
Brief Announcement: On the Significance of Consecutive Ballots
in Paxos

Eli Goldweber

edgoldwe@umich.edu

University of Michigan

Ann Arbor, Michigan

Nuda Zhang

nudzhang@umich.edu

University of Michigan

Ann Arbor, Michigan

Manos Kapritsos

manosk@umich.edu

University of Michigan

Ann Arbor, Michigan

ABSTRACT
In this paper, we examine the Paxos protocol and demonstrate

how the discrete numbering of ballots can be leveraged to weaken

the conditions for learning. Specifically, we define the notion of

consecutive ballots and use this to define Consecutive Quorums.

Consecutive Quorums weaken the learning criterion such that a

learner does not need matching 𝑎𝑐𝑐𝑒𝑝𝑡 messages sent in the same
ballot from a majority of acceptors to learn a value. We prove that

this modification preserves the original safety and liveness guar-

antees of Paxos. We define Consecutive Paxos which encapsulates

the properties of discrete consecutive ballots. To establish the cor-

rectness of these results, in addition to a paper proof, we formally

verify the correctness of a State Machine Replication Library built

on top of an optimized version of Multi-Paxos modified to reflect

𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑃𝑎𝑥𝑜𝑠 .
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1 INTRODUCTION
More than 20 years after its inception, the Paxos algorithm [10, 13]

remains a fundamental building block for distributed consensus

and State Machine Replication (SMR) in an asynchronous setting.

The importance of Paxos is made evident by the numerous variants

of the algorithm — e.g. [8, 9, 12, 14] — and its use in real-world

deployments [1–3]. Despite two decades of research on this topic,

we have yet to understand all the subtleties of the Paxos algorithm.

The correctness of Paxos can be expressed concisely as “no two

different values can be learned”. This simple property, in turn, relies

crucially on the way that values are learned:
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• A value can only be learned if a majority of acceptors accepts

that value in the same ballot.

The above criterion for learning is considered fundamental to

the correctness of Paxos. And yet, this paper demonstrates that it

is, in fact, stronger than it needs to be. Before we formally state and

prove our claim, we will illustrate how this criterion is stronger

than necessary by observing specific examples of Paxos in action.

Let us consider a number of Paxos snapshots, as seen from the

perspective of a learner. Each snapshot shows the state of the five

acceptors in a Paxos ensemble with 𝑓 = 2. For each acceptor, we

show the accepted value and the ballot in which this value was

accepted. Since the learner only needs to receive an 𝑎𝑐𝑐𝑒𝑝𝑡 message

from a majority of acceptors, we use “?” to denote the state of

acceptors for which the learner has not received an 𝑎𝑐𝑐𝑒𝑝𝑡 message.

For each snapshot, we consider the following question: is it safe to
learn value 𝑥?

Acceptor ID Value Ballot
A ? ?

B ? ?

C 𝑥 10

D 𝑥 9

E 𝑥 7

Table 1: Information collected at the learner. According to
Paxos, value 𝑥 cannot be learned yet. This is correct, since
another value can still be learned.

Table 1 illustrates an example where the learner knows that a

majority of acceptors have accepted the same value, but not in

the same ballot. One might be tempted to conclude that, since a

majority has already accepted 𝑥 , it is henceforth impossible for

any other value to be learned—and thus it is safe to learn 𝑥 . But

this not the case. Consider the following execution; initially, no

acceptor has accepted a value. The proposer with ballot number 7

(henceforth, proposer #7) proposes 𝑥 , which is accepted by 𝐸. Then

proposer #8, who happens not to hear from 𝐸 during phase one, is

elected and proposes value 𝑦, which is accepted by acceptor 𝐵. At

this point, proposer #9 performs phase one of Paxos and receives

promise messages from acceptors 𝐶 (-,-), 𝐷(-,-), and 𝐸(𝑥 ,7), and

thus proposes value 𝑥 , which is accepted by 𝐷 . Similarly, proposer

#10 receives promise messages from 𝐶(-,-), 𝐷(𝑥 ,9), and 𝐸(𝑥 ,7), and

proposes value 𝑥 , which is accepted by 𝐶 . At this point, it is not
safe to learn 𝑥 , since it is still possible for a subsequent proposer,

say proposer #11, to receive promise messages from 𝐴(-,-), 𝐵(𝑦,8),

and 𝐸(𝑥 ,7), and to thus propose 𝑦.

172

https://doi.org/10.1145/3382734.3405700
https://doi.org/10.1145/3382734.3405700
https://doi.org/10.1145/3382734.3405700


PODC ’20, August 3–7, 2020, Virtual Event, Italy Eli Goldweber, Nuda Zhang, and Manos Kapritsos

Acceptor ID Value Ballot
A ? ?

B ? ?

C 𝑥 10

D 𝑥 9

E 𝑥 9

Table 2: Information collected at the learner. According to
Paxos, value 𝑥 cannot be learned yet. And yet, no other value
can be learned.

The above reasoning seems to lend credence to the criterion used

in Paxos to determine whether a value can be learned: “a majority

of acceptors must accept a value in the same ballot”. A majority

of acceptors that accept the same value in different ballots is not

enough to merit learning that value. But what if the ballots are all

consecutive?
Table 2 shows just such an example, where a majority of accep-

tors have accepted the same value, 𝑥 , in consecutive ballots. In this

paper we claim that in this case, 𝑥 can be learned. The intuition

behind this claim comes from observing the example of Table 1.

The reason why 𝑥 cannot yet be learned in that example is that

there exists a ballot (#8 in this case) with a different value 𝑦, whose

ballot number supersedes one of the ballots in the majority that

has accepted 𝑥 . This makes it possible that a future proposer picks

this value 𝑦 as its proposed value. When the majority consists only

of consecutive ballots, however, no such “interleaved” ballot exists,

which makes a consecutive quorum just as strong as if all ballots

had the same ballot number.

We therefore propose the following weakening of Paxos — and

all its corresponding variants. Given a Paxos ensemble with 2𝑓 + 1

acceptors, a learner can learn a value 𝑥 as soon as it receives 𝑓 + 1

𝑎𝑐𝑐𝑒𝑝𝑡 messages from distinct acceptors if: (a) all such messages

denote acceptance of value 𝑥 , and (b) the set of the ballot numbers

of these messages consists of consecutive numbers. A more detailed

version of this paper is available in [5].

2 MODEL AND OVERVIEW
We consider the model of Classic Paxos [13]. A system consisting of

proposer, acceptor, and learner agents that communicate by passing

messages over an asynchronous network. In typical implementa-

tions, agents are mapped to processes, where each process consists

of one proposer, acceptor and learner agent.

In the Paxos protocol, proposers associate each proposed value

𝑣 with a ballot number 𝑛, and acceptors accept proposals that are

ballot-value pairs. We denote such a proposal as (𝑛, 𝑣). It is impor-

tant for different proposals to have different ballots, which can be

achieved by having each proposer use ballots from its own disjoint

pool.

In Classic Paxos, a value 𝑣 is chosen if there exists a majority

quorum of acceptors that have accepted the same proposal (𝑛, 𝑣),
that is, the same value 𝑣 in the same ballot 𝑛. Once a value is chosen,

two things occur. First, any pending proposals from a lower ballot

will be ignored by at least a majority of acceptors. Any previous

proposal can no longer achieve majority acceptance. Second, any

higher numbered proposal must have a Phase 1 quorum that in-

tersects with the quorum of acceptors that accepted the chosen

proposal. This can only result in the proposer proposing the same 𝑣

in Phase 2. Along with the requirement that any ballot be associated

with a single value, once a value is chosen, no different value can

ever be chosen or learned.

Given 2𝑓 + 1 acceptors, Paxos is safe given the absence of ma-

licious failures, and live given no more than 𝑓 acceptors fail by

crashing, during sufficiently long periods of synchrony [4].

The 𝑆𝑎𝑓 𝑒𝑡𝑦 of Paxos is the property "no two different values can
be learned". A value is learned after a learner receives a quorum of

accept messages indicating that a value has been chosen.

Theorem 2.1 (Safety Property). No two different values can be
learned

∀𝑖, 𝑗 ∈ N. [𝐿𝑒𝑎𝑟𝑛𝑒𝑑 (𝑖, 𝑣) ∧ 𝐿𝑒𝑎𝑟𝑛𝑒𝑑 ( 𝑗,𝑤)] =⇒ 𝑣 = 𝑤

To maintain the Safety Property, Paxos ensures "no two different
values can be chosen." A learner does not learn a value until a value

is chosen. If this invariant holds, then it must be the case that"no two
different values can be learned". Using this definition, the following

is a formal description of the Chosen Invariant:

Theorem 2.2 (Chosen Invariant). No two different values can
be chosen

∀𝑖, 𝑗 ∈ N. [𝐶ℎ𝑜𝑠𝑒𝑛(𝑖, 𝑣) ∧𝐶ℎ𝑜𝑠𝑒𝑛( 𝑗,𝑤)] =⇒ 𝑣 = 𝑤

In Classic Paxos, the following is the criterion that designates if

a value is chosen:

Definition 1. [Chosen] Value 𝑣 is chosen in ballot 𝑖 iff a majority

of acceptors send matching 𝑎𝑐𝑐𝑒𝑝𝑡 messages.

By proving the Chosen Invariant 2.2, the Safety Property 2.1

follows directly.

3 CONSECUTIVE QUORUMS
Consecutive ballots can be leveraged to weaken the criterion of

how values are chosen and learned in Paxos. In this section we

describe how Consecutive Quorums provide the same safety guar-

antee as majority quorums in Classic Paxos. By ensuring that no

two different values can be chosen, at most one unique value can

be learned. It is not necessary that a quorum of acceptors accept a

value in the same ballot for the value to be learned. A value can be

chosen—and eventually learned—as long as a majority of acceptors

accept that value in an unbroken span of consecutive ballots. See [5]
for a full proof of this.

In principle, the set of all ballots used in Paxos can be any un-

bounded, ordered set, including innumerable ones. However, it is

ubiquitous in both theory [8, 11] and practice [1–3] to use as bal-

lots the set of natural numbers, or any likewise discrete set. The

additional structure that the natural numbers provide can be used

to weaken the criterion for learning values in Paxos:

Definition 2. [Consecutive Quorum (CQ)] A quorum of acceptors

𝑄 = {𝛼1, . . . , 𝛼𝑛} is considered a Consecutive Quorum supporting

the value 𝑣 iff the set of ballots from the sent accept messages form

a consecutive multiset.

Using this definition, we can weaken the criteria for a value to

be considered Chosen in ballot 𝑖 to:
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Definition 3. [CQ Chosen] A value is chosen in ballot 𝑖 once there
is a majority quorum of acceptors that have sent 𝑎𝑐𝑐𝑒𝑝𝑡 messages

with matching values and the ballots form a consecutive multiset.

Additionally, at least one 𝑎𝑐𝑐𝑒𝑝𝑡 message must be sent in ballot 𝑖 .

Note that CQ Chosen is strictly weaker than the Classic Paxos

definition of Chosen. A classic majority quorum of matching 𝑎𝑐𝑐𝑒𝑝𝑡

messages is just a specific case of a Consecutive Quorum where all

the ballots are of the same number.

The safety of Classic Paxos relies on the intersection of quorums.

As long as a single quorum of acceptors sends matching 𝑎𝑐𝑐𝑒𝑝𝑡

messages to a learner, the chosen value is set in stone. Any future

proposer, before proposing any value, will first obtain a quorum

of 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 messages. At least one acceptor will participate in both

quorums. This ensures that only the chosen value could be proposed

in a future ballot. A learner learns that value 𝑣 is CQ Chosen in ballot
𝑖 once receiving 𝑎𝑐𝑐𝑒𝑝𝑡 messages from a majority of acceptors, with

matching values and the ballots form a consecutive multiset.

Learning with Consecutive Quorums does not affect the safety

of Paxos. Consecutive Quorums are still majority quorums that will

intersect with all other quorums. However, the ballot associated

with the acceptor in the intersection might be different than in

Classic Paxos without Consecutive Quorums. A valid Consecutive

Quorum contains acceptors that have accepted the same value but

from potentially different ballots. If the intersecting acceptor did

not have the highest numbered proposal from the Consecutive

Quorum, the definition of consecutive ballots ensures that there

cannot exist any ballots between the reported ballot and the highest

ballot in the Consecutive Quorum that could have a different value.

As a result, CQ Chosen guarantees that once a value is chosen, no

different value could also be chosen or learned.

Consider a set of 5 acceptors. For Classic Paxos to consider

value 𝑣 as chosen in ballot 𝑖 , at least 3 acceptors must send 𝑎𝑐𝑐𝑒𝑝𝑡

messages for 𝑣 in ballot 𝑖 . In the case where the learner observes

𝑎𝑐𝑐𝑒𝑝𝑡 messages from distinct acceptors for value 𝑣 in ballots 𝑖 − 2,

𝑖 − 1, and 𝑖 , Classic Paxos cannot learn a value. However, This

constitutes a valid Consecutive Quorum, and 𝑣 would be considered

learned. No other value could possibly be learned at this point.

4 ADDITIONAL USES OF CONSECUTIVE
BALLOTS

Beyond weakening the criterion for learning values, consecutive

ballots can be leveraged to weaken the criterion for proposing

values. A proposer can immediately propose a value after receiving

a 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 message from the consecutive previous ballot. In fact,

Heidi Howard in her thesis [7] observed that, once a proposer in

ballot 𝑛 receives a promise message from some ballot𝑚 < 𝑛, that

any promisemessages from ballots < 𝑚 contain no new information.

In the case that ballots are discrete, this can be extended such that if

𝑚 and 𝑛 are consecutive, the proposer can safely proceed to Phase

2 immediately. This can take place even before the proposer has a

full quorum of promise messages, which is the original criterion in

Paxos. A proposer in Classic Paxos can proceed to Phase 2 when

the classic criterion for proposing a value is met or the proposer
receives a 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 message from a consecutive previous ballot.

In addition to what Howard proposed, we show how the defini-

tion of Consecutive Proposals can be extended [5]. As observed in

Fast Paxos [12] for reconfiguration, receiving an 𝑎𝑐𝑐𝑒𝑝𝑡 message

relays the information that a 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 message from the same ac-

ceptor would also contain. With our model, an agent can operate as

multiple roles and could receive both 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 and 𝑎𝑐𝑐𝑒𝑝𝑡 messages.

This can be used to extend the definition of a Consecutive Proposal

to be valid if the proposer observes a 𝑝𝑟𝑜𝑚𝑖𝑠𝑒 message from an

acceptor that accepted a value in the previous ballot or an 𝑎𝑐𝑐𝑒𝑝𝑡

message from an acceptor in the previous ballot.

5 FORMAL VERIFICATION
Consecutive Quorums and Consecutive Proposals are not mutually

exclusive. We define Consecutive Paxos as a protocol which incor-

porates both Consecutive Quorums and Consecutive Proposals.

To validate our confidence in Consecutive Paxos, we make use of

formal verification to produce a mechanically-checked proof of its

correctness. We build on top of the existing work from IronFleet [6],

which showed that implementations of complex distributed systems

can be formally verified. We prove that a replicated state machine

built on an optimized version Multi-Paxos based on Consecutive

Paxos maintains linearizability of client requests.
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