica-to-replica messages (except
START-VIEW, VIEW-CHANGE, and VIEW-CHANGE-
REQ).

If the replica ever times out waiting for the view change
to complete, it simply rebroadcasts the VIEW-CHANGE
and VIEW-CHANGE-REQ messages.

2. When the leader for the new view receives f +1 VIEW-
CHANGE messages (including one from itself) with
matching view-ids, it performs the following steps:

• The leader merges the logs from the most recent
(largest) view in which the replicas had status

Normal.4 For each slot in the log, the merged result
is a NO-OP if any log has a NO-OP. Otherwise, the
result is a REQUEST if at least one has a REQUEST.
It then updates its log to the merged one.

• The leader sets its view-id to the one from the VIEW-
CHANGE messages and its session-msg-num to the
highest out of all the messages used to form the
merged log.

• It then sends 〈START-VIEW, view-id,
session-msg-num, log〉 to all replicas (includ-
ing itself).

3. When a replica receives a START-VIEW message with
a view-id greater than or equal to its current view-id,
it first updates its view-id, log, and session-msg-num
to the new values. It then calls listen(session-num,
session-msg-num) in libOUM. The replica sends RE-
PLYs to clients for all new REQUESTs added to its log
(executing them if the replica is the new leader). Fi-
nally, the replica sets its status to Normal and begins
receiving messages from libOUM again.5

5.2.4 Synchronization

During any view, only the leader executes operations and
provides results. Thus, all successful client REQUESTs are
committed on a stable log at the leader, which contains
only persistent client REQUESTs. In contrast, non-leader
replicas might have speculative operations throughout
their logs. If the leader crashes, the view change protocol
ensures that the new leader first recreates the stable log
of successful operations. However, it must then execute
all operations before it can process new ones. While this
protocol is correct, it is clearly inefficient.

Therefore, as an optimization, NOPaxos periodically
executes a synchronization protocol in the background.
This protocol ensures that all other replicas learn which
operations have successfully completed and which the
leader has replaced with NO-OPs. That is, synchronization
ensures that all replicas’ logs are stable up to their sync-
point and that they can safely execute all REQUESTs up
to this point in the background.

For brevity, we omit the details of this protocol. See
[39] for the full specification.

5.2.5 Recovery and Reconfiguration

While the NOPaxos protocol as presented above assumes
a crash failure model and a fixed replica group, it can

4 While view-ids are only partially ordered, because individual repli-
cas’ view-ids only increase and views require a quorum of replicas to
start, all views that successfully start are comparable – so identifying
the view with the highest number is in fact meaningful. For a full proof
of this fact, see [39].

5 Replicas also send an acknowledgment to the leader’s START-VIEW
message, and the leader periodically resends the START-VIEW to those
replicas from whom it has yet to receive an acknowledgment.

9

also facilitate recovery and reconfiguration using adapta-
tions of standard mechanisms (e.g. Viewstamped Repli-
cation [42]). While the recovery mechanism is a direct
equivalent of the Viewstamped Replication protocol, the
reconfiguration protocol additionally requires a member-
ship change in the OUM group. The OUM membership is
changed by contacting the controller and having it install
new forwarding rules for the new members, as well as a
new session-num in the sequencer (terminating the old
session). The protocol then ensures all members of the
new configuration start in a consistent state.

5.3 Benefits of NOPaxos

NOPaxos achieves the theoretical minimum latency and
maximum throughput: it can execute operations in one
round-trip from the client to the replicas and does not
require replicas to coordinate on each request. By relying
on the network to stamp requests with sequence numbers,
it requires replies only from a simple majority of repli-
cas and uses a cheaper and rollback-free mechanism to
correctly account for network anomalies.

The OUM session guarantees mean that the replicas
already agree on the ordering of all operations. As a con-
sequence, clients need not wait for a superquorum of
replicas to reply, as in Fast Paxos and Speculative Paxos
(and as is required by any protocol that provides fewer
message delays than Paxos in an asynchronous, unordered
network [37]). In NOPaxos, a simple majority of replicas
suffices to guarantee the durability of a REQUEST in the
replicas’ shared log.

Additionally, the OUM guarantees enable NOPaxos
to avoid expensive mechanisms needed to detect when
replicas are not in the same state, such as using hashing to
detect conflicting logs from replicas. To keep the replicas’
logs consistent, the leader need only coordinate with the
other replicas when it receives DROP-NOTIFICATIONs.
Committing a NO-OP takes but a single round-trip and
requires no expensive reconciliation protocol.

NOPaxos also avoids rollback, which is usually neces-
sary in speculative protocols. It does so not by coordinat-
ing on every operation, as in non-speculative protocols,
but by having only the leader execute operations. Non-
leader replicas do not execute requests during normal
operations (except, as an optimization, when the synchro-
nization protocol indicates it is safe to do so), so they
need not rollback. The leader executes operations spec-
ulatively, without coordinating with the other replicas,
but clients do not accept a leader’s response unless it is
supported by matching responses from f other replicas.
The only rare case when a replica will execute an opera-
tion that is not eventually committed is if a functioning
leader is incorrectly replaced through a view change, los-
ing some operations it executed. Because this case is rare,
it is reasonable to handle it by having the ousted leader

transfer application state from another replica, rather than
application-level rollback.

Finally, unlike many replication protocols, NOPaxos
replicas send and receive a constant number of messages
for each REQUEST in the normal case, irrespective of the
total number of replicas. This means that NOPaxos can be
deployed with an increasing number of replicas without
the typical performance degradation, allowing for greater
fault-tolerance. §6.3 demonstrates that NOPaxos achieves
the same throughput regardless of the number of replicas.

5.4 Correctness

NOPaxos guarantees linearizability: that operations sub-
mitted by multiple concurrent clients appear to be exe-
cuted by a single, correct machine. In a sense, correct-
ness in NOPaxos is a much simpler property than in
other systems, such as Paxos and Viewstamped Repli-
cation [33, 48], because the replicas need not agree on the
order of the REQUESTs they execute. Since the REQUEST
order is already provided by the guarantees of OUM ses-
sions, the replicas must only agree on which REQUESTs
to execute and which REQUESTs to drop.

Below, we sketch the proof of correctness for the
NOPaxos protocol. For a full, detailed proof, see [39].
Additionally, see [39] for a TLA+ specification of the
NOPaxos protocol.

Definitions. We say that a REQUEST or NO-OP is com-
mitted in a log slot if it is processed by f +1 replicas with
matching view-ids, including the leader of that view. We
say that a REQUEST is successful if it is committed and
the client receives the f + 1 suitable REPLYs. We say a
log is stable in view v if it will be a prefix of the log of
every replica in views higher than v.

Sketch of Proof. During a view, a leader’s log grows
monotonically (i.e., entries are only appended and never
overwritten). Also, leaders execute only the first of du-
plicate REQUESTs. Therefore, to prove linearizability it
is sufficient to show that: (1) every successful operation
was appended to a stable log at the leader and that the
resulting log is also stable, and (2) replicas always start a
view listening to the correct session-msg-num in an OUM
session (i.e., the message corresponding to the number of
REQUESTs or NO-OPs committed in that OUM session).

First, note that any REQUEST or NO-OP that is com-
mitted in a log slot will stay in that log slot for all future
views: it takes f +1 replicas to commit a view and f +1
replicas to complete a view change, so, by quorum inter-
section, at least one replica initiating the view change will
have received the REQUEST or NO-OP. Also, because it
takes the leader to commit a REQUEST or NO-OP and its
log grows monotonically, only a single REQUEST or NO-
OP is ever committed in the same slot during a view. There-
fore, any log consisting of only committed REQUESTs and

10

NO-OPs is stable.
Next, every view that starts (i.e., f +1 replicas receive

the START-VIEW and enter Normal status) trivially starts
with a log containing only committed REQUESTs and NO-
OPs. Replicas send REPLYs to a REQUEST only after all
log slots before the REQUEST’s slot have been filled with
REQUESTs or NO-OPs; further, a replica inserts a NO-OP
only if the leader already inserted that NO-OP. Therefore,
if a REQUEST is committed, all previous REQUESTs and
NO-OPs in the leader’s log were already committed.

This means that any REQUEST that is successful in
a view must have been appended to a stable log at the
leader, and the resulting log must also be stable, showing
(1). To see that (2) is true, notice that the last entry in
the combined log formed during a view change and the
session-msg-num are taken from the same replica(s) and
therefore must be consistent.

NOPaxos also guarantees liveness given a sufficient
amount of time during which the following properties
hold: the network over which the replicas communicate
is fair-lossy; there is some bound on the relative pro-
cessing speeds of replicas; there is a quorum of repli-
cas that stays up; there is a replica that stays up that no
replica suspects of having failed; all replicas correctly sus-
pect crashed nodes of having failed; no replica receives
a DROP-NOTIFICATION or SESSION-TERMINATED from
libOUM; and clients’ REQUESTs eventually get delivered
through libOUM.

6 Evaluation

We implemented the NOPaxos protocol in approximately
5,000 lines of C++ code. We ran our experiments using
the 3-level fat-tree network testbed shown in Figure 3.
All clients and replicas ran on servers with 2.5 GHz Intel
Xeon E5-2680 processors and 64GB of RAM. All exper-
iments used five replicas (thereby tolerating two replica
failures).

To evaluate the performance of NOPaxos, we com-
pared it to four other replication protocols: Paxos, Fast
Paxos, Paxos with batching, and Speculative Paxos; we
also evaluated it against an unreplicated system that pro-
vides no fault tolerance. Like NOPaxos, the clients in
both Speculative Paxos and Fast Paxos multicast their
requests to the replicas through a root serialization switch
to minimize message reordering. Requests from NOPaxos
clients, however, are also routed through the Cavium pro-
cessor to be stamped with the sequencer’s OUM session
number and current request sequence number. For the
batching variant of Paxos, we used a sliding-window tech-
nique where the system adaptively adjusts the batch size,
keeping at least one batch in progress at all times; this
approach reduces latency at low load while still providing
throughput benefits at high load [13].

 0

 200

 400

 600

 800

 1000

 1200

0K 50K 100K 150K 200K 250K 300K 350K 400K

L
at

en
cy

 (
µ

s)

Throughput (ops/sec)

Paxos
Fast Paxos

Batching
SpecPaxos
NOPaxos

Unreplicated

Figure 5: Latency vs. throughput comparison for testbed deploy-
ment of NOPaxos and other protocols.

 0

 100

 200

 300

 400

 500

 600

 700

0K 50K 100K 150K 200K 250K

L
at

en
cy

 (
µ

s)

Throughput (ops/sec)

NOPaxos
NOPaxos + End-host Sequencer

Unreplicated

Figure 6: Comparison of running NOPaxos with the prototype
Cavium sequencer and an end-host sequencer.

6.1 Latency vs. Throughput

To compare the latency and throughput of NOPaxos and
the other four protocols, we ran each system with an
increasing number of concurrent closed-loop clients. Fig-
ure 5 shows results of this experiment. NOPaxos achieves
a much higher maximum throughput than Paxos and Fast
Paxos (370% increases in both cases) without any addi-
tional latency. The leaders in both Paxos and Fast Paxos
send and receive more messages than the other replicas,
and the leaders’ message processing quickly becomes the
bottleneck of these systems. NOPaxos has no such inef-
ficiency. NOPaxos also achieves higher throughput than
Speculative Paxos (24% increase) because Speculative
Paxos requires replicas to compute hashes of their logs
for each client request.

Figure 5 also shows that NOPaxos has lower latency
(111 µs) than Paxos (240 µs) and Fast Paxos (193 µs) be-
cause NOPaxos requires fewer message delays in the nor-
mal case. Speculative Paxos also has higher latency than
NOPaxos because clients must wait for a superquorum of
replica replies instead of NOPaxos’s simple quorum.

Batching improves Paxos’s throughput by reducing the
number of messages sent by the leader. Paxos with batch-
ing is able to reach a maximum throughput equivalent
to Speculative Paxos. However, batching also increases
the latency of Paxos (385 µs at low load and 907 µs
at maximum throughput). NOPaxos attains both higher
throughput and lower latency than Paxos with batching.

11

0K

50K

100K

150K

200K

250K

300K

350K

0.001% 0.01% 0.1% 1%

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Simulated drop rate

Paxos
Fast Paxos

Batching
SpecPaxos

NOPaxos
Unreplicated

Figure 7: Maximum throughput with simulated packet dropping.

NOPaxos is able to attain throughput within 2% of an
unreplicated system and latency within 16 µs. However,
we note that our middlebox prototype adds around 8 µs
to NOPaxos’s latency. We envision that implementing
the sequencer in a switch could bring NOPaxos’s latency
even closer to the unreplicated system. This demonstrates
that NOPaxos can achieve close to optimal performance
while providing fault-tolerance and strong consistency.

We also evaluated the performance of NOPaxos when
using an end-host as the sequencer instead of the network
processor. Figure 6 shows that NOPaxos still achieves
impressive throughput when using an end-host sequencer,
though at a cost of 36% more latency due to the additional
message delay required.

6.2 Resilience to Network Anomalies

To test the performance of NOPaxos in an unreliable
network, we randomly dropped a fraction of all packets.
Figure 7 shows the maximum throughput of the five pro-
tocols and the unreplicated system with an increasing
packet drop rate. Paxos’s and Fast Paxos’s throughput
do not decrease significantly, while Paxos with batching
shows a larger drop in throughput due to frequent state
transfers. However, the throughput of Speculative Paxos
drops substantially after 0.5% packet dropping, demon-
strating NOPaxos’s largest advantage over Speculative
Paxos. When 1% of packets are dropped, Speculative
Paxos’s maximum throughput falls to that of Paxos. As
discussed in §5.3, Speculative Paxos performs an expen-
sive reconciliation protocol when messages are dropped
and replica states diverge. NOPaxos is much more re-
silient to packet drops and reorderings. It achieves higher
throughput than Paxos with batching and much higher
throughput than Speculative Paxos at high drop rates.
Even with a 1% message drop rate, NOPaxos’s throughput
does not drop significantly. Indeed, NOPaxos maintains
throughput roughly equivalent to an unreplicated system,
demonstrating its strong resilience to network anomalies.

6.3 Scalability

To test NOPaxos’s scalability, we measured the maximum
throughput of the five protocols running on increasing
number of replicas. Figure 8 shows that both Paxos and

10K

100K

 3 5 7 9

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Number of Replicas

Paxos
Fast Paxos

Batching
SpecPaxos

NOPaxos
Unreplicated

Figure 8: Maximum throughput with increasing number of repli-
cas.

0K

50K

100K

150K

200K

250K

300K

-0.25 0 0.25 0.5 0.75 1 1.25 1.5

T
h
ro

u
g
h
p
u
t

(o
p
s/

se
c)

Time (s)

Figure 9: NOPaxos throughput during a sequencer failover.

Fast Paxos suffer throughput degradation proportional
to the number of replicas because the leaders in those
protocols have to process more messages from the ad-
ditional replicas. Replicas in NOPaxos and Speculative
Paxos, however, process a constant number of messages,
so those protocols maintain their throughput when more
replicas are added.

6.4 Sequencer Failover

NOPaxos relies on the sequencer to order client requests.
We measured the throughput of NOPaxos during a se-
quencer failover (Figure 9). We ran NOPaxos at peak
throughput for approximately 7 seconds. We then sim-
ulated a sequencer failure by sending the controller a
notification message. The controller modified the routing
rules in the network and installed a new session number
in the sequencer (as described in §3). The throughput of
the system drops to zero during the failover and takes
approximately 110 ms to resume normal operations and
approximately 270 ms to resume processing operations
at peak throughput. Most of this delay is caused by the
route update rather than the NOPaxos view change.

6.5 Application Performance

To further demonstrate the benefits of the NOPaxos pro-
tocol, we evaluated the performance of a distributed, in-
memory key-value store. The key-value store uses two-
phase commit and optimistic concurrency control to sup-
port serializable transactions, and each shard runs atop our
replication framework. Clients issue GET and PUT requests
within transactions. We benchmarked the key-value store
using a workload based on the Retwis Twitter clone [38].

12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Paxos

FastPaxos

B
atching

SpecPaxos

N
O

Paxos

U
nreplicated

M
ax

 T
h

ro
u

g
h

p
u

t
(t

x
n

s/
se

c)

Figure 10: Maximum throughput achieved by a replicated trans-
actional key-value store within 10 ms SLO.

Figure 10 shows the maximum throughput of the key-
value store with a 10ms SLO. NOPaxos outperforms all
other variants on this metric: it attains more than 4 times
the throughput of Paxos, and outperforms the best prior
protocol, Speculative Paxos, by 45%. Its throughput is
also within 4% that of an unreplicated system.

7 Related Work
Our work draws on techniques from consensus protocol
design as well as network-level processing mechanisms.

Consensus protocols Many protocols have been pro-
posed for the equivalent problems of consensus, state
machine replication, and atomic broadcast. Most closely
related is a line of work on achieving better performance
when requests typically arrive at replicas in the same order,
including Fast Paxos [36], Speculative Paxos [53], and
Optimistic Atomic Broadcast [29, 50, 51]; Zyzzyva [32]
applies a similar idea in the context of Byzantine fault
tolerant replication. These protocols can reduce consen-
sus latency in a manner similar to NOPaxos. However,
because requests are not guaranteed to arrive in the same
order, they incur extra complexity and require superma-
jority quorum sizes to complete a request (either 2/3 or
3/4 of replicas rather than a simple majority). This differ-
ence is fundamental: the possibility of conflicting orders
requires either an extra message round or a larger quorum
size [37].

Another line of work aims to reduce latency and im-
prove throughput by avoiding coordination for opera-
tions that are commutative or otherwise need not be or-
dered [12, 35, 45, 60]; this requires application support to
identify commutative operations. NOPaxos avoids coordi-
nation for all operations.

Ordered Unreliable Multicast is related to a long line
of work on totally ordered broadcast primitives, usually
in the context of group communication systems [6, 7].
Years ago, a great debate raged in the SOSP community
about the effectiveness and limits of this causal and totally
ordered communication support (CATOCS) [5, 15]. Our
work draws inspiration from both sides of this debate, but
occupies a new point in the design space by splitting the

responsibility between an ordered but unreliable commu-
nications layer and an application-level reliability layer. In
particular, the choice to leave reliability to the application
is inspired by the end-to-end argument [15, 55].

Network-level processing NOPaxos takes advantage
of flexible network processing to implement the OUM
model. Many designs have been proposed for flexible
processing, including fully flexible, software-based de-
signs like Click [30] and others based on network proces-
sors [57] or FPGA platforms [47]. At the other extreme,
existing software defined networking mechanisms like
OpenFlow [44] can easily achieve line-rate performance
in commodity hardware implementations but lack the flex-
ibility to implement our multicast primitive. We use the P4
language [9], which supports several high-performance
hardware designs like Reconfigurable Match Tables [10].

These processing elements have generally been used for
classic networking tasks like congestion control or queue
management. A notable exception is SwitchKV [41],
which uses OpenFlow switches for content-based routing
and load balancing in key-value stores.

...and their intersection Recent work on Specula-
tive Paxos and Mostly-Ordered Multicast proposes co-
designing network primitives and consensus protocols
to achieve faster performance. Our work takes the next
step in this direction. While Speculative Paxos assumes
only a best-effort ordering property, NOPaxos requires
an ordering guarantee. Achieving this guarantee requires
more sophisticated network support made possible with
a programmable data plane (Speculative Paxos’s Mostly-
Ordered Multicast requires only OpenFlow support).
However, as discussed in §5.3, NOPaxos achieves a sim-
pler and more robust protocol as a result, avoiding the
need for superquorums and speculation.

A concurrent effort, NetPaxos [18], also explores ways
to use the network layer to improve the performance of
a replication protocol. That work proposes moving the
Paxos logic into switches, with one switch serving as
a coordinator and others as Paxos acceptors. This logic
can also be implemented using P4 [17]. However, as the
authors note, this approach requires the switches to im-
plement substantial parts of the logic, including storing
potentially large amounts of state (the results of each
consensus instance). Our work takes a more practical ap-
proach by splitting the responsibility between the OUM
network model, which can be readily implemented, and
the NOPaxos consensus protocol.

Other related work uses hardware acceleration to speed
communication between nodes in a distributed system.
FaRM [19] uses RDMA to bypass the kernel and mini-
mize CPU involvement in remote memory accesses. Con-
sensus in a Box [25] implements a standard atomic broad-
cast protocol entirely on FPGAs. NOPaxos provides more

13

flexible deployment options. However, its protocol could
be integrated with RDMA or other kernel-bypass network-
ing for faster replica performance.

8 Conclusions
We presented a new approach to high-performance, fault-
tolerant replication, one based on dividing the respon-
sibility for consistency between the network layer and
the replication protocol. In our approach, the network
is responsible for ordering, while the replication proto-
col ensures reliable delivery. “Splitting the atom” in this
way yields dramatic performance gains: network-level
ordering, while readily achievable, supports NOPaxos, a
simpler replication protocol that avoids coordination in
most cases. The resulting system outperforms state-of-
the-art replication protocols on latency, throughput, and
application-level metrics, demonstrating the power of this
approach. More significantly, it achieves both throughput
and latency equivalent to an unreplicated system, proving
that replication does not have to come with a performance
cost.

Acknowledgments
We thank Irene Zhang, the anonymous reviewers, and our
shepherd Dawn Song for their helpful feedback. This re-
search was supported by the National Science Foundation
under awards CNS-1518702 and CNS-1615102 and by
gifts from Google and VMware.

14

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-

able, commodity data center network architecture.
In Proceedings of ACM 2008, New York, NY, USA,
Aug. 2008.

[2] Arista Networks. 7150 series ultra low latency
switch. https://www.arista.com/assets/data/

pdf/Datasheets/7150S_Datasheet.pdf.

[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected dat-
aplane operating system for high throughput and
low latency. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI ’14), Broomfield, CO, USA,
Oct. 2014. USENIX.

[4] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM Confer-
ence on Internet Measurement, IMC ’10, Melbourne,
Australia, 2010. ACM.

[5] K. Birman. A response to Cheriton and Skeen’s crit-
icism of causal and totally ordered communication.
ACM SIGOPS Operating Systems Review, 28(1), Jan.
1994.

[6] K. P. Birman and T. A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proceedings
of the 11th ACM Symposium on Operating Systems
Principles (SOSP ’87), Austin, TX, USA, Oct. 1987.

[7] K. P. Birman and T. A. Joseph. Reliable communica-
tion in the presence of failures. ACM Trans. Comput.
Syst., 5(1), Jan. 1987.

[8] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P.
Kusters, and P. Li. Paxos replicated state machines
as the basis of a high-performance data store. In
Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI

’11), Boston, MA, USA, Apr. 2011. USENIX.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Program-
ming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., 44(3), July 2014.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for
SDN. In Proceedings of ACM SIGCOMM 2013.
ACM, 2013.

[11] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the

7th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’06), Seattle, WA,
USA, Nov. 2006.

[12] L. Camargos, R. Schmidt, and F. Pedone. Multi-
coordinated Paxos. Technical report, University of
Lugano Faculty of Informatics, 2007/02, Jan. 2007.

[13] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’99), New Orleans, LA, USA, Feb.
1999.

[14] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus.
J. ACM, 43(4), July 1996.

[15] D. R. Cheriton and D. Skeen. Understanding the
limitations of causally and totally ordered commu-
nication. In Proceedings of the 13th ACM Sympo-
sium on Operating Systems Principles (SOSP ’93),
Asheville, NC, USA, Dec. 1993. ACM.

[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan,
H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szyma-
niak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Pro-
ceedings of the 10th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI

’12), Hollywood, CA, USA, Oct. 2012.

[17] H. T. Dang, P. Bressana, H. Wang, K. S. Lee,
H. Weatherspoon, M. Canini, F. Pedone, and
R. Soulé. Network hardware-accelerated consensus.
Technical Report USI-INF-TR-2016-03, Università
della Svizzera italiana, May 2016.

[18] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. NetPaxos: Consensus at network speed. In
Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, SOSR
’15, New York, NY, USA, 2015. ACM.

[19] A. Dragojević, D. Narayanan, M. Castro, and
O. Hodson. FaRM: Fast remote memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), Seattle, WA, Apr.
2014. USENIX Association.

[20] M. Flajslik and M. Rosenblum. Network interface
design for low latency request-response protocols.
In Proceedings of the 2013 USENIX Annual Tech-
nical Conference, San Jose, CA, USA, June 2013.
USENIX.

[21] P. Gill, N. Jain, and N. Nagappan. Understanding
network failures in data centers: Measurement, anal-

15

https://www.arista.com/assets/data/pdf/Datasheets/7150S_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7150S_Datasheet.pdf

ysis, and implications. In Proceedings of ACM SIG-
COMM 2011, Toronto, ON, Canada, Aug. 2011.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. VL2: A scalable and flexible data center
network. In Proceedings of ACM SIGCOMM 2009,
Barcelona, Spain, Aug. 2009.

[23] M. P. Herlihy and J. M. Wing. Linearizabiliy: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3), July 1990.

[24] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-
scale systems. In Proceedings of the 2010 USENIX
Annual Technical Conference, Boston, MA, USA,
June 2010.

[25] Z. István, D. Sidler, G. Alonso, and M. Vukolic.
Consensus in a box: Inexpensive coordination in
hardware. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
16), Santa Clara, CA, Mar. 2016. USENIX Associa-
tion.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Ex-
perience with a globally-deployed software defined
WAN. In Proceedings of ACM SIGCOMM 2013,
Hong Kong, China, Aug. 2013. ACM.

[27] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Sys-
tems&Networks, DSN ’11, Washington, DC, USA,
2011. IEEE Computer Society.

[28] A. Kalia, M. Kaminsky, and D. G. Andersen. De-
sign guidelines for high performance RDMA sys-
tems. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16), Denver, CO, June 2016.
USENIX Association.

[29] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.
Processing transactions over optimistic atomic
broadcast protocols. In Proceedings of the 13th
International Symposium on Distributed Computing
(DISC ’99), Bratislava, Slovakia, Sept. 1999.

[30] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans-
actions on Computer Systems, 18(3), Aug. 2000.

[31] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: A dis-
tributed control platform for large-scale production

networks. In Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI ’10), Vancouver, BC, Canada, Oct. 2010.
USENIX.

[32] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative Byzantine fault
tolerance. In Proceedings of the 21th ACM Sympo-
sium on Operating Systems Principles (SOSP ’07),
Stevenson, WA, USA, Oct. 2007.

[33] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems, 16(2), May 1998.

[34] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4), Dec. 2001.

[35] L. Lamport. Generalized consensus and Paxos.
Technical Report MSR-TR-2005-33, Microsoft Re-
search, Mar. 2005.

[36] L. Lamport. Fast Paxos. Distributed Computing,
19(2), Oct. 2006.

[37] L. Lamport. Lower bounds for asynchronous con-
sensus. Distributed Computing, 19(2), Oct. 2006.

[38] C. Leau. Spring Data Redis – Retwis-J,
2013. http://docs.spring.io/spring-data/

data-keyvalue/examples/retwisj/current/.

[39] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just say NO to Paxos overhead: Re-
placing consensus with network ordering [extended
version]. Technical Report UW-CSE-16-09-02, Uni-
versity of Washington CSE, Seattle, WA, USA, Nov.
2016.

[40] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Grib-
ble. Tales of the tail: Hardware, OS, and application-
level sources of tail latency. In Proceedings of the
5th Symposium on Cloud Computing (SOCC ’14),
Seattle, WA, USA, Nov. 2014. ACM.

[41] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman. Be fast, cheap and in control with
SwitchKV. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
16), Santa Clara, CA, Mar. 2016. USENIX Associa-
tion.

[42] B. Liskov and J. Cowling. Viewstamped replica-
tion revisited. Technical Report MIT-CSAIL-TR-
2012-021, MIT Computer Science and Artificial In-
telligence Laboratory, Cambridge, MA, USA, July
2012.

[43] V. Liu, D. Halperin, A. Krishnamurthy, and T. An-
derson. F10: A fault-tolerant engineered network. In
Proceedings of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI

’13), Lombard, IL, USA, Apr. 2013.

16

 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

[44] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2), Apr. 2008.

[45] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In
Proc. of SOSP, 2013.

[46] R. N. Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subra-
manya, and A. Vahdat. PortLand: A scalable fault-
tolerant layer 2 data center network fabric. In
Proceedings of ACM SIGCOMM 2009, Barcelona,
Spain, Aug. 2009.

[47] J. Naous, D. Erickson, G. A. Covington, G. Appen-
zeller, and N. McKeown. Implementing an Open-
Flow switch on the NetFPGA platform. In Proceed-
ings of the 4th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems,
ANCS ’08, New York, NY, USA, 2008. ACM.

[48] B. M. Oki and B. H. Liskov. Viewstamped replica-
tion: A new primary copy method to support highly-
available distributed systems. In Proceedings of the
7th ACM Symposium on Principles of Distributed
Computing (PODC ’88), Toronto, Ontario, Canada,
Aug. 1988.

[49] R. Ozdag. Intel R© Ethernet switch FM6000 series-
software defined networking.

[50] F. Pedone and A. Schiper. Optimistic atomic broad-
cast. In Proceedings of the 12th International Sym-
posium on Distributed Computing (DISC ’98), An-
dros, Greece, Sept. 1998.

[51] F. Pedone and A. Schiper. Optimistic atomic broad-
cast: A pragmatic viewpoint. Theor. Comput. Sci.,
291(1), Jan. 2003.

[52] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-

rakis: The operating system is the control plane. In
Proceedings of the 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI

’14), Broomfield, CO, USA, Oct. 2014. USENIX.

[53] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing distributed systems using
approximate synchrony in data center networks. In
Proc. of NSDI, 2015.

[54] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to
build a scalable, consistent, and highly available
datastore. Proc. of VLDB, 4(4), Apr. 2011.

[55] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Transactions
on Computer Systems, 2(4), Nov. 1984.

[56] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: a tutorial.
ACM Computing Surveys, 22(4), Dec. 1990.

[57] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb.
Building a robust software-based router using net-
work processors. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP
’01), Banff, Canada, Oct. 2001. ACM.

[58] P. Urbán, X. Défago, and A. Schiper. Chasing the
FLP impossibility result in a LAN: or, how robust
can a fault tolerant server be? In Proceedings of
the 20th IEEE Symposium on Reliable Distributed
Systems (SRDS ’01), New Orleans, LA USA, Oct.
2001.

[59] XPliant Ethernet switch prod-
uct family. www.cavium.com/

XPliant-Ethernet-Switch-Product-Family.

html.

[60] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-
murthy, and D. R. K. Ports. Building consistent
transactions with inconsistent replication. In Proc.
of SOSP, 2015.

17

www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

	Introduction
	Separating Ordering from Reliable Delivery in State Machine Replication
	Ordered Unreliable Multicast
	Ordered Unreliable Multicast Properties
	OUM Sessions and the libOUM API

	OUM Design and Implementation
	Network Serialization
	Implementing the Sequencer
	In-Switch Sequencing
	Hardware Middlebox Prototype Sequencing
	End-host Sequencing
	Sequencer Scalability

	Fault Tolerance

	NOPaxos
	Model
	Protocol
	Normal Operations
	Gap Agreement
	View Change
	Synchronization
	Recovery and Reconfiguration

	Benefits of NOPaxos
	Correctness

	Evaluation
	Latency vs. Throughput
	Resilience to Network Anomalies
	Scalability
	Sequencer Failover
	Application Performance

	Related Work
	Conclusions
	References

