
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Basilisk: Using Provenance Invariants
to Automate Proofs of Undecidable Protocols
Tony Nuda Zhang and Keshav Singh, University of Michigan; Tej Chajed,

University of Wisconsin-Madison; Manos Kapritsos, University of Michigan;
Bryan Parno, Carnegie Mellon University

https://www.usenix.org/conference/osdi25/presentation/zhang-tony

Basilisk: Using Provenance Invariants to Automate Proofs
of Undecidable Protocols

Tony Nuda Zhang
University of Michigan

Keshav Singh
University of Michigan

Tej Chajed
University of Wisconsin–Madison

Manos Kapritsos
University of Michigan

Bryan Parno
Carnegie Mellon University

Abstract
Distributed protocols are challenging to design correctly. One
promising approach to improve their reliability is to use for-
mal verification to prove that a protocol satisfies a desired
safety property. These proofs require finding an inductive
invariant that holds in the initial states of the system, im-
plies safety, and is inductive over state transitions. Devising
an inductive invariant is a difficult task that prior work has
either required the developer to find manually by a painful
search process, or automated by constraining the protocol to
a decidable but restrictive fragment of logic.

In this work, we aim to automatically find inductive invari-
ants without restricting the logic. We achieve this with two
key insights. First, many of the complex inter-host properties
that prior work required the developer to provide can instead
be expressed using Provenance Invariants, a class of invari-
ants that relate a local variable in a host to its provenance, i.e.,
the protocol step that caused it to take on its current value. By
tracing the provenance of one host variable back to another
host’s actions, we can derive an invariant relating the two
hosts’ states. Second, we develop an algorithm called atomic
sharding to derive Provenance Invariants automatically by
statically analyzing the protocol’s steps.

We implement these ideas in a tool called Basilisk and ap-
ply it to 16 distributed protocols, including complex ones like
Multi-Paxos. Basilisk automatically finds inductive invariants
and proves their inductiveness, with little or no developer as-
sistance. In all cases, these generated inductive invariants are
sufficient for us to prove safety without needing to identify
any new invariants.

1 Introduction

Distributed protocols are notoriously difficult to design and
implement correctly. After decades of relying on testing to de-
velop robust protocols, in the last ten years many researchers
and developers have turned to formal verification as an attrac-
tive alternative [2, 16, 24, 30, 31, 33, 36]. In this approach, the

developer typically proves that some desirable safety property
(e.g., no two nodes hold a lock at the same time) is maintained
throughout all executions of the protocol.

Unfortunately, a safety property is, on its own, often too
weak to support an inductive argument. Instead, one typically
proves safety by finding a stronger property, called an induc-
tive invariant, that satisfies the following three conditions:
(1) it implies the safety property, (2) it holds in the initial
states of the system, and (3) it is maintained by all steps. The
developer must find such an inductive invariant and prove it
meets these conditions in order to complete their proof.

In recent years, researchers have proposed a series of
algorithms and tools that derive and prove these invari-
ants automatically, with little to no input from the devel-
oper [7, 9, 13–15, 21, 28, 37, 38]. However, such approaches
share a major obstacle to their practicality: they require the
target protocols to be written within a decidable logic, such as
effectively propositional reasoning (EPR [29]). Expressing a
protocol in EPR is itself a challenging endeavor [26]. As an ex-
ample of its restrictiveness, EPR prohibits common program-
ming patterns such as the use of arithmetic (e.g., i := i+1).

Rejecting the restrictions of EPR allows the developer to
write their protocols naturally, but such freedom comes at a
cost. Working in an undecidable logic means that the devel-
oper must manually derive and prove an inductive invariant
for each protocol. As many have observed [9, 21, 37, 38], this
requires significant effort. A key difficulty stems from the
iterative and creative nature of finding a correct inductive
invariant. It is hard to know a priori what the clauses in an
inductive invariant should be. Rather, the developer starts with
their best guess, then repeatedly attempts to prove the induc-
tiveness of their current guess, gradually narrowing in on a
correct inductive invariant. Developing an invariant this way is
labor intensive. For instance, the authors of IronFleet [10, 11]
report spending months to identify and prove an inductive
invariant for the Multi-Paxos protocol [18, 19].

Recently, Kondo [40] showed how to automatically find
small portions of the inductive invariant. Unfortunately, much

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 1

of the remaining portions, particularly the conceptually dif-
ficult ones—those expressing inter-host properties that span
multiple hosts and protocol steps—were left to the devel-
oper’s intuition. For example, Kondo’s proof of Paxos [19]
required 20 such properties, which anecdotally took experts
two person-weeks to derive.

In this work, we set our sights on a more ambitious goal of
automatically finding inductive invariants in an undecidable
setting. Of course, by the very nature of undecidability, this is
an impossible task to achieve for all protocols. And yet, with
the right insights, we believe this problem can be solved for
many practical, complex protocols, much like how modern
SAT solvers can solve large practical instances in reasonable
time, despite SAT being an NP-hard problem.

We achieve this ambition based on two insights, which
together drastically increase the amount of automation that
we can achieve in finding inductive invariants.

Our first insight is that inter-host properties, which prior
work delegated to the developer’s intuition [11, 40], can be
proven as a consequence of multiple simpler invariants that
relate host states to network messages. For example, if host
R’s current state is x = 5, that can be traced back to the proto-
col step that most recently updated x based on some received
message M, usually based on some field of M. Message M
can in turn be traced back to the state of the message’s sender,
S, creating a causal chain between the hosts R and S that is
invariant. We introduce Provenance Invariants as a way to
keep track of this lineage. Provenance Invariants are always
derived by statically inspecting the steps of single hosts in
isolation, which makes them much more intuitive and frees
the developer from deriving complex, inter-host properties.

The use of Provenance Invariants, however, creates a new
challenge, as we now have a much larger number of simple
invariants to generate. Recent prior work [40] automatically
generates only one of the three categories of such invariants:
those related to steps that send network messages. The other
two categories, namely, invariants related to receiving mes-
sages and local steps, were either only partially automated or
not supported at all.

Our second insight allows us to significantly automate the
tracking of provenance through the system’s execution. We
observe that if a part of a host’s state, which we call a shard,
is always updated atomically—no steps modify only some
variables in the shard but not others—then we can automat-
ically track the provenance of this shard to one of the steps
that modify it. Concretely, if a shard is in a non-initial state, it
means that one of the steps that modify it must have occurred.
We propose an atomic sharding algorithm to determine such
shards and generate Provenance Invariants from them.

Using these insights, we developed Basilisk, a tool that uses
Provenance Invariants and atomic sharding to automatically
derive inductive invariants and prove their inductiveness for a
wide variety of distributed protocols, with the help of minor
hints from the developer. In doing so, Basilisk relieves devel-

opers from manually formulating an invariant and proving
its inductiveness. This allows the developer to focus their ef-
forts on the final task, using the Basilisk-generated inductive
invariant to prove the desired safety property. This remain-
ing proof is conceptually significantly easier, as it does not
involve identifying an inductive invariant.

We evaluate Basilisk’s utility by applying it to 16 protocols,
including notoriously complex ones like Multi-Paxos [19].
Our evaluation shows that in all cases, the inductive invariants
of these protocols can be expressed using simple Provenance
Invariants that can be derived from a single host’s steps. We
further show that Basilisk can find all the inductive invariants
for all 16 protocols almost fully automatically.

In summary, this paper makes the following contributions.

• It advances the state-of-the-art in automatic invariant
inference by structuring inductive invariants as a collec-
tion of simple invariants that can be derived from the
protocol steps of individual hosts.

• It introduces atomic sharding, a technique that allows
us to automatically track the provenance of host states
through the protocol’s execution.

• It introduces Basilisk, a tool that uses the above tech-
niques to automatically derive the inductive invariants
of a wide range of distributed protocols, with only occa-
sional minor hints from the developer.

2 The Burden of Inductive Invariants

Proving that a distributed protocol is safe entails defining a
desirable safety property ϕ (e.g., that all nodes reaching a
decision agree on the outcome) and then showing that ϕ is
an invariant (i.e., that ϕ holds in all reachable states of the
protocol’s execution).

In all but the most trivial protocols, however, ϕ is not an in-
ductive property, even if it is indeed an invariant. This means
that there exist (unreachable) states satisfying ϕ that can tran-
sition to an unsafe state. Because it is not possible to decide
whether a given state is reachable, proving ϕ’s invariance
requires identifying a stronger property representing an over-
approximation of the set of reachable states—an inductive
invariant I—that (1) implies ϕ, (2) holds in the initial state,
and (3) is inductive, meaning that if I holds in some state, it
holds after the protocol takes one step from that state. Typi-
cally, I is expressed as the conjunction of a series of smaller
invariants, I = I1 ∧·· ·∧ Im.

According to conventional wisdom, if we reject the onerous
restrictions of decidable logics (§1), then finding an inductive
invariant is a creative and laborious endeavor. Even after de-
signing the protocol, the developer typically does not know
all of the clauses needed to construct an inductive invariant.
Instead, the developer begins with an educated guess of a can-
didate invariant, and then follows an iterative invariant-proof

2 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Regular
Invariants

Provenance Monotonicity Ownership

Network Host

local-level reasoning

Figure 1: Our invariant taxonomy. We introduce the concept
of Provenance Invariants, while Monotonicity Invariants and
Ownership Invariants are originally introduced in Kondo [40].

loop: they attempt to prove that the candidate invariant is
inductive, fail to complete the proof, and then refine the candi-
date based on feedback gained from the proof attempt. Each
iteration involves writing proof code and creatively devising
changes to the candidate invariant. Unfortunately, it might
take many iterations before the developer arrives at a correct
inductive invariant and proof. Indeed, in frameworks such as
IronFleet [10] that require the developer to manually devise
and prove inductive invariants, such a process reportedly took
months for complex protocols like Multi-Paxos.

Recently, Kondo [40] took a first step towards automating
this burdensome invariant-proof loop. It proposes an invariant
taxonomy that carves out a category of invariants that can be
systematically derived, so that only the remainder need to be
hand-written by the user. Kondo observes that these manually
written invariants often talk only about host state and not the
network, but this simplification does not spare the user from
going through the invariant-proof loop. Coming up with the
required properties often requires a deep understanding of
why the protocol works, since the properties span multiple
hosts and steps, and cannot be easily derived from the protocol
description. This understanding can be difficult to translate
to an invariant even for the protocol’s designer, let alone a
verification engineer working with an existing protocol.

3 Expressing Inductive Invariants with Only
Regular Invariants

We present how we use only simple, mechanically derivable
invariants—called Regular Invariants—to craft inductive in-
variants that prove the safety of distributed protocols.

Regular Invariants (Figure 1) are a class of invariants in-
troduced in Kondo’s invariant taxonomy [40]. The defining
feature of Regular Invariants is that they capture localized
properties, which can be easily derived by examining steps
of individual hosts in the protocol, without concern for how
hosts interact. As a result, they are both easy for developers

1: datatype Preference = Yes | No

2: datatype Decision = Abort | Commit

3: datatype Message =
4: VOTE(v: Preference, src: nat) | DECIDE(d: Decision)

5: datatype Option⟨T⟩ = None | Some(v: T)

6: datatype Coordinator = Variables(
7: numParticipants: nat, // some constant N
8: decision: MonotonicOption⟨Decision⟩, // initially None
9: yesVotes: MonotonicSet⟨nat⟩, // initially empty

10: noVotes: MonotonicSet⟨nat⟩ // initially empty
11:)

12: datatype Participant = Variables(
13: hostId: nat, // unique identifier ∈ [0,N)
14: preference: Preference, // non-deterministic constant
15: decision: MonotonicOption⟨Decision⟩ // initially None
16:)

Figure 2: Hosts and message states of the Two-Phase Commit
protocol. Since there is only one coordinator, the coordinator’s
identifier is implicit. Moreover, since VOTE messages are
destined for the coordinator, and DECIDE is broadcast to every
participant, we omit their destination fields. MonotonicSets
are add-only, while MonotonicOptions are write-once.

to derive manually and well-suited to automation. As a sub-
class of Regular Invariants, Monotonicity Invariants capture
the “add-only” nature of data types such as monotonic coun-
ters, grow-only sets, and append-only lists, by asserting how
their values may evolve during an execution. Another sub-
class is Ownership Invariants, which describe the ownership
of unique resources in the system. We use these subclasses
unchanged from Kondo’s invariant taxonomy.

Our key insight is that a new class of Regular Invariants,
which we call Provenance Invariants (§3.2), can be used to
express both inter-host (§3.3) and intra-host (§3.4) proper-
ties in distributed protocols. These properties were previ-
ously beyond the scope of Regular Invariants and automation
tools [40], leaving developers to manually derive and prove
them. With the introduction of Provenance Invariants, we can
express these properties, and in turn entire inductive invari-
ants of distributed protocols, using only Regular Invariants.
We present our algorithm to automatically derive Provenance
Invariants in §4.

To ground our discussion, we use the classic Two-Phase
Commit protocol as a running example in the rest of the paper.

3.1 Running Example: Two-Phase Commit
In this protocol, a group of participants work with a single
coordinator to decide whether to abort or commit a transaction.
Figure 2 specifies the states of hosts in the system.

The protocol runs as follows, with Figure 3 formally defin-
ing some of these steps:

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 3

1: // Local computation that doesn’t receive or send messages
2: step CoordinatorMakeDecision(
3: v: Coordinator, v′: Coordinator)
4: ∧ v.decision = None
5: ∧ if |v.yesVotes|= v.numParticipants then
6: v′ = v.(decision := Some(Commit))
7: else if |v.noVotes|> 0 then
8: v′ = v.(decision := Some(Abort))
9: else

10: v′ = v
11:
12: step CoordinatorSendDecide(
13: v: Coordinator, v′: Coordinator, send: Message)
14: ∧ v.decision.Some?
15: ∧ send = DECIDE(v.decision.value)
16:
17: step ParticipantReceiveDecision(
18: v: Participant, v′: Participant, recv: Message)
19: ∧ recv.DECIDE?
20: ∧ v.decision = None
21: ∧ v′ = v.(decision := Some(recv.d))
22:

Figure 3: Some examples of the hosts’ steps in the Two-Phase
Commit protocol. Each step defines a relation between a
host’s current state v and its new state v′ after taking the step.
Expressions of the form v′ = v.(X := Z) indicates that v′ is
identical to v except for the field v′.X , which has the value
Z. Note that we use the conjunction operator ∧ to denote a
bulleted list of conjuncts, and the ‘?’ syntax is used to assert
if a value is of a particular type or variant.

a1. A single coordinator and N participants are initialized.

a2. Participants send their preferences to the coordinator
through VOTE messages.

a3. Upon receiving a VOTE message, the coordinator up-
dates its yesVotes or noVotes appropriately.

a4. If the coordinator has obtained Yes votes from every
participant, it decides Commit. Otherwise, if it received
a No vote, it decides Abort (CoordinatorMakeDecision
step in Figure 3).

a5. Once the coordinator makes a decision, it broadcasts it
as a DECIDE message (CoordinatorSendDecide).

a6. A participant, on receiving a DECIDE message, sets its
local decision to match (ParticipantReceiveDecision).

The safety property we want to prove is that if any partici-
pant decides Commit, then every participant’s local preference
must be Yes.

3.2 Provenance Invariants and Execution His-
tories

Provenance Invariants are expressed using the notion of
history-preservation [40]. A history-preserving protocol
model augments a host’s current state with an append-only
log of previous states, referred to as its history. This history
captures a snapshot of every state a host transitions through,
from its initial state to its current state.

Formally, a Provenance Invariant connects a property of the
current state of the system to how an adjacent pair of states in
a host’s history must be related by the host taking some step,
where this step is one that made the property true. We define
two categories of Provenance Invariants.

First, a Network-Provenance Invariant relates a message
m in the network to the execution of one of a few host steps
T1, . . . ,Tj that must have sent it. Formally:

m ∈ network =⇒ ∃ i : T1(hist[i], hist[i+1],m)

∨ . . .

∨ Tj(hist[i], hist[i+1],m)

where hist is the history sequence of m’s sender. This disjunc-
tion of steps is necessary because it is not always possible to
attribute the provenance of a message to a unique step, such
as when multiple steps send the same message.

In our Two-Phase Commit example, the following state-
ment is a Network-Provenance Invariant:

“For every DECIDE message m in the network, there must
be adjacent states v, v′ in the coordinator’s history such
that CoordinatorSendDecide(v,v′,m).”

(Decide-Msg-Provenance)

Second, a Host-Provenance Invariant relates a local prop-
erty q of a host’s current state hcur—which we call a prove-
nance witness—to one of a few steps the host must have taken
in order for the local property to be satisfied. This witness q
must be a property that is not true in any initial states of the
host. Formally, with hist as the history sequence of the host
in question:

q(hcur) ∧
(
∀ h : ¬(HostInit(h)∧q(h))

)
=⇒ ∃ i :

¬ q(hist[i]) ∧ q(hist[i+1])
∧ (T1(hist[i], hist[i+1])

∨ . . .

∨ Tj(hist[i], hist[i+1]))

Again, we have a disjunction of steps because it is possible
that there is more than one step that makes q true.

For example, the following is a Host-Provenance Invariant
in Two-Phase Commit, with its antecedent serving as the

4 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

provenance witness:

“If a participant’s decision is Commit, there
must be adjacent states v, v′ in its history, to-
gether with a received message m, such that
ParticipantReceiveDecision(v,v′,m).”

(Participant-Decision-Provenance)

Crucially, every individual Provenance Invariant is induc-
tive, due to the immutable nature of execution histories. For in-
stance, consider the property Decide-Msg-Provenance above.
It is trivially inductive because for any message in the net-
work, the fact that the sender performed a step that sent it is
forever recorded into the history, so there is no subsequent
transition that ever can make this invariant false. We leverage
this feature to automatically generate inductive invariants of
distributed protocols (§5.3).

3.3 Expressing Inter-Host Relationships Using
Provenance Invariants

We demonstrate that global relationships between remote
hosts—which prior work [10, 40] asked the developer to cre-
atively supply and manually prove—can actually be expressed
as conjunctions of well-chosen Host-Provenance Invariants
and Network-Provenance Invariants.

To illustrate, consider the inter-host property:

“If some participant decided Commit, then the coor-
dinator also decided Commit.”

(Participant-Agreement)

This property is a clause in the inductive invariant of Two-
Phase Commit that Kondo [40] required developers to craft
manually.

Using Provenance Invariants, we can imply Participant-
Agreement by the conjunction of Participant-Decision-
Provenance and Decide-Msg-Provenance. In particular, sup-
pose that a participant host h decided Commit. Then by
Participant-Decision-Provenance, h must have executed
step ParticipantReceiveDecision. By the body of this step
(Figure 3), we know that h received a message m =
DECIDE(Commit) from the network. Next, we infer from
Decide-Msg-Provenance that m’s sender (namely, the coor-
dinator), must have sent m via step CoordinatorSendDecide .
This step itself says the coordinator’s decision agrees with the
message at the time of sending. Given that the coordinator
does not equivocate on its decision, we arrive at our conclu-
sion that the coordinator’s current decision is also Commit.

More formally, when a host r updates its state upon receiv-
ing a message m, we can trace this update to the execution of
some step Tr via a Host-Provenance Invariant. This induces
a relationship β(r,m) between the updated host state and m,
given directly by Tr’s specification. In addition, the receipt
of m implies, via a Network-Provenance Invariant, that m’s
sender s executed a step Ts that sent m. This creates another

relationship α(s,m) relating the host s and the message m,
given by Ts’s specification. When taken together, α and β

imply some inter-host relationship between s and r, namely,
∃m : α(s,m) ∧ β(m,r). By transitively chaining such argu-
ments, we can derive relationships between the head and tail
hosts of a causal chain of messages.

The above argument establishes how inter-host properties,
which logically connect the state of recipient hosts to the
state of sender hosts, may be implied using Provenance In-
variants. With this technique, inductive invariants do not need
to explicitly describe inter-host properties, which prior work
like IronFleet and Kondo required users to creatively and la-
boriously produce. Instead, they are replaced with simpler,
localized Provenance Invariants.

3.4 Expressing Local Properties Using Prove-
nance Invariants

Beyond inter-host properties, an inductive invariant may also
describe local properties of individual hosts. One example is:

“If the coordinator decided Commit, then its
yesVotes set is of size numParticipants.”

(Coordinator-Decision-Provenance)

Prior work [10, 40] required the user to manually derive such
properties. We capture them with ease using Host-Provenance
Invariants, which lend themselves to automation (§4).

Our observation is that local properties such as
Coordinator-Decision-Provenance can be attributed to
local computation steps, i.e., steps that do not receive a
message. Examples of such steps include those that are
triggered by a timeout or local conditions.

Just as a Host-Provenance Invariant may trace the prove-
nance of a state update at a host to a step that receives a
message, it may likewise trace it to a local computation step.
For instance, to derive Coordinator-Decision-Provenance, the
Host-Provenance Invariant:

“If the coordinator decided Commit, then it must
have executed step CoordinatorMakeDecision .”

attributes the coordinator’s Commit decision to step Coordina-
torMakeDecision . This step itself says that for the coordinator
to decide Commit, it must have satisfied in a previous state
the enabling condition that it has gathered Yes votes from
every participant. Then, given the monotonic add-only nature
of the yesVotes set, we conclude that yesVotes set is of the
threshold size.

The next section presents our technique for automatically
deriving the Provenance Invariants that underpin our proofs.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 5

4 Automating Provenance Invariants With
Atomic Sharding

To get the most out of expressing inductive invariants using
only Regular Invariants, we aim to derive the required Prove-
nance Invariants automatically given a distributed protocol.
We first explain a new atomic shard principle to describe a
category of mechanically derivable Host-Provenance Invari-
ants (§4.1). We then present an atomic sharding algorithm to
automatically derive invariants based on this principle (§4.2).
Finally, we explain how we derive Network-Provenance In-
variants (§4.3).

4.1 Automating Host-Provenance with the
Atomic Shard Principle

To automatically derive Host-Provenance Invariants, we first
identify a set of useful provenance witnesses. For each witness
q, we then determine the set of candidate steps that could
affect its provenance. Whenever q holds, we know that at
least one of these steps must have been executed.

We propose the atomic shard principle to meet this goal.
First, we define a shard to be a subset of a host’s local vari-
ables. A shard σ is atomic if all variables in the shard are
always updated “atomically”—there are no protocol steps
that only modify some variables within σ but not others. Each
atomic shard σ is then associated with the set of steps Aσ that
modify its variables.

The atomic shard principle states that when the current
value of some variable in an atomic shard σ differs from
its initial value, then every variable in this shard must have
attained their current values through an atomic step in Aσ.

From this principle, we obtain one Host-Provenance In-
variant per atomic shard. Formally, let σ := {x1, . . . ,xk} be an
atomic shard of a host, and suppose Aσ := {T1, . . . ,Tj} are the
protocol steps that modify this shard. Then, given that hcur is
the host’s current state, we first define a provenance witness
as the predicate:

q(h) := (h.x1 = hcur.x1) ∧ . . . ∧ (h.xk = hcur.xk)

The atomic shard principle tells us that if the host’s current
state satisfies q, and if q is not true in any initial states of the
host, then variables x1 through xk must have attained their
current values when the host executed one of the steps in
Aσ at some point in its history. This is the Host-Provenance
Invariant:

q(hcur) ∧
(
∀ h : ¬(HostInit(h)∧q(h))

)
=⇒ ∃ i :

¬ q(hist[i]) ∧ q(hist[i+1])
∧ (T1(hist[i], hist[i+1])

∨ . . .

∨ Tj(hist[i], hist[i+1]))

where hist is the history sequence of the host.
As a concrete example, consider the Host-Provenance In-

variant Participant-Decision-Provenance from §3.2. We ob-
serve that {decision} is an atomic shard at the participant
host, and ParticipantReceiveDecision is the only step that
modifies this shard. From this, we infer Participant-Decision-
Provenance:

hcur.decision = Some(Commit) =⇒ ∃ i :
hist[i].decision ̸= Some(Commit)
∧ hist[i+1].decision = Some(Commit)
∧ ParticipantReceiveDecision(hist[i], hist[i+1])

4.2 Atomic Sharding Algorithm
We present an atomic sharding algorithm to automatically
identify atomic shards σ and their associated steps Aσ. This
occurs in three phases. First, we estimate the footprint of
each host step. Second, we analyze how footprints intersect to
identify atomic shards. Finally, we further refine each shard
to more effectively handle collection-type variables such as
sets and maps.

Estimating footprints. We define a host step’s footprint to
be a set of local variables that the step may modify. For each
step, we estimate its footprint via a static analysis of the host’s
description. §5.3 describes how we implement this analysis
in practice.

Importantly, it is safe to overestimate a step’s footprint,
which our syntax-based approach inevitably does—a footprint
may contain variables that the step never modifies, or variables
that may only be conditionally updated. Too much overestima-
tion, however, leads to weaker and less useful invariants. On
the other hand, our algorithm never underestimates footprints,
which would result in incorrect invariants.

Our algorithm (and hence the Basilisk tool—§5) currently
rejects a protocol if it contains a footprint with two variables
that are conditionally updated via different conditions. For
example, it prohibits a step that either updates x or y with
the expression “if c then x := 5 else y := 6”. This restriction
does not sacrifice generality, as any such step may be equiv-
alently written as two steps, with the enabling condition c
for a step that updates x and ¬c for another that updates y,
respectively. We currently rely on the developer to perform
such transformations wherever they are needed.

Computing maximal atomic shards. Next, we identify
atomic shards by analyzing footprint intersections to find
subsets of host variables that are always updated atomically.

This extraction process is best visualized using a Venn
diagram. Let steps S1, S2 and S3 be the three steps that a
hypothetical host takes. The ovals F1, F2 and F3 in Figure 4
represent the respective footprints of these steps. By definition,
each partition in the Venn diagram is an atomic shard:

6 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Footprint
of step

Footprint
of step

Footprint
of step

Variables of a host

Figure 4: The footprints of three steps of a hypothetical host.
Regions W through Z represent maximal atomic shards.

• region W := F1 \F2, with associated steps AW := {S1},

• region X := F1 ∩F2, with AX := {S1,S2},

• region Y := F2 \F1, with AY := {S2}, and

• region Z := F3, with AZ := {S3}.

This process extracts maximal atomic shards, which are
ones where adding an additional variable to it would violate
its atomicity. In most cases, maximal atomic shards provide
greater utility over ones that are non-maximal. To illustrate,
consider a host with two local variables x and y, and {x,y} is
a maximal atomic shard modified by a single step T . Suppose
T receives a message m and sets x := m.x and y := m.y. The
atomic shard principle yields the Host-Provenance Invariant:

“If x or y do not hold their initial values, then they
must have obtained their current values through a
message m, where m.x = x and m.y = y.”

However, if we split {x,y} into non-maximal atomic shards
{x} and {y}, we obtain two invariants:

• If x does not hold its initial value, it must have obtained its
current value through a message m1, where m1.x = x; and,

• if y does not hold its initial value, it must have obtained its
current value through a message m2, where m2.y = y.

This is strictly weaker than the single invariant we draw from
the maximal shard. For instance, we can no longer prove the
existence of a singular message m that satisfies both m.x = x
and m.y = y.

Additional refined atomic shards. In the special case when
shards contain collection-type variables (e.g., sets and maps),
however, maximal atomic shards yield limited benefit. This is
because these collection types “collapse” provenance, making
it difficult to relate them to other fields.

To demonstrate, consider a host with two local variables
x: int and s: set⟨int⟩, where the latter is initially empty, and
suppose {x,s} is a maximal atomic shard that is modified by
a single step T . Further suppose that T receives a message m

and sets x := m.x and adds m.y to s. Using the {x,s} shard,
we infer the Host-Provenance Invariant:

“If x or s do not hold their initial values, then they
must have obtained their current values through T .”

However, this is not strong enough for us to trace the prove-
nance of the host’s current state to the message that led to
that state, which is the primary benefit of a Host-Provenance
Invariant. In particular, we cannot say:

“For all items e in s, if e is not initially in s or x
does not hold its initial value, then there must be a
message m with m.x = x and m.y = e.”

This property is false because e may have arrived in a message
m̂ with m̂.x = x̂ ̸= x, and x was subsequently updated to its
current value by a completely different message.

Hence, to trace the provenance of specific items in col-
lections such as s, we further identify refined atomic shards
that package every collection-type variable in its dedicated
(non-maximal) shard.

With refined shard {s}, we can reason about the step that
introduced each individual item in s:

“For all items e in s, if e is not initially in s, then e
must have been added to s through T .”

which establishes the additional fact that the host received a
message m where m.y = e for every e in s.

Finally, note that while atomic sharding always generates
correct invariants, it does not cover the space of all Host-
Provenance Invariants. There are instances where it may fail
to capture necessary properties, and hence the developer must
supply an additional hint. We describe these hints in §5.4 and
characterize the scenarios requiring them in §6.4. However,
our evaluation shows that such cases are rare in practice.

4.3 Automating Network-Provenance

The procedure for generating Network-Provenance Invari-
ants is much simpler. For each message variant M defined in
the protocol, we identify a set of steps {T1, . . . ,Tj} that send
messages of variant M. We then infer the following Network-
Provenance Invariant:

∀ m : variant(m) = M ∧ m ∈ S.network

=⇒ ∃ i :
(
T1(hist[i], hist[i+1], m)

∨ . . .

∨ Tj(hist[i], hist[i+1], m)
)

where hist is the history sequence of m’s sender.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 7

Protocol
definition

1 2

History-preserving
asynchronous
protocol

Basilisk generates

3
Inductive

Invariant
and proof of

inductiveness

Proof that
implies safety

spec

4

User hints (if needed)

Figure 5: Basilisk workflow. Shaded bubbles represent artifacts that the user writes, while white boxes represent artifacts that
Basilisk generates. In a few cases, the user may discover while writing the proof in step ➍ that the inductive invariant I generated
in ➌ is too weak. In such cases, the user provides hints (the dashed arrow) that enable Basilisk to generate a stronger invariant.

5 Proving Protocols With Basilisk

Armed with the power and simplicity of Provenance Invari-
ants, we design and implement Basilisk, a tool that finds the
inductive invariants of distributed protocols with minimal
guidance from the user.

Basilisk is designed for protocol models written in gen-
eral verification frameworks such as Dafny [20], where de-
termining the inductiveness of an invariant is an undecidable
problem. It targets asynchronous message passing systems in
which hosts communicate over an unreliable network that may
arbitrarily delay, drop, duplicate, or re-order messages. We
choose this network model for its generality and prevalence in
real systems. While we do not explore stronger models in this
work, we expect that their stronger guarantees would enable
us to generate stronger invariants.

We implement the Basilisk prototype by modifying the
Kondo codebase [39], which itself extends the Dafny version
4.2 verifier [1]. Overall, Basilisk’s implementation adds about
2,000 lines of C# code to the Dafny verifier.

Figure 5 illustrates the Basilisk developer workflow.
Step ➊: The developer starts by defining the hosts in the
protocol, including their initialization conditions and local
state transitions. Step ➋: Basilisk automatically generates a
history-preserving asynchronous protocol Ph. It models an
asynchronous network and maintains the execution history
of hosts. Step ➌: Basilisk generates an inductive invariant
of Ph, along with a proof of its inductiveness. Step ➍: The
user proves that this inductive invariant implies the protocol’s
safety property. In rare instances, to complete this proof, the
user may need to provide hints so that Basilisk will produce a
stronger inductive invariant.

5.1 Step ➊: Protocol Definition

The user defines the state and protocol steps of each type of
host in the system (e.g., Figures 2 and 3). Each step may send
a message (including broadcast), receive a message, perform
both send and receive, or do neither. This is a more permissive
model than Kondo, which prohibits steps that both send and

receive. Basilisk extends easily to steps that send or broadcast
more than one message; we did not implement that as none
of the protocols in our evaluation required such a feature.

The user then defines a Hosts record representing the state
of all hosts in the system. Each field in the record is a list of
hosts of a particular type. For example, in Two-Phase Commit:

datatype Hosts = Hosts(coordinators: seq⟨Coordinator⟩,
participants: seq⟨Participant⟩)

The user then describes the initial states of Hosts using a
HostsInit predicate. Typically, this specifies that each host
satisfies its own local initial conditions, together with some
global state constraints. For instance, in Two-Phase Commit:

predicate HostsInit(s: Hosts)
∧ |s.coordinators |= 1
∧ CoordinatorInit(s.coordinators[0], |s.participants|)
∧ ∀ id :

(
0 ≤ id < |s.participants| =⇒

ParticipantInit(s.participants[id], id)
)

where CoordinatorInit and ParticipantInit circumscribe the
initial states of the coordinator and participant hosts.

Finally, the user defines a state transition relation for each
host in the system. This is a disjunction of the possible steps
that the host can take. For example, the coordinator in Two-
Phase Commit has the transition relation:

predicate CoordinatorNext(h: Coordinator, h′: Coordina-
tor, send: Message, recv: Message)

∨ . . .
∨ CoordinatorSendDecide(h,h′,send)
∨ CoordinatorMakeDecision(h,h′)

where CoordinatorSendDecide and CoordinatorMakeDeci-
sion are defined in Figure 3.

Monotonicity hints. Like in Kondo [40, §3.1], the user la-
bels monotonic variables, such as grow-only sets, when spec-
ifying hosts. These types implement a less-than-or-equal-to
(lteq) partial order relation that captures their monotonic prop-
erties, which Basilisk uses to express Monotonicity Invariants
in step ➌.

8 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5.2 Step ➋: Asynchronous Protocol Model

With the above inputs, Basilisk generates a history-preserving
asynchronous protocol Ph. This model includes a sequence
history where each entry is a snapshot of all hosts in the sys-
tem, with the latest entry representing their current state. The
global state of the protocol contains this history, together with
an asynchronous network that is modeled as a monotonically
increasing set of sent messages:

datatype GlobalState = GS(history: seq⟨Hosts⟩,
network: set⟨Message⟩)

Similar to prior work [10, 40], the protocol’s behavior is
expressed using the temporal logic of actions (TLA [17]) as
a state machine that can perform a non-deterministic series
of atomic steps. At first, history holds only the initial state of
the system, and the network has no messages:

predicate Init(S: GlobalState)
∧ |S.history |= 1
∧ HostsInit(S.history[0])
∧ S.network = /0

In each transition of the system, a non-deterministically
chosen host performs a non-deterministically chosen local
step. If this step involves the host receiving a message, then
the message must be from the network set and addressed to
the receiver host. If the step involves sending a message, the
message is added to the network set, with the sender host
marked as its source. Moreover, the new Hosts snapshot is
appended to the history sequence:

step Next(S: GlobalState, S′: GlobalState)
∧ |S.history | ≥ 1
∧ S.history = trunc(S′.history)
∧ SystemNext(last(S.history), S.network,

last(S′.history), S′.network)

Here, given a sequence s, trunc(s) yields s with the last item
removed, while last(s) returns the last item. SystemNext de-
scribes how the current state of hosts and the network changes
as the result of the step, calling upon the host transition rela-
tions the user defined in step ➊.

5.3 Step ➌: Generating Regular Invariants

From Ph, Basilisk automatically generates an inductive in-
variant I. This I is expressed as the conjunction of a series of
Regular Invariants. This includes Provenance Invariants and
Monotonicity Invariants. There is a final category, Ownership
Invariants, which we inherit from Kondo [40, §3.1], but omit
from this discussion as it is not the focus of this work.

Basilisk automatically generates Provenance Invariants us-
ing the atomicity principle described in §4. To compute foot-
prints, Basilisk relies on parsing Dafny’s state update syntax.

There are two formats with which a host step may mod-
ify local state. The first uses Dafny’s state update syntax
v′ = v.(Z1 := X1, . . . ,Zk := Xk). This expression means that
host state v′ is identical to current state v except for the fields
Z1 through Zk, which are assigned the values X1 through
Xk, respectively. The second format expresses some relation
r(v′.Z, v, m) between an updated field v′.Z, the current host
state v, and any incoming message m. For simplicity, the
Basilisk prototype permits only the former update syntax.

Meanwhile, Basilisk inherits Kondo’s technique for gener-
ating Monotonicity Invariants. For each monotonic variable
specified in step ➊, Basilisk generates an invariant stating that
the variable satisfies its lteq relation as its value evolves over
history. Such invariants assert the monotonic nature of their
data types (e.g., the coordinator host’s non-equivocation of its
decision when proving Participant-Agreement in §3.3), and
are crucial in stating how some properties that are true of a
host’s past state are also true in its present state.

Finally, Basilisk also produces a mechanically checked
proof of I’s correctness. Namely, given a pair of global states
S and S′, the proof shows that Init(S) implies I(S) and that
Next(S, S′) ∧ I(S) implies I(S′). Given the mechanical and
local nature of Regular Invariants, and the fact that each indi-
vidual Provenance Invariant is inductive (§3.2), these proofs
follow a systematic structure and are easy to formulate.

5.4 Step ➍: Proving Safety
Finally, let ϕ(h: Hosts) be the protocol’s safety property. The
user employs the inductive invariant I generated in the pre-
vious step to prove that ϕh(S) := ϕ(last(S.history)) is an in-
variant in Ph. This involves two proof obligations proven as
lemmas in Dafny, to show that I(S)∧ϕh(S) is an inductive
invariant. They are:

Ob1. Init(S) implies I(S) ∧ ϕh(S); and,

Ob2. I(S) ∧ ϕh(S) ∧ Next(S, S′) implies I(S′) ∧ ϕh(S′).

This procedure requires some creativity from the user, to
show how a collection of simple Regular Invariants imply
that, say, all hosts agree on the decision value in a consensus
protocol. It is, however, a much more straightforward and well-
defined task compared to IronFleet or Kondo. Here, the user
concentrates only on proving safety using I, which is already
inductive, and avoids going through the invariant-proof loop
(§2) to discover an inductive invariant.

Possible failure modes. When trying to prove the above
obligations, the user may fail in two ways. First, although
Basilisk only generates correct inductive invariants, they may
not be strong enough to establish safety. Our evaluation (§6.4)
shows that this is usually because the atomic sharding algo-
rithm cannot generate every correct Host-Provenance Invari-
ant. As a remedy, the user manually supplies the provenance

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 9

witness for a desired Provenance Invariant as a hint to Basilisk,
explaining how some particular host transitions affect local
state (represented by the dashed arrow in Figure 5). Such
hints are usually quite straightforward to provide, requiring
far less effort than global, inter-host invariants.

Second, the protocol definition written in step ➊ may be
incorrect, meaning it contains a step that violates safety.

Basilisk handles both failure modes gracefully. With
Basilisk, the user proves safety in a modular fashion by show-
ing that it holds across each protocol transition. As a result,
when verification fails, the verifier advises the user on the
exact host step where the proof breaks down. This helps the
user identify which invariants may need to be strengthened or
where a potential protocol bug might reside.

6 Evaluation

To assess the Basilisk methodology, we apply it to a diverse
set of distributed protocols, listed in Table 1. This list is in-
formed by our experience in designing and implementing
distributed protocols, and seeks to cover the space of common
protocols. We used the protocols in the first block in Table 1,
namely Echo Server, Ring Leader Election, Simple Leader
Election, Paxos, Paxos-Combined and Paxos-Dynamic, to de-
velop and refine the concepts of Provenance Invariants and
atomic sharding, before applying it to the remaining protocols
in the second block. Notably, every protocol and its induc-
tive invariant is outside of the EPR decidable fragment of
logic [29].

We specify each protocol as a state machine in Dafny fol-
lowing the IronFleet style [10], together with a safety property
(Appendix A contains a description of each protocol and its
safety property). Using this state machine definition, Basilisk
generates a provably correct inductive invariant I, expressed
as a conjunction of Regular Invariants. Using I, we prove that
the safety property is an invariant in the protocol, by manually
proving the obligations Ob1 and Ob2 defined in §5.4.

We also compare Basilisk’s results to the previous state-
of-the-art, Kondo [40]. Note that because Kondo prohibits
protocol steps that both receive and send messages, the proto-
col descriptions used by Kondo are modified from the Basilisk
versions to accommodate this restriction. Because of the ef-
fort required to accommodate this restriction and prove these
protocols using Kondo, we did not apply Kondo to every
protocol.

Our evaluation determines whether Basilisk is effective
in helping developers prove the safety of their distributed
protocols. To do so, we address the following questions.

1. How effective is Basilisk in finding the inductive invari-
ants of various distributed protocols? (§6.1)

2. How burdensome is expressing and proving protocols
using Basilisk? (§6.2)

3. How efficiently can a verifier like Dafny verify the invari-
ants and proofs produced using Basilisk? (§6.3)

4. What are the cases where the Basilisk methodology re-
quires developer assistance? (§6.4)

6.1 Effectiveness of Basilisk in Finding Induc-
tive Invariants

The ‘User invs’ columns in Table 1 show the number of man-
ually derived invariant clauses the user supplies to prove the
safety of each protocol using Basilisk and Kondo, respec-
tively. Basilisk succeeds in finding inductive invariants for
all 16 distributed protocols on which it was evaluated. This is
a significant improvement over Kondo, which required user-
supplied invariants for most protocols.

Note that three ownership-based protocols (Distributed
Lock, ShardedKV, and ShardedKV-Batched), each of which
has a safety property that asserts the exclusive ownership of
resources, can already be proven completely automatically
using Kondo. Unsurprisingly, Basilisk achieves the same on
these protocols, as Basilisk inherits the ownership reasoning
of Kondo.

These results highlights the effectiveness of Basilisk along
two fronts. First, it supports our hypothesis that many deep
protocol properties can be implied by only simple Regular
Invariants in our generalized invariant taxonomy. This in-
cludes properties of protocols that are widely regarded as very
challenging for human developers, such as Multi-Paxos.

Second, it demonstrates the feasibility of finding the induc-
tive invariants of distributed protocols automatically, even in
general verification frameworks such as Dafny.

Altogether, Basilisk simplifies the developer’s workflow, as
manually finding inductive invariants demands a large amount
of creativity and expertise. With Basilisk, users avoid the
invariant-proof loop process of IronFleet and Kondo, where
a developer must meticulously craft a candidate inductive
invariant, only to realize that it is wrong after spending time
to prove it correct.

6.2 Ease of Expressing and Proving Protocols
While Basilisk reduces the user’s burden in finding inductive
invariants, one might worry that it simply shifts this effort
elsewhere rather than eliminates it, requiring the user to com-
pensate with more labor in other aspects, such as writing more
proof annotations. However, our evaluation demonstrates that
Basilisk avoids this pitfall and materially improves the user’s
proof experience.

Protocol expressiveness. Given a conceptual protocol, ex-
pressing it in Basilisk is significantly easier than in Kondo, as
evidenced by the fewer lines of code required to define the
protocol (‘Size’ in Table 1). This is due to two reasons.

10 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Basilisk Kondo
Lines of proof Lines of proof

Size
User
invs

Mono
annots

Prov
hints Safety Total

Time
(sec)

Size
User
invs

Mono
annots

Recv
hints Safety Total

Time
(sec)

Echo Server [40] 157 0 1 0 8 49 5.1 260 1 1 0 0 40 7.9
Ring Leader Election [3] 99 0 0 0 80 115 5.3 179 1 0 0 30 63 8.0
Simple Leader Election [34] 149 0 1 0 45 87 7.3 255 3 1 0 33 94 13.6
Paxos [19] 418 0 5 0 444 486 24.6 631 20 5 2 558 777 42.9
Paxos-Combined 319 0 5 0 445 497 57.5 - - - - - - -
Paxos-Dynamic 414 0 4 2 479 522 42.4 - - - - - - -
Flexible Paxos [12] 418 0 5 0 441 483 22.8 633 20 5 2 559 780 49.4
Distributed Lock [10] 134 0 0 0 0 39 5.0 194 0 0 0 0 31 4.7
ShardedKV 152 0 0 0 0 39 5.9 213 0 0 0 35 68 5.0
ShardedKV-Batched 164 0 0 0 0 38 5.6 225 0 0 0 0 31 5.1
Lock Server [21] 212 0 0 0 0 38 7.3 287 1 0 0 20 59 6.3
Two-Phase Commit 278 0 3 0 95 139 7.4 385 4 3 0 119 186 8.9
Three-Phase Commit [32] 323 0 5 0 108 152 8.3 - - - - - - -
Reduce 135 0 0 0 30 69 24.4 - - - - - - -
Raft Leader Election [25] 172 0 1 2 52 93 6.3 - - - - - - -
Multi-Paxos [19] 447 0 4 2 522 565 61.5 - - - - - - -

Table 1: User experience metrics of Basilisk compared to Kondo. A lower number is better for every column, and the shaded
cells under Kondo highlight areas where it is outperformed by Basilisk. ‘Size’ counts the lines of code the user writes to express
the protocol. ‘User invs’ is the number of invariant clauses that the user manually supplies. ‘Mono annots’ is the number of
monotonic type annotations the user writes—these numbers are identical between Basilisk and Kondo. ‘Lines of proof’ is the
amount of proof code the user writes to complete the safety proof. In both Basilisk and Kondo, ‘Safety’ is the size of the Dafny
lemmas used to prove safety, while ‘Total’ includes additional definitions of proof obligations. In Kondo, ‘Total’ also includes
the definitions of manually-written invariants, which Basilisk does not require. Finally, ‘Time’ is the time Dafny takes to verify
the final proof of the history-preserving asynchronous protocol.

First, in event-driven message passing systems, a common
mode of operation for hosts is to receive a message, perform
some computation based on the content of the message, and
then send out messages in response. In Basilisk, such behavior
is more naturally modeled as a single, atomic state machine
step that receives the message, performs the computations,
and sends the response (as is also the case in IronFleet [10]).

In contrast, because Kondo does not permit host steps that
both receive and send messages, such host behavior must be
modeled as two distinct steps—one that receives the message
and performs the computation, and another that sends the
responses. This leads to awkward protocol descriptions, as
steps must be broken down into multiple smaller steps. For
example, in Echo Server, the server host forwards a copy of
every request it receives. In Kondo, this extremely simple step
must be modeled as separate steps that a) receive and store the
request locally, and b) send a response based on the locally
stored request. Basilisk does not suffer from this restriction,
and hence lets users specify their protocols more naturally.

Second, defining a protocol in Basilisk only requires the
user to specify the initialization condition and state transition
relation for hosts (§5.1). In contrast, Kondo additionally needs
the user to define a synchronous version of the protocol [40,

§4.2], resulting in more code and effort.

Proof annotation effort. To prove the correctness of a dis-
tributed protocol, both Basilisk and Kondo require the user
to write additional proof code to prove that the desired safety
property is indeed an invariant. We quantify this effort us-
ing the lines of code in the final proof (‘Lines of proof’ in
Table 1).

For Basilisk, this effort involves writing a lemma to con-
vince the Dafny verifier that Basilisk’s generated inductive
invariant implies the protocol’s safety specification. Proving
this lemma is the only step that demands user creativity when
using Basilisk, and the size of this lemma is listed under
the ‘Safety’ sub-heading. Meanwhile, the ‘Total’ sub-heading
shows the total number of lines in the proof file, which in-
cludes the aforementioned lemma, and “standard lines” such
as the definitions of the proof obligations Ob1 and Ob2, and
import statements for other Dafny modules.

For Kondo, the ‘Safety’ sub-heading counts lines of code
in lemmas proving that the user-derived invariants, in con-
junction with the safety property, is an inductive invariant
in a synchronous version of the protocol [40, §4.2]. It also
includes modifications that the user must then make to these

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 11

lemmas in order to prove the final asynchronous protocol. The
‘Total’ count for Kondo includes the aforementioned lemmas
and modifications, “standard lines” as described above, and
also the definition of the user-supplied inductive invariant.

We observe that Basilisk is competitive with Kondo in
terms of proof effort. For simple protocols such as Echo
Server and Ring Leader Election, Kondo requires fewer proof
annotations than Basilisk. However, Basilisk requires signif-
icantly less effort when handling complex protocols. In the
case of Flexible Paxos, for example, Basilisk’s safety lemma
is 21% smaller than Kondo’s (441 lines vs. 559 lines). Also,
the user avoids defining their own inductive invariant, which
comprises over 200 lines in Flexible Paxos. Importantly, this
metric also hides the additional effort of the invariant-proof
loop process demanded by Kondo, as it only shows the size
of the final artifact, not the amount of proofs and invariants
written and deleted while deriving the final product.

User guidance. Both Basilisk and Kondo rely on user guid-
ance to automatically derive and prove invariants. Basilisk
uses three types of hints: provenance witnesses, monotonicity
labels and ownership labels.

Of these categories, the most interesting is Basilisk’s use
of provenance witnesses (listed under ‘Prov hints’ in Table 1),
which is a generalization of Kondo’s receive witness condi-
tions [40, §5.1] (listed under the ‘Recv hints’). Kondo required
the user to provide one receive witness for every generated
Receive Invariant, and it used Receive Invariants sparingly—
two each for Paxos and Flexible Paxos (§7 explains the re-
lationship between Host-Provenance Invariants and Kondo’s
Receive Invariants).

In comparison, Basilisk relies heavily on Host-Provenance
Invariants, yet can generate most of them fully automatically
through atomic sharding (§4). A hint is only required when
the generated provenance invariants are not strong enough.
For instance, only 6 out of 64 Host-Provenance Invariants
used by the protocols in our evaluation required the user
to provide provenance witnesses as hints. We characterize
the conditions under which the user may need to manually
provide provenance witnesses in §6.4.

Meanwhile, Basilisk requires the user to annotate mono-
tonic data types and resource ownership semantics [40]. In
these respects, Basilisk inherits the behavior of Kondo, re-
sulting in an identical user experience. The ‘Mono annots’
columns in Table 1 list the number of annotations used to
prove each protocol; protocols that are available in Kondo
share the same numbers as Basilisk. As for ownership la-
bels, only Distributed Lock, ShardedKV, ShardedKV-Batched
and Lock Server use them. We omit ownership from Table 1
because the user experience is identical to Kondo.

6.3 Verification Latency of Basilisk Invariants
and Proofs

Verifier latency plays a crucial role in ensuring a positive
developer experience, as it enables a fast feedback loop that
helps users quickly complete or correct incomplete or er-
roneous proofs. The ‘Time’ columns in Table 1 report the
time taken by the Dafny verifier to check the final proof of
each history-preserving asynchronous protocol. These times
include checking the invariants and lemmas generated by
the Basilisk and Kondo tools, as well as any user-supplied
ones. Notably, they exclude the verification time of the syn-
chronous protocol required by Kondo. The time required for
both Basilisk and Kondo to produce their auto-generated in-
variants and lemmas is less than 2 seconds in all cases, and
does not contribute significantly to overall verification latency.

Our results show that Basilisk achieves good verification
performance that scales reasonably with protocol complexity.
Even for challenging protocols like Multi-Paxos, verification
completes in a minute, providing an efficient turnaround that
supports interactive development.

Interestingly, although not a design goal, we observe that
Basilisk outperforms Kondo in verification speed, particularly
on complex protocols. For example, the Flexible Paxos proof
verifies in less than half the time with Basilisk compared to
Kondo. We hypothesize that this improvement stems from
two reasons.

First, as explained in §6.2, the improved expressivity of
Basilisk allows a protocol to be expressed with fewer host
steps compared to Kondo. This reduces the complexity of
the host state machines, resulting in a smaller burden on the
verifier.

Second, Basilisk and Kondo differ in how proofs are au-
thored and optimized. Dafny’s verification time is sensitive
to proof structure, and Basilisk users write the final asyn-
chronous proof directly, allowing them to iteratively optimize
it for fast verification. In contrast, Kondo users focus on writ-
ing a synchronous proof, and the asynchronous proof is gen-
erated from it without optimization for verifier performance.

6.4 Limitations

Atomic sharding algorithm. First, our atomic sharding
algorithm does not identify every Provenance Invariant of a
given protocol. In particular, it cannot derive relationships
between variables when their relationships are only implicitly
established across multiple steps.

As an example, consider a host that keeps track of all events
occurring during the current calendar year. This set of events
is emptied when the year changes. The host keeps the local
variables currentYear: int and events: set⟨string⟩ that is ini-
tially empty. The host has two steps: T1 receives a message
m and adds m.event to events only if m.year = currentYear;
T2 increments currentYear and resets events := /0. In this case,

12 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Basilisk generates the following invariant from observing T1:

“For all e in h.events, there is a message m and an
hhist in the host’s history such that m.event = e, and
m.year = hhist.currentYear.”

where h is the current state of the host. This invariant fails
to imply the stronger property that for any such m, m.year =
h.currentYear = hhist.currentYear, which is only established
because another step T2 empties events whenever year is in-
cremented, thereby establishing an implicit relation between
entries in events and the current value of currentYear. If
this stronger property is required for the proof, then the user
must provide a provenance witness to inform Basilisk of this
stronger relationship between events and currentYear.

While it is certainly possible to design protocols that patho-
logically attack this weakness, we did not observe many im-
plicit relationships in our real-world examples. In particular,
the only implicit relationship that we observed in real pro-
tocols is when hosts reset certain collections (e.g., a set of
votes) when they enter a new epoch, as is the case with all
three protocols that required Provenance hints in Table 1.

Second, the strength of Provenance Invariants generated
by the atomic sharding algorithm corresponds to the accu-
racy of the estimated footprints. Overestimation of footprints
may lead to steps being spuriously associated to atomic shards.
These steps are then added to the disjunction expression in the
generated Provenance Invariants, weakening these invariants.
The user may then manually strengthen the generated invari-
ants using provenance witnesses. In our experience, however,
we did not face this issue with any of the protocols to which
we applied Basilisk.

General limitations. Basilisk is not guaranteed to be com-
plete. There may be instances of protocols and safety proper-
ties for which Basilisk cannot generate an inductive invariant
strong enough to complete the proof, even with the help of
user-supplied provenance witnesses. We did not come across
such cases. If they arise, however, the user may augment
Basilisk’s generated invariant with manually-written clauses.

In addition, the protocol’s safety specification is trusted, i.e.,
assumed to be correct. Also, while the protocol description is
verified, a developer must trust that the description accurately
models their actual system, or employ prior techniques [10,36]
to provably connect it to their implementation.

We also assume the correctness of Dafny and all its under-
lying dependencies and hardware. A successful proof is only
as trustworthy as these components.

Finally, Basilisk is designed to prove the safety of crash
fault tolerant distributed protocols. Liveness proofs and
weaker fault models are beyond its scope.

7 Related Work

Many techniques to verify distributed systems have been pro-
posed in recent years. Historically, these techniques either
allow arbitrary protocol descriptions at the cost of developer
effort to manually find and prove inductive invariants, or pro-
vide significant automation by forcing the developer to fit
their protocol description into a decidable logic.

7.1 Using Undecidable Logic

Early frameworks for verifying protocols written in unde-
cidable logics entirely relied on the developer to devise and
prove inductive invariants [10, 36]. Similarly, recent frame-
works like Aneris [16] and Grove [31] support verification
of distributed systems using separation logic. They combine
reasoning about implementations and protocols, but require
the developer to write and prove all of the invariants by hand.

Some approaches partially automate the proof process, but
they do so by restricting the allowed protocols. Examples
include Pretend Synchrony [35], PSync [6], the CL logic [5]
Model [4], and ConsL [22].

The Message Chains work [23] proposes a structure for
invariants that focuses on messages, and they use specification
mining over randomly generated executions to infer some of
these invariants in their benchmarks. Our Provenance Invari-
ants connect host state to protocol steps, and can be derived
statically from the protocol description instead of using spec-
ification mining. Our static analysis approach works for all
of our benchmarks. Message chains are potentially comple-
mentary if a protocol cannot be verified with Basilisk’s auto-
matically generated invariants and a message chain invariant
would help.

The most recent and related work to Basilisk is Kondo [40].
Both Basilisk and Kondo help the developer identify invari-
ants when verifying distributed protocols in a Dafny-based
setting. Kondo’s invariant taxonomy introduces two top-level
classes of invariants: Protocol Invariants and Regular Invari-
ants. Protocol Invariants are inter-host or intra-host properties
that do not talk about the network. Crucially, Kondo requires
the developer to manually derive and prove Protocol Invari-
ants, which remains a creative and laborious task. In contrast,
Basilisk automatically proves such properties via Regular
Invariants (§3). We leave the theoretical exploration of the
logical relationship between Protocol Invariants and Basilisk’s
generated Regular Invariants to future work.

Basilisk also inherits Kondo’s automation for two sub-
classes of Regular Invariants, Monotonicity Invariants and
Ownership Invariants. However, this paper proposes Prove-
nance Invariants, which replace and generalize Message In-
variants in Kondo’s taxonomy. Network-Provenance Invariant
correspond to Kondo Send Invariants. Host-Provenance In-
variants subsume Kondo’s Receive Invariants, and we also
generalize them to properties whose provenance is a local tran-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 13

sition rather than a message receive. Finally, Kondo does not
fully automate deriving Receive Invariants, whereas Basilisk
does via the atomic sharding algorithm (§4).

7.2 Using Decidable Logic

Many frameworks and algorithms rely on protocols and in-
variants expressed in EPR, a decidable fragment of first-order
logic [8,14,15,21,27,28,33,37,38]. These all share a critical
limitation, in that they require the developer to write their
protocol within a restrictive language, which disallows quan-
tification of the form ∀∃, as well as theories like arithmetic.
Translating protocols into EPR requires expertise and is not
always possible [26].

8 Conclusion

This paper presents a general class of Provenance Invariants
that can be systematically derived from a distributed protocol
and can be used to prove interesting inter-host properties
by, for example, chaining a Host-Provenance Invariant that
shows a message was received, with a Network-Provenance
Invariant that connects the message to the sender’s state. We
develop an atomic sharding algorithm to find Provenance
Invariants given only a protocol description. We implemented
atomic sharding in a tool called Basilisk, which is able to
generate inductive invariants sufficient to prove the safety of
16 distributed protocols without any user-defined invariants.

Acknowledgment

We thank our shepherd, Sudarsun Kannan, and the anony-
mous OSDI reviewers for their great feedback. This work
was supported by the National Science Foundation grants
CCF-2318953 and CCF-2318954.

References

[1] Dafny version 4.2. Available online at:
https://github.com/dafny-lang/dafny/
releases/tag/v4.2.0.

[2] James Bornholt, Rajeev Joshi, Vytautas Astrauskas,
Brendan Cully, Bernhard Kragl, Seth Markle, Kyle
Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. Using lightweight
formal methods to validate a key-value storage node in
Amazon S3. In Proceedings of the 28th ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
2021, page 836–850, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

[3] Ernest Chang and Rosemary Roberts. An improved
algorithm for decentralized extrema-finding in circu-
lar configurations of processes. Commun. ACM,
22(5):281–283, May 1979.

[4] Bernadette Charron-Bost and André Schiper. The Heard-
Of model: computing in distributed systems with benign
faults. Distributed Computing, 22, Apr 2009.

[5] Cezara Drăgoi, Thomas A. Henzinger, Helmut Veith,
Josef Widder, and Damien Zufferey. A logic-based
framework for verifying consensus algorithms. In Pro-
ceedings of Computer Aided Verification (CAV), 2014.

[6] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zuf-
ferey. PSync: A partially synchronous language for
fault-tolerant distributed algorithms. In ACM Sympo-
sium on Principles of Programming Languages (POPL),
2016.

[7] Yotam M. Y. Feldman, James R. Wilcox, Sharon
Shoham, and Mooly Sagiv. Inferring inductive invariants
from phase structures. In Isil Dillig and Serdar Tasiran,
editors, Computer Aided Verification, pages 405–425,
Cham, 2019. Springer International Publishing.

[8] Aman Goel and Karem Sakallah. On symmetry and
quantification: A new approach to verify distributed
protocols. In NASA Formal Methods: 13th International
Symposium, NFM 2021, Virtual Event, May 24–28, 2021,
Proceedings, page 131–150, Berlin, Heidelberg, 2021.
Springer-Verlag.

[9] Travis Hance, Marijn Heule, Ruben Martins, and Bryan
Parno. Finding invariants of distributed systems: It’s a
small (enough) world after all. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 115–131. USENIX Association, Apr
2021.

[10] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving practical dis-
tributed systems correct. In Proceedings of the 25th
ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP 2015, page 1–17, New York, NY, USA,
2015. Association for Computing Machinery.

[11] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving safety and live-
ness of practical distributed systems. Commun. ACM,
60(7):83–92, Jun 2017.

[12] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-
man. Flexible paxos: Quorum intersection revisited.
CoRR, abs/1608.06696, 2016.

14 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dafny-lang/dafny/releases/tag/v4.2.0
https://github.com/dafny-lang/dafny/releases/tag/v4.2.0

[13] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky,
Noam Rinetzky, and Sharon Shoham. Property-directed
inference of universal invariants or proving their absence.
J. ACM, 64(1), Mar 2017.

[14] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex
Aiken. First-order quantified separators. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page
703–717, New York, NY, USA, 2020. Association for
Computing Machinery.

[15] Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex
Aiken. Inferring invariants with quantifier alternations:
Taming the search space explosion. In Dana Fisman
and Grigore Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 338–356,
Cham, 2022. Springer International Publishing.

[16] Morten Krogh-Jespersen, Amin Timany, Marit Edna
Ohlenbusch, Simon Oddershede Gregersen, and Lars
Birkedal. Aneris: A mechanised logic for modular rea-
soning about distributed systems. In Peter Müller, editor,
Programming Languages and Systems, pages 336–365,
Cham, 2020. Springer International Publishing.

[17] Leslie Lamport. The temporal logic of actions. ACM
Trans. Program. Lang. Syst., 16(3):872–923, May 1994.

[18] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[19] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, Dec 2001.

[20] K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Proceedings of the
16th International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR’10,
pages 348–370, Berlin, Heidelberg, 2010. Springer-
Verlag.

[21] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A. Sakallah. I4:
Incremental inference of inductive invariants for verifi-
cation of distributed protocols. In Proceedings of the
27th ACM SIGOPS Symposium on Operating Systems
Principles, SOSP 2019, page 370–384, New York, NY,
USA, 2019. Association for Computing Machinery.

[22] Ognjen Maric, Christoph Sprenger, and David A. Basin.
Cutoff bounds for consensus algorithms. In Proceedings
of Computer Aided Verification (CAV), 2017.

[23] Federico Mora, Ankush Desai, Elizabeth Polgreen, and
Sanjit A. Seshia. Message chains for distributed system
verification. Proc. ACM Program. Lang., 7(OOPSLA2),
Oct 2023.

[24] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. How
Amazon Web Services uses formal methods. Communi-
cations of the ACM, 2015.

[25] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, Jun 2014. USENIX Associ-
ation.

[26] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon
Shoham. Paxos made EPR: decidable reasoning about
distributed protocols. Proc. ACM Program. Lang.,
1(OOPSLA), Oct 2017.

[27] Oded Padon, Kenneth L. McMillan, Aurojit Panda,
Mooly Sagiv, and Sharon Shoham. Ivy: Safety veri-
fication by interactive generalization. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, page
614–630, New York, NY, USA, 2016. Association for
Computing Machinery.

[28] Oded Padon, James R. Wilcox, Jason R. Koenig, Ken-
neth L. McMillan, and Alex Aiken. Induction duality:
Primal-dual search for invariants. Proc. ACM Program.
Lang., 6(POPL), Jan 2022.

[29] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner.
Deciding effectively propositional logic using DPLL
and substitution sets. Journal of Automated Reasoning,
44(4):401–424, Apr 2010.

[30] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Pro-
gramming and proving with distributed protocols. Proc.
ACM Program. Lang., 2(POPL), Dec 2017.

[31] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans
Kaashoek, and Nickolai Zeldovich. Grove: A separation-
logic library for verifying distributed systems. In Pro-
ceedings of the 29th ACM SIGOPS Symposium on Op-
erating Systems Principles, SOSP 2023, page 113–129,
New York, NY, USA, 2023. Association for Computing
Machinery.

[32] D. Skeen and M. Stonebraker. A formal model of crash
recovery in a distributed system. IEEE Trans. Softw.
Eng., 9(3):219–228, May 1983.

[33] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma,
Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon,
Lalith Suresh, Adriana Szekeres, and Tianyin Xu. Anvil:
Verifying liveness of cluster management controllers. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 649–666, Santa
Clara, CA, Jul 2024. USENIX Association.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 15

[34] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan,
Oded Padon, Mooly Sagiv, Sharon Shoham, James R.
Wilcox, and Doug Woos. Modularity for decidability
of deductive verification with applications to distributed
systems. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2018, page 662–677, New York,
NY, USA, 2018. Association for Computing Machinery.

[35] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander
Bakst, Deian Stefan, and Ranjit Jhala. Pretend syn-
chrony: Synchronous verification of asynchronous dis-
tributed programs. In ACM Symposium on Principles of
Programming Languages (POPL), 2019.

[36] James R. Wilcox, Doug Woos, Pavel Panchekha,
Zachary Tatlock, Xi Wang, Michael D. Ernst, and
Thomas Anderson. Verdi: A framework for implement-
ing and formally verifying distributed systems. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2015, page 357–368, New York, NY, USA, 2015.
Association for Computing Machinery.

[37] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
DuoAI: Fast, automated inference of inductive invari-
ants for verifying distributed protocols. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 485–501, Carlsbad, CA, Jul
2022. USENIX Association.

[38] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. DistAI: Data-Driven
automated invariant learning for distributed protocols.
In 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 21), pages 405–421.
USENIX Association, Jul 2021.

[39] Tony Nuda Zhang, Travis Hance, Manos Kapritsos, Tej
Chajed, and Bryan Parno. The Kondo tool. Available
online at: https://github.com/GLaDOS-Michigan/
Kondo.

[40] Tony Nuda Zhang, Travis Hance, Manos Kapritsos, Tej
Chajed, and Bryan Parno. Inductive invariants that
spark joy: Using invariant taxonomies to streamline
distributed protocol proofs. In 18th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 24), pages 837–853, Santa Clara, CA, Jul 2024.
USENIX Association.

A Artifact Appendix

Abstract
The artifact represents the source code of the Basilisk proto-
type. It also contains the descriptions of the protocols used in

the evaluation (§6) of Basilisk, together with the scripts and
proof annotations required to verify each protocol.

Scope
The artifact lets readers validate how Basilisk relieves devel-
oper effort in verifying distributed systems. This is measured
by the following criteria:

1. The user only needs to provide a few simple hints for
Basilisk to automatically generate an inductive invariant
for each protocol.

2. The user should be responsible for writing fewer lines of
proof code, compared to Basilisk’s predecessor Kondo.

Contents
This artifact has two main directories.

local-dafny. The directory local-dafny/ contains the source
code and executable for the Basilisk tool. It is developed on
top of the Kondo artifact [39], which itself is a fork of Dafny
4.2.0 [1]. The core Basilisk functionality is implemented in
the local-dafny/Source/DafnyCore/Basilisk/ sub-directory.

basilisk. The directory basilisk/ contains the descriptions
of protocols on which Basilisk is evaluated (§6). Each pro-
tocol is also associated with an example user-written safety
proof (step ➍ of Figure 5) and a script to run the verification
commands.

Hosting
The artifact is hosted on GitHub: https://github.com/GLaDOS-
Michigan/Basilisk (commit version fd0bc04). A
copy of the repository is also hosted on Zenodo:
https://zenodo.org/records/15392830.

Requirements
The artifact was developed and tested on an M3 MacBook
Pro running MacOS Sequoia.

List of Protocols Evaluated
In this section, we describe each protocol listed in Table 1,
and their associated safety property.

Echo Server. A server host receives messages from clients
and responds to each message with an identical message.

Safety property: The set of responses a client has received
from the server is always a subset of the messages it has sent.

16 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/GLaDOS-Michigan/Kondo
https://github.com/GLaDOS-Michigan/Kondo
https://github.com/GLaDOS-Michigan/Basilisk
https://github.com/GLaDOS-Michigan/Basilisk
https://zenodo.org/records/15392830

Ring Leader Election. The classic Ring Leader Election
protocol [3].

Safety property: At most one host is elected as the leader.

Simple Leader Election. Hosts request votes from peers
and votes for a single peer [34]. A host declares themselves
leader if they receive a majority of votes.

Safety property: At most one host is elected as the leader.

Paxos. The classic Paxos protocol [19].
Safety property: No two hosts can learn different values.

Paxos-Combined. Variation of Paxos where each host pro-
cess assumes all three of leader, acceptor, and learner roles.

Safety property: No two hosts can learn different values.

Paxos-Dynamic. Variation of Paxos-Combined where lead-
ers can dynamically increase their ballot number to retry their
proposal.

Safety property: No two hosts can learn different values.

Flexible Paxos. The standard Flexible Paxos protocol [12].
Safety property: No two hosts can learn different values.

Distributed Lock. Hosts pass around a single lock in a ring
configuration [10].

Safety property: At most one host holds the lock at any
instant.

ShardedKV. A sharded key-value store where a shard may
transfer a key to another shard.

Safety property: Every key is owned by at most one host.

ShardedKV-Batched. Same as the ShardedKV, except keys
may be transferred in arbitrary-sized batches.

Safety property: Every key is owned by at most one host.

Lock Server. A single server host may grant a lock to one
of many client hosts, and clients may return a lock it holds
back to the server [21].

Safety property: At most one client holds the lock at any
instant.

Two-Phase Commit. The classic Two-Phase Commit pro-
tocol.

Safety property: The conjunction of

1. All processes that reach a decision reach the same deci-
sion as the coordinator,

2. The Commit decision can only be reached if all processes
prefer Yes, and

3. if all processes prefer Yes, then the decision must be
Commit.

Three-Phase Commit. The classic Three-Phase Commit
protocol [32].

Safety property: Same as Two-Phase Commit.

Reduce. A distributed protocol for a sum computation.
Each host starts with a partial array segment, then computes
the sum of the elements in their respective segment before
sending it to a distinguished host. The distinguished host adds
up all the values it receives from other hosts and returns the
value.

Safety property: The value returned by the distinguished
host is the sum of elements in the array formed by the con-
catenating all the hosts’ array segments.

Raft Leader Election. The leader election phase of the Raft
protocol [25].

Safety property: Each term has at most one leader.

Multi-Paxos. The classic Multi-Paxos protocol [19] where
hosts reach consensus for a log of values rather than a singular
value. Like Paxos-Dynamic, each host assumes leader, accep-
tor, and learner roles, and may increase its ballot number to
retry proposals.

Safety property: For all entries in the log, no two hosts can
learn different values.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 17

	Introduction
	The Burden of Inductive Invariants
	Expressing Inductive Invariants with Only Regular Invariants
	Running Example: Two-Phase Commit
	Provenance Invariants and Execution Histories
	Expressing Inter-Host Relationships Using Provenance Invariants
	Expressing Local Properties Using Provenance Invariants

	Automating Provenance Invariants With Atomic Sharding
	Automating Host-Provenance with the Atomic Shard Principle
	Atomic Sharding Algorithm
	Automating Network-Provenance

	Proving Protocols With Basilisk
	Step ➊: Protocol Definition
	Step ➋: Asynchronous Protocol Model
	Step ➌: Generating Regular Invariants
	Step ➍: Proving Safety

	Evaluation
	Effectiveness of Basilisk in Finding Inductive Invariants
	Ease of Expressing and Proving Protocols
	Verification Latency of Basilisk Invariants and Proofs
	Limitations

	Related Work
	Using Undecidable Logic
	Using Decidable Logic

	Conclusion
	Artifact Appendix

