
Towards Automatic Inference of
Inductive Invariants

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin
Manos Kapritsos, Baris Kasikci, Karem A. Sakallah

University of Michigan



1

Distributed systems are subtle



The alternative: formal verification

Formal specification or property

Proving the system maintains the property

Successful on distributed systems

Drawback: Manual effort

2



Existing verification approaches

All existing approaches require the human to find an inductive invariant

We want to automatically find inductive invariants

3

Manual Effort

Verdi(Coq) IronFleet(Dafny) Ivy I4

AutomatedPerson-hoursPerson-monthsPerson-years



Formal verification in 2 minutes

. . .

4

0 1 2 k k+1

Goal: prove that the safety property holds at all times

Initial 
state

Inductive proof
● Base case: prove initial state is safe
● Inductive step: if state k is safe, prove state k+1 is safe

An execution:



Safety property vs. inductive invariant

All states

Reachable 
states

5

Safe states

Inductive 
invariant



Lock server protocol

6

Server1

Client2

Safety property:
no two clients can be linked to the same server

Server0

Client1

Client0



Finding an inductive invariant using Ivy

7

lock_hold

Safety property

Strengthening assertion

Automatically checks if an invariant is inductive

Requires the human to find an inductive invariant (Screenshot from Ivy)

Existing approaches rely on 
manual effort and human intuition



Outline

I4: a new approach

Design of I4

Evaluation

Future work

8



I4: a new approach

Goal: Find an inductive invariant without relying on human intuition.

Insight: Distributed protocols exhibit regularity.

Implication: We can use inductive invariants from small instances to infer 
a generalized inductive invariant that holds for all instances.

9

• Behavior doesn’t fundamentally change as the size increases 
• E.g. lock server, Paxos, …



Leveraging model checking

Model checking

I4 applies model checking to small, finite instances …

… and then generalizes the result to all instances.

10

J Fully automated

L Doesn’t scale to distributed systems



Outline

Design of I4

Evaluation

Future work

11



Overview

12

Protocol.ivy Correct 
✓

Invariant 
generalization

(Ivy)

Increase Size

Invariant generation on
a finite instance
(Model Checking)



Invariant generation on a finite instance

13

Protocol.finv

Create Small
(Finite) Instance

Protocol.v Model
Checker

CounterexampleDebug
(manually)

Protocol.ivy Correct 
✓

Invariant 
generalization

(Ivy)

Increase Size



Invariant Generalization

14

Protocol.finv

Protocol.v

Counterexample

Protocol.ivy Correct 
✓

Generalize

Protocol_inv.ivy Ivy

Weaken Strengthening
Assertion
Violation

Increase Size

Safety
Property
Violation

Create Small
(Finite) Instance

Debug
(manually)

Model
Checker



Outline

Evaluation

Future work

15



Evaluation

16

Lock Server Leader Election Distributed lock

1 server
2 clients

3 nodes
3 IDs

2 nodes
4 epochs

~3s ~8s ~12s

✓ ✓ ✓



Outline

Future work

17



Future work

More automation

Scalability to larger protocols

Verification of Implementations

18


