
Increasing the Number of Effective Registers in a
Low-Power Processor Using a Windowed Register File

Rajiv A. Ravindran, Robert M. Senger, Eric D. Marsman,
Ganesh S. Dasika, Matthew R. Guthaus, Scott A. Mahlke, Richard B. Brown

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122
{rravindr,rsenger,emarsman,gdasika,mguthaus,mahlke,brown}@eecs.umich.edu

ABSTRACT
Low-power embedded processors utilize compact instruction
encodings to achieve small code size. Instruction sizes of 8 to
16 bits are common. Such encodings place tight restrictions
on the number of bits available to encode operand speci-
fiers, and thus on the number of architected registers. The
central problem with this approach is that performance and
power are often sacrificed as the burden of operand supply is
shifted from the register file to the memory due to the lim-
ited number of registers. In this paper, we investigate the
use of a windowed register file to address this problem by
providing more registers than allowed in the encoding. The
registers are organized as a set of identical register windows
where at each point in the execution there is a single active
window. Special window management instructions are used
to change the active window and to transfer values between
windows. The goal of this design is to give the appearance
of a large register file without compromising the instruc-
tion encoding. To support the windowed register file, we
designed and implemented a novel graph partitioning based
compiler algorithm that partitions virtual registers within
a given procedure across multiple windows. On a 16-bit
embedded processor with a parameterized register window,
an average of 10% improvement in application performance
and 7% reduction in system power was achieved as an eight-
register design was scaled from one to four windows.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
[Real-time and Embedded Systems]; D.3.4 [Programming
Languages]: Processors—Code generation, Optimization,
Retargetable compilers

General Terms
Algorithms, Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’03, Oct. 30–Nov. 2, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010 ...$5.00.

Keywords
Embedded processor, graph partitioning, instruction encod-
ing, low-power, register window, window assignment

1. INTRODUCTION
In the embedded processing domain, power consumption

is the dominant design concern. Designers are being pushed
to create processors that operate for long periods of time
on a single battery. To this end, a common approach is to
employ a 16-bit design, such as the Motorola-68HC12 [21].
These processors offer the advantage of extremely compact
code and thus smaller memory requirements. Further, 8-
and 16-bit data is common in embedded applications. Thus,
these processors provide more efficient designs with datap-
aths optimized for narrow precision data.

While the efficiency of 16-bit processors is high, the per-
formance of these systems can be problematic. Many em-
bedded applications such as signal processing, encryption,
and video/image processing, have significant computational
demands. Low-power designs are often unable to meet the
desired performance levels for these types of applications. In
this paper, we focus on one particular aspect in the design
of 16-bit processors, the architected registers. With a 16-
bit instruction set, the number of bits to encode source and
destination operand specifiers often limits the number of ar-
chitected registers to a small number (e.g., eight or less).
For example, TMS320C54x [26] has 8 address registers and
ADSP-219x [2] has 16 data registers. Such a small number of
registers often limits performance by forcing a large fraction
of program variables/temporaries to be stored in memory.
Spilling to memory is required when the number of simulta-
neously live program variables and temporaries exceeds the
register file size. This has a negative effect on power con-
sumption as more burden is placed on the memory system
to supply operands each cycle.

Our approach is to provide a larger number of physi-
cal registers than allowed by the instruction set encoding.
This approach has been designed and implemented within
the low-power, 16-bit WIMS (Wireless Integrated Microsys-
tems) microcontroller [22]. The registers are exposed as a
set of identical register windows in the instruction set. At
any point in the execution, only one of the windows is ac-
tive, thus operand specifiers refer to the registers in the ac-
tive window. Special instructions are included to activate
windows and move data between windows. The goal is to
provide the appearance of a large monolithic register file by

IF
 / ID

ID
 / E

X

Memory Management Unit

Peripherals
Boot

ROM

PC

S
H

IF
T

E
R

RF0

W
indow

 C
o

ntrol

RF1

ARF0

ARF1

ALU

A
D

D

RAM

2

Interrupt

Controller

Figure 1: The WIMS microcontroller in TSMC 0.18µm CMOS and the WIMS pipeline.

judiciously employing the register window.
Traditionally, register windows have been used to reduce

the register save and restore overhead at procedure calls or
interrupts, such as in the SPARC architecture [24]. Our
studies have shown that for the more loop-dominated appli-
cations found in the embedded domain, the use of register
windows in this manner has limited impact on performance.
The central problem is that programs spend most of their
time in loop nests contained within a single procedure [9].
Thus, the overhead due to register spills dominates the save
and restore code at procedure boundaries. Our approach
is to make use of multiple register windows within a single
procedure to effectively address the problem of spill code.

To support intra-procedural window assignment, the com-
piler employs a novel graph partitioning technique. A graph
of virtual registers is created and partitioned into window
groups. In the graph, each virtual register is a node and
edges represent the affinity (the desire to be in the same
window) between registers. Spill code is reduced by aggres-
sively assigning virtual registers to different windows, hence
exploiting the larger number of physical registers available.
However, window maintenance overhead in the form of ac-
tivating windows (also known as window swap) and mov-
ing data between windows (also referred to as inter-window
moves) can become excessive. Thus, the register partition-
ing technique attempts to select a point of balance whereby
spills are reduced by a large margin at a modest overhead
of window maintenance.

2. WINDOWED ARCHITECTURE

2.1 WIMS Microcontroller Overview
The WIMS Microcontroller [22] was designed at the Uni-

versity of Michigan to control a variety of miniature, low-
power embedded sensor systems. The microcontroller fab-
ricated in TSMC 0.18µm CMOS is shown in Figure 1 and
consists of three major sub-blocks: the digital core, the ana-
log front-end (AFE) and the CMOS-MEMS clock reference.
Power minimization was a key design constraint for each of
the aforementioned sub-blocks. In addition to low-power cir-
cuit and processing techniques, system power can be signif-
icantly reduced through power-aware program compilation.
The following section presents an overview of the digital core
while focusing on architectural specifics relevant for power-

aware compilation. Refer to Figure 1 for a block diagram of
the digital core.

A 16-bit load/store architecture with dual-operand regis-
ter-to-register instructions was chosen to satisfy the power
and performance requirements of the microcontroller. The
16-bit datapath was selected to reduce the complexity and
power consumption of the core while providing adequate pre-
cision in calculations, given that the sensors controlled by
this chip require 12 bits of resolution. The datapath pipeline
consists of three stages: fetch, decode, and execute. Typi-
cally in sensor applications, processing throughput require-
ments are minimal and power dissipation is a key design
constraint; therefore clock frequencies should be kept as low
as possible. A three-pipeline-stage architecture was chosen
to obtain adequate performance without incurring the hard-
ware overhead of more deeply pipelined machines. A uni-
fied 24-bit address space for data and instruction memory
satisfies the potentially large storage requirements of remote
sensor systems. The 16MB of supported memory is byte ad-
dressable and provides sufficient storage for program, data,
and memory-mapped peripheral components. The current
implementation of the core has four 8KB banks of on-chip
SRAM with a memory management unit that disables in-
active banks of memory. This memory topology permits si-
multaneous instruction fetch and data accesses to different
banks of memory without stalling the pipeline.

A 16-bit WIMS instruction set was custom designed and
includes seventy-seven instructions and eight addressing mo-
des. The 16-bit instruction encoding supports a diverse
assortment of instructions that would be unrealizable with
just 8-bit encodings. In contrast, 32-bit instructions require
twice as much power to fetch from memory and the addi-
tional 16-bits would not be efficiently utilized by the applica-
tions that typically run on low-power embedded processors.
The 16-bit encoding represents an intelligent compromise
between the power required to fetch an instruction from
memory and the versatility of the instruction set. Some
two-word instructions are necessary to support 24-bit abso-
lute addressing modes with 16-bit instructions. Address up-
date modes facilitate manipulation of the 24-bit addresses
stored in the address registers by allowing both pre- and
post-update operations. Load and store instructions are
available with or without update and in word or byte mode.

The core contains sixteen 16-bit data registers that are
split into two register windows each containing eight data

loop:

LOAD GPR1-1, [SP, #24]

ADD GPR1-0, GPR1-3, GPR1-1

LOAD GPR1-0, [GPR1-0]

LOAD GPR1-1, [SP, #32]

STORE [SP, #72], GPR1-0

ADD GPR1-0, GPR1-3, GPR1-1

LOAD GPR1-0, [GPR1-0]

LOAD GPR1-1, [SP, #72]

MPY GPR1-0, GPR1-1, GPR1-0

STORE [SP,#40], GPR1-0

LOAD GPR1-0, [SP, #16]

ADD GPR1-1, GPR1-3, GPR1-0

LOAD GPR1-0, [GPR1-1]

LOAD GPR1-1, [SP, #40]

ADD GPR1-0, GPR1-1, GPR1-0

LOAD GPR1-1, [SP, #80]

STORE [GPR1-3], GPR1-0

ADD GPR1-0, GPR1-1, #1

ADD GPR1-3, GPR1-3, #4

CMP GPR1-0, #100

BRCT loop

loop:

IW_MOV GPR1-0, GPR2-1

WIN_SWAP GPR, #1

ADD GPR1-3, GPR1-2, GPR1-0

IW_MOV GPR1-0, GPR2-2

LOAD GPR1-1, [GPR1-3]

ADD GPR1-3, GPR1-2, GPR1-0

LOAD GPR1-0, [GPR1-3]

MPY GPR1-3, GPR1-1, GPR1-0

IW_MOV GPR1-1, GPR2-3

ADD GPR1-1, GPR1-2, GPR1-1

LOAD GPR1-1, [GPR1-0]

ADD GPR1-0, GPR1-3, GPR1-1

STORE [GPR1-2], GPR1-0

WIN_SWAP GPR, #2

ADD GPR2-0, GPR2-0, #1

WIN_SWAP GPR, #1

ADD GPR1-2, GPR1-2, #4

WIN_SWAP GPR, #2

CMP GPR2-0, #100

BRCT loop

(b) (c) (d)

for (i = 0; i < 100; i ++) {

a [i] = b[i] * c[i] + d[i]

}

(a)

loop:

ADD GPR1-3, GPR1-0, GPR1-6

LOAD GPR1-2, [GPR1-3]

ADD GPR1-3, GPR1-0, GPR1-7

LOAD GPR1-4, [GPR1-3]

MPY GPR1-3, GPR1-2, GPR1-4

ADD GPR1-2, GPR1-0, GPR1-5

ADD GPR1-1, GPR1-1, #1

LOAD GPR1-4, [GPR1-2]

ADD GPR1-2, GPR1-3, GPR1-4

STORE [GPR1-0], GPR1-2

ADD GPR1-0, GPR1-0, #4

CMP GPR1-1, #100

BRCT loop

loop:

LOAD GPR1-1, [SP, #24]

ADD GPR1-0, GPR1-3, GPR1-1

LOAD GPR1-0, [GPR1-0]

LOAD GPR1-1, [SP, #32]

STORE [SP, #72], GPR1-0

ADD GPR1-0, GPR1-3, GPR1-1

LOAD GPR1-0, [GPR1-0]

LOAD GPR1-1, [SP, #72]

MPY GPR1-0, GPR1-1, GPR1-0

STORE [SP,#40], GPR1-0

LOAD GPR1-0, [SP, #16]

ADD GPR1-1, GPR1-3, GPR1-0

LOAD GPR1-0, [GPR1-1]

LOAD GPR1-1, [SP, #40]

ADD GPR1-0, GPR1-1, GPR1-0

LOAD GPR1-1, [SP, #80]

STORE [GPR1-3], GPR1-0

ADD GPR1-0, GPR1-1, #1

ADD GPR1-3, GPR1-3, #4

CMP GPR1-0, #100

BRCT loop

loop:

IW_MOV GPR1-0, GPR2-1

WIN_SWAP GPR, #1

ADD GPR1-3, GPR1-2, GPR1-0

IW_MOV GPR1-0, GPR2-2

LOAD GPR1-1, [GPR1-3]

ADD GPR1-3, GPR1-2, GPR1-0

LOAD GPR1-0, [GPR1-3]

MPY GPR1-3, GPR1-1, GPR1-0

IW_MOV GPR1-1, GPR2-3

ADD GPR1-1, GPR1-2, GPR1-1

LOAD GPR1-1, [GPR1-0]

ADD GPR1-0, GPR1-3, GPR1-1

STORE [GPR1-2], GPR1-0

WIN_SWAP GPR, #2

ADD GPR2-0, GPR2-0, #1

WIN_SWAP GPR, #1

ADD GPR1-2, GPR1-2, #4

WIN_SWAP GPR, #2

CMP GPR2-0, #100

BRCT loop

(b) (c) (d)

for (i = 0; i < 100; i ++) {

a [i] = b[i] * c[i] + d[i]

}

(a)

loop:

ADD GPR1-3, GPR1-0, GPR1-6

LOAD GPR1-2, [GPR1-3]

ADD GPR1-3, GPR1-0, GPR1-7

LOAD GPR1-4, [GPR1-3]

MPY GPR1-3, GPR1-2, GPR1-4

ADD GPR1-2, GPR1-0, GPR1-5

ADD GPR1-1, GPR1-1, #1

LOAD GPR1-4, [GPR1-2]

ADD GPR1-2, GPR1-3, GPR1-4

STORE [GPR1-0], GPR1-2

ADD GPR1-0, GPR1-0, #4

CMP GPR1-1, #100

BRCT loop

Figure 2: Register window example (a) C-source (b) 1-window of 8-registers (c) 1-window of 4-registers (d)
2-windows of 4-registers each. The number following the hyphen ‘-‘, denotes the allocated register number.

registers (RF0, RF1). Similarly, four 24-bit address registers
are evenly split into two register windows (ARF0, ARF1).
This windowing scheme permits instructions to be encoded
in 16 bits by reducing the number of bits required to en-
code the sixteen register operands from 4 bits to 3 bits. In
general, instructions can access only one register window at
a time. The only exceptions are the non-windowed instruc-
tions which are used to copy data and addresses between the
two windows. A window bit stored in the Machine Status
Register (MSR) selects the active register window. Addi-
tional window bits can be added to the MSR to support
extra register windows. A special instruction switches regis-
ter windows in a single cycle by changing the MSR window
bit setting. Three additional non-windowed address regis-
ters (a stack pointer, frame pointer, and link register) are
used by the compiler for subroutine and stack support.

2.2 Windowed Register File Example
In order to demonstrate the benefits of register window-

ing for reducing spill code while incurring the overhead of
the window management instructions, consider the exam-
ple shown in Figure 2. The original C-source is shown in
Figure 2(a). This has been mapped to 3 different regis-
ter window configurations: Figure 2(b) shows 1-window of
8-registers, Figure 2(c) shows 1-window of 4-registers and
Figure 2(d) shows 2-windows of 4-registers per window. For
clarity, we use a generic RISC-like instruction set instead of
the WIMS instruction set. The leftmost operand is the des-
tination. GPR stands for the integer register file. GPR1,
GPR2 denotes the first and second window of the integer
register file, respectively. WIN SWAP is the window swap
operation. The first operand specifies the register file (in-
teger, floating, address, etc.) while the second argument
specifies the target window number. The WIN SWAP in-
struction sets the machine status register bit to activate the
target window. All subsequent operations then access their
operands from the new window. For example, the instruc-
tion WIN SWAP GPR, #1 sets the current active window
to the 1st window of the integer register file. The spill code

is shown by all SP relative load/store instructions (shown in
bold). IW MOV denotes the inter-window move instruction
which can move values between any two register windows.

In Figure 2(b), all program variables and temporaries
can fit in registers and hence no spill is generated with 8-
registers. Conversely with 4-registers, significant spill code is
generated because there are insufficient registers to hold the
necessary values as shown in Figure 2(c). In Figure 2(d), by
partitioning the variables and temporaries into 2-windows
of 4-registers, no spill is generated although there is an
overhead of 4-window-swaps and 3-inter-window moves (all
shown in bold). On the WIMS processor where every in-
struction shown takes a single cycle, Figure 2(c) has an 8-
cycle overhead as compared to Figure 2(b) while Figure 2(d)
has only 7 extra instructions. Also, (d) consumes less power
as it has fewer loads and stores (0 spill operations) to mem-
ory as compared to (c) (8 spill operations).

3. REGISTER WINDOW PARTITIONING

3.1 Overview
The overall compilation system for register window parti-

tioning is shown in Figure 3. Ignoring the gray boxes, the
base compiler system consists of the frontend which does
profiling, classical code optimizations (such as CSE, con-
stant folding, induction variable elimination, etc.), loop un-
rolling and procedure inlining to produce a generic RISC-like
assembly language code. The assembly code uses an infi-
nite supply of virtual registers (VRs) to communicate val-
ues between operations. A machine description file (MDES)
is used to describe the architecture of the target machine
for generating machine-specific assembly code. The MDES
contains a detailed description of the register files includ-
ing the windows into which each file is partitioned, num-
ber of registers, width of the register files, connectivity of
register files to functional units, instruction format, and a
detailed resource usage model which is used by the instruc-
tion scheduler. The connectivity model helps the compiler’s
code generator conform to the architectural specifications

FRONTEND
PREPASS

SCHEDULING

CODE

GENERATION

REGISTER

ALLOCATION

SWAP

INSERTION

POSTPASS

SCHEDULING

REGISTER

PARTITIONING

CALCULATE

EDGE

WEIGHTS

CALCULATE

PARTITION

WEIGHTS

MOVE

NODES

NAIVE SWAP

INSERTION

SWAP

OPTIMIZATION

Figure 3: Overview of the compiler system.

of the target machine. For the WIMS architecture, a given
operation at any instance can source its operands only from
a single register window. After prepass scheduling, these
VRs are partitioned into the available register windows. For
each register file, the register allocator uses a graph coloring
based algorithm [16] to assign physical registers to the VRs,
generating spills if required. Finally, the resultant code is
scheduled (postpass).

The new phases added to handle register window parti-
tioning are shown in gray boxes in Figure 3. Register parti-
tioning treats each window/partition as a separate register
file and binds VRs allocated to a given partition to the cor-
responding register file. The partitioning algorithm could
assign VRs referenced by a given operation to different win-
dows. The code generator, using the register file connectiv-
ity information from the MDES, inserts appropriate inter-
window moves to honor the architectural constraints. The
swap insertion phase inserts window swaps in the code so
that two operations that access different register windows
are separated by a window swap. The swap optimizer then
removes the redundant swaps and looks for opportunities to
eliminate swaps by combining them with other operations.
Prior to postpass scheduling, an edge drawing phase inserts
control dependency edges between the swap operations and
the operations that precede or follow it so that the postpass
scheduler does not move operations across swaps.

The register window partitioning algorithm is modeled as
a graph partitioning problem where the nodes in the graph
correspond to virtual registers (VRs) used in the assembly
code and the edges represent the affinity between VRs. The
goal of the graph partitioning based approach is to partition
the VRs into different register windows/partitions so as to
minimize the overall spill, inter-window moves, and window
swaps.

Partitioning consists of two distinct phases - weight cal-
culation and node assignment. Each partition is assigned a
weight which measures the cost of spilling the VRs assigned
to that partition. The affinity between VRs is captured us-
ing edge weights. The edge affinity represents the penalty
incurred if two nodes connected by the edge are assigned
to different partitions. The penalty can be an inter-window
move, window swap, or both. If two VRs referenced within a
given operation are assigned to different partitions, the code
generator is forced to insert an inter-window move. Simi-
larly, if two VRs in two different operations are assigned to
different windows, a window swap is required at some point
between the two operations. Unlike traditional graph par-
titioning, which uses statically computed node weights, the
partitioning algorithm uses partition weights that change
dynamically during the partitioning process.

loop:

1 ADD VR34, VR27, VR32

2 LOAD VR6, [VR34]

3 LOAD VR9, [VR27]

4 MPY VR10, VR6, VR9

5 ADD VR20, VR20, VR10

6 ADD VR2, VR2, #1

7 ADD VR27, VR27, #4

8 CMP VR2, 32

9 BRCT loop

3104 1

VR10

VR20 VR2 VR34

VR6

VR9

VR27 VR32

Figure 4: FIR loop with virtual register live-ranges.

The node assignment phase uses the calculated weights to
consider moving nodes between partitions so as to minimize
the sum of all the partition weights and the edge weights be-
tween every partition. The register partitioning algorithm
uses a modified version of the Kernighan-Lin [15] graph par-
titioning algorithm. The partitioning algorithm is region-
based1, i.e all the VRs in the most frequently executed re-
gion are partitioned, followed by the VRs in the next most
frequently executed region and so on. The node assignment
phase must ensure that the partitioning decisions are hon-
ored across all regions.

Figure 4 is a code segment from the inner-most loop of the
FIR filter. The dynamic execution frequency, obtained from
profiling the application on a sample input, is 3104. This ex-
ample will be used throughout this section to illustrate the
weight calculation and node assignment process. We try to
partition this region into 2-windows of 4-registers each. In
this work, profile information is used in the edge and par-
tition weight calculations. Alternately, static weights based
on the nesting depth of loops can also be used.

3.2 Weight Calculation
Edge Weight: An edge is associated with every pair of
VRs. The edge weight is used by the partitioning algorithm
to measure the degree of affinity between two VRs. Higher
edge weights imply greater affinities. The algorithm tries
to place two nodes with high affinity in the same partition
while trying to minimize the sum of the edge weights be-
tween nodes placed in different partitions. An edge weight
is an estimate of the number of dynamic moves and swaps
required between two VRs. By placing two VRs with high
affinity in a single partition, the algorithm reduces the num-

1A region is any block of code considered as a unit for
scheduling like a basicblock, superblock [12] or hyperblock.

2

6

9

10

20

27

32

6 9 10 20 27 32 34

{443, 0} {443, 0} {443, 0} {443, 0} {4168, 0} {443, 0} {443, 0}

{1062,3104} {387, 3104} {387, 0} {2719, 0} {1034, 0} {3104, 0}

{387, 3104} {387, 0} {1064, 3104} {443, 0} {443, 0}

{387, 3104} {1241, 0} {620, 0} {620, 0}

{1008, 0} {387, 0} {387, 0}

{443, 3104} {443, 3104}

{0, 3104}

P1 P2

VR9

VR10
VR32

VR27

VR34

VR6

VR2

VR20

Partition weight of P1 Part ition weight of P2 = 0

= sum of spill cost of VRs 32,20,6,10

= 21728

VR9

VR10
VR32

VR27

VR34

VR6

VR2

VR20

Partition weight of P1 Part ition weight of P2 = 0

= sum of spill cost of VRs 32,20,6,10

= 21728

move?

-10436-10436034

-4228-7332310432

-6800-13008620827

1974-4234620820

-4467-10675620810

-4515-1072362089

-5461-1166962086

3932-22766208 2

Total

Gain

Edge

Gain

Partition

Gain

VR

-10436-10436034

-4228-7332310432

-6800-13008620827

1974-4234620820

-4467-10675620810

-4515-1072362089

-5461-1166962086

3932-22766208 2

Total

Gain

Edge

Gain

Partition

Gain

VR

(a) (b) (c)

Figure 5: Partitioning applied to FIR. (a) Initial partition (b) Edge weight matrix with swap cost on the left
and move cost on the right (c) Gains for each VR for the initial partition.

ber of swaps and moves. The edge weight between VRs is
expressed as a matrix (see Figure 5(b)) computed prior to
the node assignment process. The edge weight is the sum of
two components - the estimated move cost and swap cost.

Move cost: An operation may only reference registers
from a single window. Thus, VRs referenced by a single
operation that are assigned to different partitions require
an additional inter-window move (IW MOV) operation. For
every pair of VRs, the total number of dynamic instances
of operations in which both the VRs occur is computed.
Each operation would need a move if the VRs referenced
by it were assigned to different partitions. Thus, the total
dynamic instances of each operation is the estimated move
cost. In Figure 4, VRs 6 and 9 occur in operation 4 and
so the move cost is 3104. This process is carried out for all
pairs of VRs producing the matrix of values in Figure 5(b)
(right entry in each cell).

Swap cost: If two VRs are assigned to two different win-
dows/partitions, a window swap (WIN SWAP) is required
before the operation that refers to the second VR. Swap cost
estimates the number of swaps required between every pair
of VRs assuming that they are assigned to different parti-
tions. For every pair of VRs, the region is scanned in linear
order. On reaching the first VR, the current active window
is assumed to be 1. On encountering the second VR, the cur-
rent active window becomes 2 and hence a swap is required
right before the operation which references the second VR.
Continuing further, on seeing an instance of the first VR
again, the active window changes and another swap is re-
quired. No swap is required on reaching another instance of
the recent most seen VR. At the end of the region, the total
number of swaps seen so far gives an estimate of the number
of swaps required between this pair of VRs.

Adding swap cost between every pair of VRs can over-
estimate the importance of swaps as the number of swaps is
a function of the partition assignment of all the VRs and not
just between two VRs. For example, consider operations 3
and 4 in Figure 4. If VRs 9 and 27 are assumed to be in
window 1 and VRs 10 and 6 in window 2, the above method

would count the swap four times, between 9 and 10, 9 and
6, 27 and 10, and 27 and 6, although in reality only a single
swap is necessary.

To deal with the swap over-counting, we use swap counts
to normalize the swap cost between every pair of VRs. The
swap count is the number of swaps between every pair of
operations due to every pair of VRs. For example, between
operations 6 and 7, 5 swaps are required. These swaps are
due to VR pairs 10 and 27, 20 and 27, 2 and 27, 27 and
9, and 27 and 6. Similarly, between operations 3 and 4, 5
swaps are required - these are due to VR pairs 10 and 27, 10
and 32, 10 and 34, 27 and 6, and, 9 and 6. Generalizing this
for 2-windows, let c1, c2...ck be the swap count due to swaps
required by all pair of VRs after operations op1, op2...opk.
If two VRs vri and vrj , require a swap after these k oper-
ations, then the normalized swap cost estimate between vri

and vrj is (1/c1 + 1/c2 + ... + 1/ck) ∗ cost of swap, where
cost of swap is the cost of a single swap operation which is
just the dynamic frequency count of the region where the
swap would be inserted. Intuitively, a swap after an oper-
ation could be shared by multiple VR pairs. So, if n VR
pairs introduce a swap after an operation, then the contri-
bution to the swap cost by any one of those VR pairs is
1/n. In Figure 4(a), VRs 10 and 27 require a swap after
operations 3 and 6. Since operation 3 has a swap count of 5
(due to the 5 pair of VRs including 10 and 27 listed above)
and operation 6 also has a swap count of 5 (including 10
and 27), the swap cost estimate between VRs 10 and 27 is
(1/5 + 1/5) ∗ 3104 = 1241 (Figure 5(b), left entry in each
cell). Beyond 2-windows, multiple swaps may be required
after an operation for swapping between different windows.
For n-windows, we pessimistically assume a swap for every
pair of windows and so multiply the swap cost estimate by
n ∗ (n − 1)/2.
Partition Weight: The partition weight estimates the spill
cost when VRs assigned to the partition are allocated to the
register window corresponding to that partition. The node
assignment phase tries to minimize the sum of the weights
of all the partitions. Only the VRs in the current region

are considered. The partition weights are computed using
a crude priority function based on register allocation using
graph coloring.

Given a set of VRs assigned to a partition, the live-ranges
of the VRs are computed. For each VR, its dynamic ref-
erence count is calculated. The dynamic reference count
is the dynamic execution frequency of the region times the
number of occurrences of the VR as either a source or a des-
tination operand within an operation in that region. If the
VR is spilled, then the dynamic reference count gives an es-
timate of the load/store overhead for every instance of that
VR. For every VR, the estimated dynamic cycles associated
with spilling the VR is computed. For every operation in
the region spanned by the live-range of the VRs under con-
sideration, the interfering VRs are considered as candidates
for spill. If the number of overlapping live-ranges for that
operation is more than the number of registers in that par-
tition (size of the register window)2, the interfering VRs are
spilled until the overlapping live-range is less than the reg-
ister window size. Note, we are only estimating the weight
of the partition by mimicking the process of spilling without
actually inserting the spill code. The actual spill code inser-
tion is done during register allocation within each window
after the window assignment process. The VRs are chosen
in increasing order of dynamic reference count. If two VRs
have the same dynamic reference count value, the one with
larger live-range is spilled. Once a VR is spilled, it no longer
interferes with the rest of the operations and hence is not
considered for subsequent operations if there is an overlap.
The cost of the partition is the sum of the dynamic reference
counts of the spilled VRs. If a VR is already assigned to the
register window (from an earlier region) then, for the rest of
the VRs interfering with this VR, the number of available
registers is one less than the partition size.

In Figure 4, the live-ranges of the VRs are shown on the
right. Assume that all VRs are assigned to a single partition.
Operation 1 has 5 VRs (20,2,34,27,32) live simultaneously.
Since there are only 3 registers available in the partition,
VRs 32 and 20 are spilled. VR 32 has a spill cost of 3104
as there is only a single reference of that VR in operation 1,
while other VRs are referenced more than once and have spill
cost greater than 3104. Hence, VR 32 is picked first. VRs
20 and 34 both have a dynamic reference count of 6208, but
VR 20 has a larger live-range and so is chosen for spilling.
At operation 2, VRs 20, 2, 34, 6, 27 and 32 are live. Since
32 and 20 are already spilled, therefore only 6 gets spilled as
6 has a smaller dynamic reference count than VRs 2 and 27,
and larger live-range than 34. At operation 3, VRs 20, 2, 6,
9, 27 and 32 are live. Since 32, 20, 6 are already spilled, no
more VRs are spilled here as the number of remaining live
VRs is equal to 3. VR 10 is spilled at operation 4. So, for this
partition, the partition weight is the spill cost of the spilled
VRs 32, 20, 6, 10, which is 3104+6208+6208+6208 = 21728.

3.3 Node Partitioning
The goal of the node partitioning phase is to reduce the

overall spill cost while minimizing the impact due to inter-
window moves and swaps. Starting from an initial parti-
tion, the graph partitioning algorithm tries to iteratively

2In our implementation, we assume the number of available
register is one less than the window size. This is done to
factor in the interferences due to inter-window moves that
would be inserted later.

1) set_of_parts = create_parts(n)
2) num_tries = 0; total_gain = 0; did_move = true;
3) add all unbound VRs to the first partition
4) while (did_move == true && num_tries < MAX_TRIES) {
5) did_move = false;
6) src_part = find_unbalanced_partition(set_of_parts)
7) if (src_part == NULL) {
8) unlock all locked vrs in current set of partitions
9) add current set of partitions to set_of_parts
10) num_tries++
11) continue
12) } else {
13) if (src_part == last_part) {
14) remove src_part from set_of_parts
15) continue
16) }
17) while (total_gain >= 0) {
18) {gain,vr,dest_part} = find_best_vr(src_part)
19) total_gain += gain
20) do_move_vr(vr, dest_part)
21) lock_vr(vr, dest_part)
22) did_move = true
23) }
24) last_part = current_part
25) }
26) }

Figure 6: Pseudo code for node partitioning.

1) find_best_vr(src_part) {
3) for every node in src partition {
4) for every dest_part in destination partition {
5) move_node(node, dest_part)
6) old_total_wt = src_part_wt_old + dest_part_wt_old
7) new_total_wt = src_part_wt_new + dest_part_wt_new
8) partition_wt_gain = old_total_wt - new_total_wt
9) edge_wt_gain = old_edge_wt - new_edge_wt
10) gain = partition_wt_gain + edge_wt_gain
11) if (gain > maxgain) {
12) bestnode = node
13) maxgain = gain
14) }
15) }
16) }
17) return (maxgain,bestnode,dest_part)
18)}

Figure 7: Pseudo code to find best VR.

distribute VRs into different partitions so as to reduce the
sum of the weights of all partitions, while trying to mini-
mize the edge weights between nodes assigned to different
partitions.

The node partitioning technique is a modified version of
Kernighan-Lin’s graph partitioning algorithm [15]. The pse-
udo code for the algorithm is given in Figure 6. Initially,
all nodes are placed in a single partition. The motivation to
start with this initial configuration was to let the partitioner
use one register window as much as possible and move VRs
to the other windows only when the inter-window move and
window-swap cost (edge weight) is dominated by the spill
cost (partition weight). During a single iteration of the outer
loop of the algorithm (step 4), the partition (src part) with
the maximum weight is selected (find unbalanced partition).
If such a partition exists (step 7) and is not the same as the
previously selected partition (step 13), proceed to step 18.
In step 18, from the current partition (src part), the best
node that can be moved to any other partition (find best vr)
is found.

Figure 7 gives the pseudo code for find best vr. For ev-
ery node in the source partition, find best vr computes the
gain in moving the node to all other destination partitions.

Gain is defined as the sum of the partition wt gain and
edge wt gain, where partition wt gain is the reduction in to-
tal partition weights when the node is moved from the source
to the destination partition. Similarly, edge wt gain is the
reduction in edge weights between nodes in the source and
destination partitions. In Figure 7, src part wt old/dest par-
t wt old is the weight of the source/destination partition
before the node is moved, while src part wt new/dest par-
t wt new is the weight of the source/destination partition
after the node is moved.

The partitioning algorithm then picks the node with the
highest gain and performs the move (step 20). It also keeps
track of the cumulative gain, which is the sum of the gains
obtained during each move (step 19). Note that, it is pos-
sible for the gain of a move to be negative. But as long as
the total gain is positive, the algorithm tries moving nodes
from the current partition. Allowing negative gains helps
avoid local minima. When the total gain is negative (i.e
no more moves are possible from the current partition, step
17), it picks the next most unbalanced partition. If the new
partition is same as the old partition (step 13), it disregards
the current partition (step 14) and tries a new one. Also,
once a node is moved over to the new partition, it is locked
in the new partition and not considered in the current iter-
ation (step 21). The inner loop (steps 17-23) changes the
current partition configuration to generate a new partition
configuration.

Figure 5(a) gives the initial configuration. The partition
weight of P1 is 21728 while that of P2 is 0 (as there are no
VRs assigned to P2). The algorithm tries to move each VR
from P1 to P2 and computes the resultant partition and edge
gains. Figure 5(c) shows the gain for each VR. The partition
gain (shown in column 2 of Figure 5(c)), is the reduction in
total spill when the given VR is moved from P1 to P2. The
edge gain is shown in column 3 of Figure 5(c). Since all
VRs are in P1, any move results in a positive edge weight
between P1 and P2 and hence a negative edge gain. The VR
with the maximum total gain (partition gain + edge gain,
as shown in column 4 of Figure 5(c)) is chosen. Here, VR 2,
with a total gain of 3932 is moved to partition 2.

Once all the partitions are done (step 7) in a single it-
eration of the outer loop, all nodes are unlocked (step 8).
This allows nodes that were moved in the current iteration
to move back to their original partition in the next iteration.
If any move was performed in this iteration, the algorithm
loops back to step 4 with the new partition configuration
to start the next iteration. From the new configuration,
the partition with the greatest weight is selected and the
process continues. A node could possibly go back-and-forth
multiple times between two partitions before eventually set-
tling in one. There is an upper threshold (MAX TRIES) on
the number of runs so that the algorithm does not fall into
an infinite loop. Experimental results have shown that this
helps to overcome some of the greedy decisions made during
a single run. Also, in our experiments the total iterations of
the outer loop never exceeded more than 4.

Edge weights are computed statically before partitioning.
So, find best vr need only do a lookup of the edge weight
matrix (Figure 5(b)) to get the edge weights between a pair
of VRs. But, this is not the case with the partition weights.
As nodes migrate from partition to partition, the interfer-
ences among VRs can change and so the partition weight
(spill cost) has to be recomputed (section 3.2) on the fly.

Figure 8 shows the final partition configuration. The total
partition weight is 3104 as compared to the initial partition
weight of 21728 (Figure 5(a)). The final code after register
allocation and swap insertion is also shown in Figure 8. The
code has 1 spill (operation 2) 4 swaps (operations 1, 8, 11,
13) and 1 inter-window move (operation 7).

3.4 Window Swap Insertion and Optimization
Window swap operations are inserted after window as-

signment and register allocation. Initially, a näıve window
assignment is performed by walking the region in sequential
program order. A window swap operation is inserted at the
beginning of the region depending on the register window of
the first operation in the block. The current register win-
dow is set to this window. Scanning each operation, if the
assigned window is different from the current register win-
dow, a swap to the new window is inserted. This becomes
the new current register window. Following every procedure
call, a window swap operation is forced to set the current
active window to the window of the operation following the
procedure call. This is because we assume separate compi-
lation and the state of the active window is unknown after
a procedure return.

Swap optimizations: This näıve method inserts many
unnecessary swap operations. Three swap optimizations
were implemented to reduce the swap overhead.

• A swap at the beginning of a region is unnecessary if
all control paths leading to that block have trailing
operations which are in the same window as the first
operation in the region.

• It is also possible to hoist a window swap upwards from
the beginning of a more frequently occurring region to
the end of less frequently occurring predecessors and
thus reduce the total number of dynamic swaps. This
is legal provided the new window swap operation in-
serted at the end of the predecessor is the last oper-
ation of that predecessor (this might not be the case
for superblocks which have multiple exits)

• To prevent redundant swaps after procedure calls, the
return from subroutine operation forces the window to
be set to 1. So, if an operation following the procedure
call is assigned to window 1, a swap is not needed.

Instruction combining: To further reduce the swap
overhead, experimental studies were conducted on which op-
erations frequently preceded a swap to identify opportunities
for merging swap with regular operations. Combining must
be constrained by the availability of free opcode encoding
bits within the instruction encoding. Inter-window register
move and window-swap was found to be a likely candidate
as the WIMS move operations have free encoding bits. In
Figure 8, swap operation 8 can be combined with the inter-
window move operation 7. Another interesting complex op-
eration can be formed by combining a conditional branch
with a swap such that the swap would be executed only
if the branch is either taken or fallthrough. The effects of
operation combining are evaluated in the next section.

Edge drawing: After the swaps are inserted, control
dependence edges are inserted between the swap and all op-
erations preceding and following it. This is done so that the
postpass scheduler does not intermix operations from dif-
ferent windows. All operations preceding the swap except

loop:

1 WIN_SWAP GPR, #1

2 LOAD 32:GPR1-0, [SP, #0]

3 ADD 34: GPR1-3, 27:GPR1-1, 32:GPR1-0

4 LOAD 9:GPR1-3, [27:GPR1-1]

5 LOAD 6:GPR1-2, [34:GPR1-3]

6 MPY 39:GPR1-0, 6:GPR1-2, 9:GPR1-3

7 IW_MOV 10:GPR2-2, 39:GPR1-0

8 WIN_SWAP GPR, #2

9 ADD 20:GPR2-1, 20:GPR2-1, 10:GPR2-2

10 ADD 2:GPR2-0, 2:GPR2-0, #1

11 WIN_SWAP GPR, #1

12 ADD 27:GPR1-1, 27:GPR1-1, #4

13 WIN_SWAP GPR, #2

14 CMP 2:GPR2-0, #32

15 BRCT loop

3104
1

P1 P2

VR9

VR10VR32

VR27

VR34

VR6

VR2

VR20

Partition weight of P1 Partit ion weight of P2 = 0

= spill cost of VR 32

= 3104

loop:

1 WIN_SWAP GPR, #1

2 LOAD 32:GPR1-0, [SP, #0]

3 ADD 34: GPR1-3, 27:GPR1-1, 32:GPR1-0

4 LOAD 9:GPR1-3, [27:GPR1-1]

5 LOAD 6:GPR1-2, [34:GPR1-3]

6 MPY 39:GPR1-0, 6:GPR1-2, 9:GPR1-3

7 IW_MOV 10:GPR2-2, 39:GPR1-0

8 WIN_SWAP GPR, #2

9 ADD 20:GPR2-1, 20:GPR2-1, 10:GPR2-2

10 ADD 2:GPR2-0, 2:GPR2-0, #1

11 WIN_SWAP GPR, #1

12 ADD 27:GPR1-1, 27:GPR1-1, #4

13 WIN_SWAP GPR, #2

14 CMP 2:GPR2-0, #32

15 BRCT loop

3104
1

P1 P2

VR9

VR10VR32

VR27

VR34

VR6

VR2

VR20

Partition weight of P1 Partit ion weight of P2 = 0

= spill cost of VR 32

= 3104

P1 P2

VR9

VR10VR32

VR27

VR34

VR6

VR2

VR20

Partition weight of P1 Partit ion weight of P2 = 0

= spill cost of VR 32

= 3104

Figure 8: FIR after window assignment. GPR1 denotes window 1 of the integer register file (GPR) and
GPR2 denotes window 2. The number after the hyphen ‘-’ is the allocated register number. The number
before ‘:’ is the original VR from Figure 4.

procedure calls and branches have a 0-cycle control depen-
dency with the swap. All operations following the swap have
a 1-cycle dependency with the swap and so would be exe-
cuted strictly after the swap. The postpass scheduler is then
invoked to schedule the swaps, inter-window moves and the
spill code while honoring the new control dependences.

4. EXPERIMENTAL RESULTS
We implemented the register partitioning algorithm using

the Trimaran compiler toolset, a retargetable compiler for
VLIW processors [29]. For our study, only the integer regis-
ter file was assumed to be windowed and so a set of integer-
dominated benchmarks from a mix of Mediabench [17], Mi-
Bench [9] and Unix utilities were evaluated. All the bench-
marks were compiled with control-flow profiling, superblock
formation, function inlining, and loop unrolling turned on.
For the experiments, the number of windows and the num-
ber of registers per window were varied to evaluate the power
and performance impact. Two machine configurations were
used - the WIMS processor and a 5-wide VLIW machine
with the following function units: 2 integer, 1 floating-point,
1 memory, and 1 branch. For the VLIW machine, the swap
instruction is assumed to be compatible with any slot in the
VLIW word and thus can be assigned to any free slot. In
our experiments, the floating-point unit is often free, thus
the swap occupies that slot. The swap completes in the
decode stage and does not occupy a function unit. The
inter-window move executes on the integer unit.

We considered the power/performance improvement of a
range of register file configurations consisting of 1, 2, 4,
and 8 indentical windows containing 4, 8, and 16 regis-
ters per window. More specifically, the following configu-
rations were evaluated: 2-window, 4-window, and 8-window
with 4-registers per window (w2.r4, w4.r4, w8.r4) were com-
pared against a base 1-window of 4-registers (w1.r4); 2-
window and 4-window with 8-registers per window (w2.r8,
w4.r8) were compared against a base 1-window of 8-registers
(w1.r8); and finally, 2-window with 16-registers per win-
dow (w2.r16) was compared against a base 1-window of
16-registers (w1.r16). This helped in understanding the

power/performance benefits of increasing the effective num-
ber of registers without changing the instruction set archi-
tecture. For all the experiments, window swaps were com-
bined with an immediately preceding inter-window move
whenever possible.

The graph in Figure 9 compares the 2-window with 8-
registers per window case (left set of bars) and the 4-windows
with 8-registers per window case (right set of bars) with the
base 1-window of 8-registers for the WIMS processor. For
each set of bars, the percent performance improvement in
total execution cycles (leftmost bar of each set) is shown.
The performance numbers were obtained by multiplying the
schedule length of each region by its execution frequency to
get the total dynamic execution cycles for the whole pro-
gram. Since we use a single cycle memory system for the
WIMS and the VLIW processors, this approach is quite ac-
curate. The rightmost bar of each set shows two components
- (i) spill benefit, which is the percent savings in total exe-
cution cycle count due to savings in spill, (ii) percent swap
and move overhead, which is the percent of overall execu-
tion cycles due to the extra inter-window moves and window
swaps. The numbers over each set of bars shows the percent
savings in dynamic spill code as we scale the number of win-
dows. Performance improvement is obtained when the spill
benefit exceeds the swap and move overhead.

Overall, an average performance improvement of 10% is
observed with 4-windows of 8 registers. Performance ranges
from a maximum of a 30% gain for djpeg to a loss of 0.8%
for g721dec. This range of results is due to the compet-
ing affects of spill code reduction and swap/move overhead.
In djpeg, an 86% reduction in spill code (for the 4-window
8-register case) is seen, which accounts for 42% savings in
total cycles. While for g721dec, there is a 77% reduction
in spill code, but this contributes to only 10% savings in
total cycles. This implies that the impact of spill is signif-
icantly less for g721dec in the base 1-window of 8-registers
case. Since all instructions take a single cycle, any gain in
performance due to savings in spill is offset by a correspond-
ing reduction in performance due to swaps and moves. The
negative performance in a few of the multi-window cases are

-50

-40

-30

-20

-10

0

10

20

30

40

50

fi
r

ra
w

c

ra
w

d

g7
21

en
c

g7
21

de
c

co
m

pr
es

s

sh
a

y
ac

c

cj
p

eg

dj
p

eg

gs
m

en
c

gs
m

de
c

un
ep

ic

m
p

g2
de

c

av
er

ag
e

%
 c

y
cl

e
s

Performance Spill Benefits Swaps and Moves Overhead

97 99 99

68 69
55

61

54

85
65

64

93

79

58

7597 99 99

77 76

88

83

58

91

86

69

95

78

85

84

-50

-40

-30

-20

-10

0

10

20

30

40

50

fi
r

ra
w

c

ra
w

d

g7
21

en
c

g7
21

de
c

co
m

pr
es

s

sh
a

y
ac

c

cj
p

eg

dj
p

eg

gs
m

en
c

gs
m

de
c

un
ep

ic

m
p

g2
de

c

av
er

ag
e

%
 c

y
cl

e
s

Performance Spill Benefits Swaps and Moves Overhead

97 99 99

68 69
55

61

54

85
65

64

93

79

58

7597 99 99

77 76

88

83

58

91

86

69

95

78

85

84

Figure 9: Effect of increasing the number of register windows for the 8-register WIMS processor. For each
benchmark, two sets of data are shown: w2.r8 (left) and w4.r8 (right), plotted relative to w1.r8.

-50

-40

-30

-20

-10

0

10

20

30

40

50

fi
r

ra
w

c

ra
w

d

g7
21

en
c

g7
21

de
c

co
m

pr
es

s

sh
a

y
ac

c

cj
p

eg

dj
p

eg

gs
m

en
c

gs
m

de
c

un
ep

ic

m
p

g2
de

c

av
er

ag
e

98 98 99 99

99 99

70

86

66

72

36

73

58

91

56 62

67

90

29

50

77 72 95 96

51
77

62

79

69

82

Performance Spill Benefits Swaps and Moves Overhead

%
 c

y
cl

e
s

-50

-40

-30

-20

-10

0

10

20

30

40

50

fi
r

ra
w

c

ra
w

d

g7
21

en
c

g7
21

de
c

co
m

pr
es

s

sh
a

y
ac

c

cj
p

eg

dj
p

eg

gs
m

en
c

gs
m

de
c

un
ep

ic

m
p

g2
de

c

av
er

ag
e

98 98 99 99

99 99

70

86

66

72

36

73

58

91

56 62

67

90

29

50

77 72 95 96

51
77

62

79

69

82

Performance Spill Benefits Swaps and Moves Overhead

%
 c

y
cl

e
s

Figure 10: Effect of increasing the number of register windows for the 8-register VLIW machine. For each
benchmark, two sets of data are shown: w2.r8 (left) and w4.r8 (right), plotted relative to w1.r8.

seen because we insert redundant swaps, for example, after
a procedure call or at the beginning of a function, caused by
separate compilation. Also, the greedy nature of the parti-
tioning algorithm causes VRs to be moved to partitions and
thus increase the swap/move cost.

The graph in Figure 10 repeats the previous experiment
for the VLIW machine. We achieve an average of 22% per-
formance improvement for the 4-window with 8-registers per
window case, which is more than double the gain observed
for the WIMS processor. The larger gains are due to several
reasons related to the multi-issue capabilities of the VLIW
machine. First, the spill code often sequentializes program
execution by increasing the lengths of critical dependence
chains through the code. For the VLIW machine, these
critical dependence chains often determine the program ex-
ecution time. Thus, the elimination of spills translates into
compacter schedules and larger performance gains than for
single-issue WIMS processor. Second, there is a larger de-
mand for registers to maintain the necessary intermediate
values to support the inherent instruction level parallelism.
Thus, more spill code is present and its affects are more pro-

nounced. Third, the overhead of swaps and moves is lower
as they can execute in parallel with other instructions. In
particular, the swap often executes in the floating-point slot
making it almost ”free” for the integer dominated applica-
tions that are evaluated.

Table 1 compares the performance improvement of dif-
ferent window configurations with 4 and 16 registers per
window for the WIMS and VLIW machines. As compared
to the 8-register configurations, the w4.r4 per window case
shows much improved performance as compared to the w1.r4
case as 4-registers are insufficient for both the WIMS and
the VLIW machines. But the performance of w2.r16 over
w1.r16 is not significant as the compiler is able to do a good
job in eliminating most of the spills using 1-window of 16-
registers. Djpeg, due to loop unrolling, had a high register
pressure and hence benefited significantly when the number
of windows were increased for all window file sizes. As with
the 8-register case, the swap and move overhead outweighs
the spill savings and hence a decrease in performance is ob-
served in g721enc and g721dec.

Table 2 shows the impact that the swap-move combin-

Benchmark w2.r4 w4.r4 w8.r4 w2.r16
fir 1.24 25.81 28.26 0.00

rawc 14.47 21.19 20.91 0.00
rawd 16.81 24.49 24.52 0.00

g721enc -8.47 0.11 -1.11 -0.64
g721dec -9.02 -0.98 -2.35 -0.51
compress 6.08 11.75 10.78 0.21

sha 6.54 8.07 25.38 2.86
yacc -0.37 6.15 6.78 -0.50
cjpeg -2.33 18.26 22.96 -0.69
djpeg 2.47 11.04 16.51 17.92

gsmenc 13.63 19.94 23.17 2.30
gsmdec -1.36 14.34 23.42 -0.04
unepic 4.74 13.14 17.13 6.77

mpeg2dec -2.91 5.45 10.21 8.02
average 2.96 12.7 16.18 2.55

Benchmark w2.r4 w4.r4 w8.r4 w2.r16
fir 2.70 35.35 42.10 0.00

rawc 26.71 48.29 47.79 0.00
rawd 27.04 48.57 47.77 0.00

g721enc -0.31 7.83 12.30 -0.58
g721dec -0.96 13.88 16.47 -0.13
compress 9.22 28.37 35.30 1.90

sha 7.48 20.83 41.38 -1.56
yacc 5.36 21.32 22.53 -0.27
cjpeg 4.42 31.84 39.24 13.36
djpeg 6.51 16.06 28.82 42.53

gsmenc 9.01 12.48 39.10 5.32
gsmdec 28.94 40.96 43.24 0.09
unepic 10.22 19.81 28.41 9.52

mpeg2dec 11.90 23.78 29.23 0.35
average 10.58 26.38 33.83 5.03

Table 1: Effect of increasing the number of register windows for the 4 and 16-register WIMS (left) and VLIW
(right) machines. For each table, columns 2, 3, 4 show the performance improvement of w2.r4, w4.r4 and
w8.r4 over w1.r4 and column 5 shows the performance improvement of w2.r16 over w1.r16.

Benchmark fir rawc rawd g721enc g721dec compress sha
w2.r8 2.70 2.73 3.17 2.14 2.73 2.54 1.93
w4.r8 2.70 2.73 3.17 2.04 2.89 3.26 4.01
w2.r16 0.00 0.00 0.00 0.11 0.06 0.06 0.00

Benchmark yacc cjpeg djpeg gsmenc gsmdec unepic mpeg2dec
w2.r8 0.00 2.73 6.63 2.33 5.20 2.75 1.47
w4.r8 3.40 3.02 6.03 3.11 3.40 2.86 1.49
w2.r16 0.26 0.23 0.96 0.29 0.00 0.62 0.05

Table 2: Percent savings in execution cycles when inter-window move and window swap operations are
combined on the WIMS processor.

ing optimization has on the overall execution cycles for the
WIMS processor. Although the benefit is generally small, it
does matter more for configurations with a small number of
registers and large number of windows. Also, for the WIMS
processor, where the swap consumes a single cycle, this helps
in reducing the overhead due to the swap instruction. We
also studied the effect of combining a conditional branch
with a swap, but found the frequency of their occurrence to
be less than 1%.

Table 3 shows the energy breakdown and execution times
for different instruction types for the WIMS processor. The
energy measurements were obtained from Synopsys’ Nanosim
using post-APR back-annotated parasitics. Input vectors
were created at 1.8V and 100MHz operation by running as-
sembled test cases through the pipeline and capturing the
switching activity [27]. The power due to different regis-
ter file sizes was negligible (< 5%) when compared to the
pipeline and memory power as the number of registers con-
sidered was no more than 32.

The graph in Figure 11 shows the improvement in to-
tal dynamic power on the WIMS processor computed using
the above table. The total power includes the pipeline and
memory power (instruction fetch, loads and stores). Un-
like performance, since spills dissipate power to access mem-
ory, spill reduction can result in significant improvement in
power consumed. For example, gsmdec achieves a 19% re-
duction in power in the 4-windows of 8-registers per window
case. Here, power reduction is obtained by exchanging spill
for a swap/move. Unlike performance, where a significant
reduction in spill is required to offset the overhead due to

moves and swaps, equal exchange is good for power.
To compare the traditional uses of a register window to

reduce register save/restore overhead at procedure calls, we
did a study where each procedure used a separate window.
An infinite supply of windows was assumed, thus eliminating
all caller/callee save/restore overhead. But this resulted in
less than 2% improvement in performance. As described
earlier, the procedure calling overhead in most embedded
applications is not high. Thus, there is little opportunity
for performance improvement using a register window in a
traditional manner.

5. RELATED WORK
Hardware and software schemes have been proposed in

prior work to increase the effective number of registers. On
the hardware side, windowed architectures similar to ours
have been used in a number of processors, including the
ADSP-219x [2] and Tensilica’s Xtensa [25]. These processors
use register windows to reduce procedure call and context
switch overhead while handling real-time critical interrupts.
The SPARC architecture [24] uses a novel register window
scheme to avoid procedure call overheads. A window con-
sists of three groups of 8 registers, the out, local, and in
registers. At any given time only one window is visible, as
determined by the current window pointer. The in registers
contain incoming parameters, the local registers constitute
scratch registers, and the out registers contain outgoing pa-
rameters. The register windows overlap partially. On a pro-
cedure call, the out registers of the caller are renamed as the
in registers of the callee. By using extra register windows,

0

5

10

15

20

fi
r

ra
w
c

ra
w
d

g7
21
en
c

g7
21
de
c

co
m
pr
es
s

sh
a

y
ac
c

cj
p
eg

dj
p
eg

gs
m
en
c

gs
m
de
c

un
ep
ic

m
pe
g2
de
c

av
er
ag
e

%
 p

o
w

e
r

w2.r8 w4.r8

0

5

10

15

20

fi
r

ra
w
c

ra
w
d

g7
21
en
c

g7
21
de
c

co
m
pr
es
s

sh
a

y
ac
c

cj
p
eg

dj
p
eg

gs
m
en
c

gs
m
de
c

un
ep
ic

m
pe
g2
de
c

av
er
ag
e

%
 p

o
w

e
r

w2.r8 w4.r8

Figure 11: Percent dynamic power improvement of w2.r8 and w4.r8 over the base case of w1.r8.

Instr. class add-sub bool cmp div mul shift jmp-abs jmp-rel

Energy (nJ) 0.55 0.38 0.52 2.27 2.22 0.35 0.90 0.64
Time (ns) 10 10 10 180 180 10 30 20

Instr. class ld-abs ld-rel st-abs st-rel br-taken br-nottaken win-swap win-move

Energy (nJ) 0.98 0.74 0.93 0.74 1.00 0.39 0.37 0.47
Time (ns) 20 10 20 10 30 10 10 10

Table 3: Per instruction class energy and execution time for the WIMS processor at 100MHz.

these schemes avoid costly saving and restoring overhead of
registers at procedure boundaries.

A similar but more configurable scheme called the Reg-
ister Stack Engine (RSE) is implemented in the IA-64 ar-
chitecture [13]. The register stack supports a variable sized
window for each procedure, wherein the size is determined
by the compiler and communicated to the hardware through
special instructions. When the number of physical registers
is exceeded, a hardware engine is invoked to save and restore
the registers to memory. Again, the RSE is primarily tar-
geted at reducing the save/restore overhead incurred by pro-
cedure calls. This work is different in that the focus is on the
use of multiple register windows within a single procedure
to reduce spill code. In embedded applications, procedure
call overhead is generally small as most of the computation
is performed within loop nests contained in a single proce-
dure. However, spill code within a single procedure can be
high due to small numbers of architected registers.

Register connection [28] and register queues [19, 23] have
been proposed to increase the effective number of physical
registers without changing the number of architectural regis-
ters using hardware/compiler support. Register connection
uses special instructions to dynamically connect the core
architectural registers to a larger set of physical registers.
With register queues, each register is connected to a queue
of registers that are effective at maintaining values across
multiple loop iterations in software pipelined loops [19, 23].
Both techniques introduce a layer of indirection to access
every register operand. Further, additional hardware struc-
tures are used in their implementation to maintain the map-
ping between architected registers and physical registers.
These techniques are generally targeted at high-performance
platforms as their cost/power overhead are too large for em-
bedded processors.

The register file can also be reorganized to deal with the
problems of large register file sizes. Register caches [5] allow

low latency register access while supporting a large archi-
tectural register file by caching a subset of the values of
the register file in a smaller but faster register cache. The
function units source their operands from the register cache.
Clustering breaks up a centralized register file into several
smaller register files, thereby creating a decentralized ar-
chitecture [7, 8]. Each of the smaller register files supplies
operands to a subset of the function units, and can be de-
signed more efficiently. However, these techniques are used
to reduce register file access time, porting, and interconnect
complexity. They do not deal with the problem of limited
encoding space and thus focus on orthogonal problems.

On the software side, code generation for DSP processors
has proved to be a challenge for compilers [20]. Irregularities
of such architectures has motivated the use of new compiler
techniques which were initially considered to be complex
and time consuming. Graph partitioning is one such ap-
proach. Operation partitioning has been used in compilers
for multi-clustered VLIW processors [6, 1, 4]. Several graph
partitioning based tools like Chaco [10] and Metis [14] have
been widely used to implement mutli-level Kernighan-Lin
and other more sophisticated algorithms. These tools assign
static weights to nodes and edges while our problem requires
dynamic assignment of partition weights. A global regis-
ter partitioning and interference graph-based approach has
been used in the context of multi-cluster and multi-register
file processors [11, 3]. Graph partitioning-based approach
has been explored in the context of partitioning program
variables into multiple memory banks [18]. Our approach,
on the other hand, tries to partition virtual registers into
multiple register windows within a given procedure scope
while trying to minimize spill code, inter-window moves and
window swaps.

6. CONCLUSION
In this work, we developed and implemented a novel graph

partitioning based compiler algorithm to evaluate the ben-
efits of a windowed register file design. Such a design in-
creases the effective number of available registers without
increasing code size. The graph partitioning algorithm par-
titions the virtual registers in a procedure into multiple reg-
ister windows, thus reducing the overall spill code while min-
imizing the overhead due to inter-window moves and window
swaps. We evaluated our design over a wide range of ma-
chine and window configurations and achieved an average
performance improvement of 15% for the 4-register, 10% for
the 8-register and 2% for the 16-register case on the WIMS
processor, On the VLIW machine, we got an average perfor-
mance improvement of 26%, 20%, and 5% for the 4, 8, and 16
register cases respectively. The average power reduction was
7% for the 8-register case on the WIMS microcontroller.

7. ACKNOWLEDGEMENTS
We thank Michael Chu, Nathan Clark, and K.V. Man-

junath for their comments and suggestions. Fabrication of
this work at TSMC was supported by the MOSIS Educa-
tional Program. Digital cell libraries and SRAMs were sup-
plied by Artisan Components, Inc. This work was supported
primarily by the Engineering Research Centers Program of
the National Science Foundation under award number EEC-
9986866. Last, we thank Intel Corporation for their gener-
ous equipment donation.

8. REFERENCES
[1] A. Aletà et al. Exploiting pseudo-schedules to guide

data dependence graph partitioning. In PACT 2002,
Sept. 2002.

[2] Analog Devices. ADSP-219x/2191 DSP Hardware
Reference Manual, Jul. 2001. http://www.analog.
com/Analog Root/static/library/dspManuals/ADSP-
2191 hardware reference.html.

[3] J. Cho, Y. Paek, and D. Whalley. Register and
Memory Assignment for Non-orthogonal Architectures
via Graph Coloring and MST Algorithms. In
LCTES/SCOPES 2002, Jun. 2002.

[4] M. Chu, K. Fan, and S. Mahlke. Region-based
Hierarchical Operation Partitioning for Multicluster
Processors. In PLDI ’03, Jun. 2003.

[5] J.-L. Cruz et al. Multiple-banked register file
architecture. In ISCA-27, Jun. 2000.

[6] G. Desoli. Instruction assignment for clustered VLIW
DSP compilers: A new approach. Technical Report
HPL-98-13, Hewlett-Packard Laboratories, Feb. 1998.

[7] P. Faraboschi, G. Desoli, and J. Fisher. Clustered
instruction-level parallel processors. Technical Report
HPL-98-204, Hewlett-Packard Laboratories, Dec.
1998.

[8] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The
multicluster architecture: Reducing cycle time
through partitioning. In Micro-30, Dec. 1997.

[9] M. R. Guthaus et al. MiBench: A free, commercially
representative embedded benchmark suite. In IEEE
4th Annual Workshop on Workload Characterization,
Dec. 2001.

[10] B. Hendrickson and R. Leland. The Chaco User’s
Guide. Sandia National Laboratories, Jul. 1995.

[11] J. Hiser, S. Carr, and P. Sweany. Global register
partitioning. In PACT 2000, Oct. 2000.

[12] W. M. Hwu et al. The Superblock: An Effective
Technique for VLIW and Superscalar Compilation.
Journal of Supercomputing, May 1993.

[13] Intel Corporation, Santa Clara, CA. Intel IA-64
Software Developer’s Manual, 2002.

[14] G. Karypis and V. Kumar. Metis: A Software Package
for Partitioning Unstructured Graphs, Partitioning
Meshes and Computing Fill-Reducing Orderings of
Sparse Matrices. University of Minnesota, Sept. 1998.

[15] B. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, Feb. 1970.

[16] H. Kim. Region-Based register allocation for EPIC
Architectures. PhD thesis, Department of Computer
Science, New York University, 2001.
www.crest.gatech.edu/publications/hansooth.pdf.

[17] C. Lee, M. Potkonjak, and W. Mangione-Smith.
MediaBench: A tool for evaluating and synthesizing
multimedia and communications systems. In Micro-30,
Dec. 1997.

[18] R. Leupers and D. Kotte. Variable Partitioning for
Dual Memory Bank DSPs. In ICASSP 2001, May
2001.

[19] J. L. Marcio M. Fernandes and N. Topham. Allocating
Lifetimes to Queues in Software Pipelined
Architectures. In Euro-Par ’97, Aug. 1997.

[20] P. Marwedel and G. Goossens. Code Generation for
Embedded Processors. Kluwer Academic Publishers,
Boston, MA, 1995.

[21] Motorola. CPU12 Reference Manual, Jun. 2003.
http://e-www.motorola.com/brdata/PDFDB/docs
/CPU12RM.pdf.

[22] R. M. Senger et al. A 16-Bit Mixed-Signal
Microsystem with Integrated CMOS-MEMS Clock
Reference. In DAC ’03, Jun. 2003.

[23] M. Smelyanskiy, G. Tyson, and E. Davidson. Register
Queues: A New Hardware/Software approach to
Efficient Software Pipelining. In PACT 2001, Oct.
2001.

[24] SPARC International Inc. The SPARC Architecture
Manual, Version 8, 1992. www.sparc.com/
standards/V8.pdf.

[25] Tensilica Inc. Xtensa Architecture and Performance,
Sep. 2002. http://www.tensilica.com/xtensa
arch white paper.pdf.

[26] Texas Instruments. TMS320C54X DSP Reference Set,
Mar. 2001. http://www-s.ti.com/sc/psheets/
spru131g/spru131g.pdf.

[27] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: A first step towards software
power minimization. IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 2(4):437–445, 1994.

[28] T.Kiyohara et al. Register Connection: A New
Approach to adding Registers into Instruction Set
Architectures. In ISCA-20, May 1993.

[29] Trimaran. An infrastructure for research in ILP.
http://www.trimaran.org.

