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Abstract

Predicated execution is a promising architectural feature for exploiting instruction-level parallelism in the presence of
control flow. Compiling for predicated execution involves converting program control flow into conditional, or predicated,
instructions. This process is known as if-conversion. In order to apply if-conversion effectively, one must address two major
issues: what should be if-converted and when the if-conversion should be performed. A compiler’s use of predication as
a representation is most effective when large amounts of code are if-converted and when if-conversion is performed early
in the compilation procedure. On the other hand, efficient execution of code generated for a processor with predicated
execution requires a delicate balance between control flow and predication. The appropriate balance is tightly coupled with
scheduling decisions and detailed processor characteristics. This paper presents a compilation framework that allows the
compiler to maximize the benefits of predication as a compiler representation while delaying the final balancing of control
flow and predication to schedule time.

1 Introduction

The performance of modern processors depends on the ability to execute multiple instructions per cycle, requiring increasing
levels of instruction-level parallelism (ILP) to be exposed in programs. One of the major challenges to increasing the
available ILP is overcoming the limitations imposed by branch instructions.

ILP is limited by branches for several reasons. First, branches impose control dependences which often sequentialize the
execution of surrounding instructions. Second, the uncertainty of branch outcomes forces compiler and hardware schedulers
to make conservative decisions. Branch prediction is generally employed along with speculative execution to overcome
these limitations [1][2]. However, branch misprediction takes away a significant portion of the potential performance gain.
Third, traditional techniques only facilitate exploiting ILP along a single trajectory of control. The ability to concurrently
execute instructions from multiple trajectories offers the potential to increase ILP by large amounts. Finally, branches often
interfere with or complicate aggressive compiler transformations, such as optimization and scheduling.

Predication is a model in which instruction execution conditions are not solely determined by branches. This characteris-
tic allows predication to form the basis for many techniques which deal with control effectively in both the compilation and
execution of codes. It provides benefits in a compiler as a representation and in ILP processors as an architectural feature.

The predicated representation is a compiler N -address program representation in which each instruction is guarded by
a Boolean source operand whose value determines whether the instruction is executed or nullified. This guarding Boolean
source operand is referred to as the predicate. The values of predicate registers can be manipulated by a predefined set of
predicate defining instructions. The use of predicates to guard instruction execution can reduce or even completely eliminate
the need for branch control dependences. When all instructions that are control dependent on a branch are predicated using
the same condition as the branch, that branch can legally be removed. The process of replacing branches with appropriate



predicate computations and guards is known as if-conversion [3][4].
The predicated representation provides an efficient and useful model for compiler optimization and scheduling. Through

the process of if-conversion, code can be transformed to contain few, if any, control dependences. Control dependences
between branches and other instructions are converted into data dependences between predicate computation instructions
and predicated instructions. Control flow transformations can then be performed in the predication domain as traditional
data flow optimizations. In the same way, the predicated representation allows scheduling among branches to be performed
as a simple reordering of sequential instructions. The removal of the control dependences increases scheduling scope and
affords new freedom to the scheduler [5].

Predicated execution is an architectural model which supports direct execution of the predicated representation [6][7][8].
With respect to a conventional instruction set architecture, the new features are an additional Boolean source operand
guarding each instruction and a set of compare instructions used to compute predicates. Predicated execution benefits
directly from the advantages of compilation using the predicated representation. In addition, the removal of branches yields
performance benefits in the executed code, the most notable of which is the removal of branch misprediction penalties. In
particular, the removal of frequently mispredicted branches yields large performance gains [9][10][11]. Predicated execution
also provides an efficient mechanism for a compiler to overlap the execution of multiple control paths on the hardware. In
this manner, processor performance may be increased by exploiting ILP across multiple program paths. Another, more
subtle, benefit of predicated execution is that it allows control height reduction along important program paths [12].

Supporting predicated execution introduces two central issues for the compiler: what should be if-converted and when
in the compilation procedure if-conversion should be applied. The first question to address is what should be if-converted
or, more specifically, which branches should be removed via if-conversion. Traditionally, full if-conversion, or maximal
application of if-conversion, has led to positive results for compiling numerical applications [13]. However, for non-numeric
applications, more selective application of if-conversion is essential to achieve performance gains [14]. If-conversion works
by removing branches and combining multiple paths of control into a single path of conditional instructions. However,
when two paths are overlapped, the resultant path can exhibit increased constraints over those of the original paths. One
important constraint is resources. Paths which are combined together must share processor resources. The compiler has
the responsibility of managing the available resources when making if-conversion decisions so that an appropriate stopping
point may be identified. Further if-conversion will only result in an increase in execution time for all the paths involved. As
will be discussed in the next section, the problem of deciding what to if-convert is complicated by many factors, only one
of which is resource consumption.

The second question that must be addressed is when to apply if-conversion in the compilation procedure. At the broadest
level, if-conversion may be applied early in the backend compilation procedure or may be delayed to occur in conjunction
with scheduling. Applying if-conversion early enables the full use of the predicated representation by the compiler to
facilitate ILP optimizations and scheduling. In addition, complex control flow transformations may be recast into the data
dependence domain to make them practical and profitable. Examples of such transformations include branch reordering,
control height reduction [12], and branch combining [15]. On the other hand, delaying if-conversion to as late as possible
makes answering the first question much more practical. Since many of the if-conversion decisions are tightly coupled to
the scheduler and its knowledge of the processor characteristics, applying if-conversion at schedule time is the most natural
choice. Also, applying if-conversion during scheduling alleviates the need to make the entire compiler backend cognizant
of a predicated representation.

An effective compiler strategy for supporting predicated execution must address the “what” and “when” questions of if-
conversion. The purpose of this paper is to present a flexible framework for if-conversion in ILP compilers. The framework
enables the compiler to extract the full benefits of the predicated representation by applying aggressive if-conversion early
in the compilation procedure. A novel mechanism called partial reverse if-conversion then operates at schedule time to
balance the amount of control flow and predication present in the generated code, based on the characteristics of the target
processor.

The remainder of this paper is organized as follows. Section 2 details the compilation issues and challenges associated
with compiling for predicated execution. Section 3 introduces our proposed compilation framework which takes full ad-
vantage of the predicated representation and which achieves an efficient balance between branching and predication in the
final code. The essential component in this framework, partial reverse if-conversion, is described in detail in Section 4.
The effectiveness of this framework in the context of our prototype compiler for ILP processors is presented in Section 5.
Finally, the paper concludes in Section 6.



2 Compilation Challenges

Effective use of predicated execution provides a difficult challenge for ILP compilers. Predication offers the potential
for large performance gains when it is efficiently utilized. However, an imbalance of predication and control flow in the
generated code can lead to dramatic performance losses. The flexibility of the hyperblock makes it a natural choice for
the basic unit of predicated code used in this work [14]. The composition of an effective hyperblock is first addressed in
this section. Optimization and scheduling passes are assumed to be performed on hyperblocks so that advantages of the
predicated representation are realized. The remainder of this section focuses on the difficult issues created by the need to
select a hyperblock’s composition from code which subsequently will be processed further. The desire to extract high levels
of ILP through the effective use of both predicated execution and the predicated representation despite the complications
presented in this section motivates for the predication compilation framework presented in the remainder of the paper.

2.1 The Hyperblock

The hyperblock is a structure created to facilitate optimization and scheduling for predicated architectures [14]. A hyper-
block is a set of predicated basic blocks in which control may enter only from the top, but may exit from one or more
locations. Hyperblocks are formed by applying tail duplication and if-conversion over a set of carefully selected paths.
Inclusion of a particular path into a hyperblock is done by considering its profitability. Profitability is determined by five
pieces of information: resource utilization, dependence height, hazard presence, execution frequency, and branch behav-
ior. Ideally, a hyperblock contains paths which together fully utilize machine resources, which are balanced in height, and
which do not contain hazards. Further, in a model hyperblock most instructions are not nullified often and only well-behaved
branches remain.

Hyperblock formation is a complex decision making process which requires a carefully crafted heuristic. Clearly, the
heuristic must be sophisticated enough to consider the resource utilization, dependence height, hazard presence, and exe-
cution frequency for each path. Additionally, the heuristic must understand how an included path will interact with other
included paths. The inclusion of two paths which share a branch allows for that branch’s removal, so the heuristic must also
consider the run-time behavior of shared branches in candidate path sets. Path selection is further complicated by the fact
that the inclusion or exclusion of particular paths can have a dramatic influence on the effectiveness of further optimizations
and scheduling, as well as on how well the code after optimization will utilize the target machine’s resources.

2.2 Beneficial Path Inclusion

The benefits of hyperblock formation are numerous. At a very basic level, increasing the number of paths included in a
hyperblock increases the amount of code to which these benefits can be applied. The discussion on beneficial path inclusion
begins with an example.

This paper contains many hand crafted code examples to illustrate various points. For clarity, size of these examples is
necessarily smaller than actual hyperblocks created during compilation. However, the points illustrated are culled from our
actual experience as compiler developers. Unless noted otherwise, all schedules are for a 3-issue uniform functional unit
machine with unit latencies.

The first example in this section, Figure 1, shows the if-conversion of two consecutive if-then-else constructs, or ham-
mocks. Figure 1a shows a very simple control flow graph before hyperblock formation. It consists of six instructions, three
of which are branches. The instructions in Figure 1a are given a number which uniquely identifies them and which indicates
the order in which the code would be laid out. The static schedule for this code on a traditional machine cannot have a
height of less than 4 cycles due to its dependence height. Parallel execution of this code segment is limited solely by control
dependences. One subset of these control dependencies which sets a lower bound on the dependence height consists of the
control dependences [1,2], [2,5], and [5,6]. Other properties worth noting in the original code are related to the number and
types of instructions. There is a total of 6 instructions: 2 conditional branches, 1 unconditional branch, and 3 computation
instructions. The type and severity of the parasitic effects on performance the branch instructions will induce is determined
by the characteristics of the target architecture.

Figure 1b shows the same code segment after hyperblock formation of all paths. Conditional branches 1 and 5 have been
converted to predicate defining instructions. Branch 3 has been completely removed by combining the 4 original control
flow paths into a single path. Elimination of branch 3 reduces the raw instruction count of this code from 6 to 5. The
removal of all branches eliminates their corresponding control dependencies. While the resulting hyperblock contains no
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Figure 1: Hyperblock formation of consecutive if-then-else constructs.
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Figure 2: Hyperblock formation saturating processor resources.

control dependences, it does contain new data dependencies [1,2], [1,4], and [5,6] created by the sourcing and sinking of
predicate registers. However, these data dependences are more desirable than the original control dependencies in that they
do not force the resultant schedule to consume more than 2 cycles. In addition, the new data dependences do not prohibit the
overlapping of consecutive hammocks as the control dependences did. This ability to overlap non-complementary paths can
be a great source of ILP. Assuming the 3-issue machine described earlier, neither the dependence height nor the resource
subscription force the schedule to more than 2 cycles. The net result is a code schedule that cuts the execution time in half
even when assuming perfect branch prediction.

The benefits of the resulting hyperblock do not stop at the static code schedule. The removal of 2 conditional branches
eliminates their mispredictions and associated misprediction penalties. Any taken branch penalties which may have existed
are also removed. The hyperblock’s straight line code segment can be a great improvement over the disjoint blocks of the
original code for the instruction fetch mechanisms.

The elimination of branches, their mispredictions, their resource consumption and their control dependencies are the
most often cited advantages of if-conversion. However, there also exists a class of predicate optimizations which have
no practical control flow equivalent. These include height reduction, control path reduction, and fully resolved predicate
scheduling to name a few [16]. In addition, hyperblock formation provides an ideal vehicle for a compiler to take advantage
of the predicated representation. The predicated representation simplifies control flow transformations and allows traditional
straight-line code optimizations to be applied efficiently with global scope. Of course, to take advantage of predication in
the compiler, hyperblocks must be formed in an early phase.

2.3 Harmful Path Inclusion

As suggested by the previous section, the benefits of hyperblock formation increase with the inclusion of more paths.
However, for practical machines and compilers there are many constraints on how large hyperblocks can made be without
reducing their effectiveness.

One reason including a path can be detrimental to good hyperblock performance is excessive resource consumption.
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Figure 3: Hyperblock formation in the presence of hazards.

Figure 2 illustrates this problem. Figure 2a is a single hammock with two control flow paths controlled by branch instruction
1. The taken path consists of 6 instructions and has a dependence height of 2 cycles. The fall-through path also consists of 6
instructions and a dependence height of 2. Since the machine model assumed for the examples has uniform functional units,
instruction count can be an accurate measure of the subscription to machine resources. Scheduling the code of Figure 2a
for this machine model results in each path fitting into 2 cycles.

Figure 2b shows the hyperblock formed by the if-conversion of these paths together. As expected, the resulting number
of instructions is roughly equal to the sum of the instructions in each original path. Scheduling for the 3-issue machine
model shows that this hyperblock requires 4 cycles for completion, compared with the 2 cycles needed for the original code.
This doesn’t take into account the branch and cache penalties eliminated by if-conversion. However, in some machines
this would not have made up for the performance lost. Certainly, in actual code where instruction counts number in the
hundreds, resource over-subscription has the potential to negate all benefits of hyperblock formation.

The problem of predicting the resource consumption due to including a path is not easily solved. In our uniform func-
tional unit machine, the expected resource height is simply the sum of all instructions in each path included divided by
the issue width after accounting for the removal of branches and creation of predicate defining instructions. However, in
practical machines, the types and number of instructions which can be issued together complicates this calculation.

Figure 2 clearly illustrates that resources available in the target machine must be considered when choosing whether or
not to include a path. While resource height is important, it is not the only consideration. Dependence height can also cause
harmful path interaction. Consider a simple hammock of two paths, one with a dependence height of 2 cycles and the other
with a dependence height of 8 cycles. A hyperblock which contains both paths cannot complete until all of its constituent
paths have completed. Therefore, the overall height of the hyperblock must be the maximum of all the original path’s
dependence heights. This means that every time the short path would have been executed in 2 cycles it is now executed in
8 cycles–4 times slower–resulting in poor hyperblock performance.

The problem is more complicated than solving for resource consumption and dependence height independently in the
hyperblock formation decision process. There can exist many interactions between dependence height and resource con-
sumption in a code schedule. For instance, the number of instructions available for issue in the first cycle may be much
greater than the number of instructions available for issue later in the schedule due to flow dependencies among the instruc-
tions. This is the case in Figure 5 discussed later. Considering this issue alone suggests that hyperblock formation decisions
may belong in the scheduling phase.

Over-subscription to resources and imbalances in dependence height are the two most common causes of poor hyperblock
performance. However, other less obvious factors play a role in a hyperblock’s effectiveness. One such factor is the presence
of hazards. A hazard is any instruction or set of instructions which hinders efficient scheduling of paths other than its own.
Since hazards affect other paths by definition, their negative effects can be eliminated by keeping them separate from other
paths. This can be done by excluding them through tail duplication.

Figure 3a, shows the control flow graph of a code segment which contains a hazard. Since the fall-through path contains
1 instruction and has a dependence height of 1, it seems that including it would not adversely affect the hyperblock’s
dependence height and resource consumption characteristics. Figure 3b shows the hyperblock formed by including this fall-
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Figure 4: Hyperblock formation of seemingly incompatible paths with positive results due to code transformations. The T
and F annotations in (a) indicate the taken and fall-through path for the conditional branch. r2 is not referenced outside the
T block.

through path. In this schedule, it is assumed that the jsr has an unknown pointer store. Since the store could potentially store
to locations B or C, memory dependences [4,5] and [4,6] need to be created and respected. The result of this hyperblock
schedule is that 6 cycles are required regardless of branch 3’s direction. Figure 3c shows a hyperblock formed by excluding
the fall-through path. Here the schedule is only 3 cycles when the branch is not taken. The destination of instruction 3 is a
block containing instruction 4 as well as a copy, or tail duplication, of instructions 5 through 8. This tail duplication makes
it possible to obtain the short schedule on the fall-through path. It is important to note that the path containing the jsr still
has a 6 cycle schedule, 3 cycles in the Figure 3c hyperblock and 3 cycles in the tail duplication.

As demonstrated, identifying and excluding hazards is very important to resulting code performance. Unfortunately,
identifying hazards is a difficult problem. Consider the same example if we had assumed that all of instruction 4’s memory
operations were known to be independent with respect to instructions 5 and 6. In that case, the resulting hyperblock
would have been 4 cycles for both paths. Clearly, the jsr is only a hazard when it creates dependences between itself and
instructions in other paths. Hazards can take the form of instructions which reference registers which cannot be renamed or
ambiguous stores. The type and number of hazards is often a function of the capabilities of the compiler. For example, the
level of memory disambiguation in a compiler determines which store instructions are hazards to efficient code generation.

2.4 Early Heuristic Hyperblock Selection

Considering all previous issues together, it may seem reasonable that a heuristic could be developed which would take them
into account and create reasonable hyperblock selection decisions early in the compilation process. However, as this next
example will show, further optimization may make these initial decisions incorrect.

Figure 4a shows another simple hammock to be considered for if-conversion. The taken path consists of a dependence
height of 2 and a resource consumption of 3 instructions after if-conversion. The fall-through path consists of a dependence
height of 6 and a resource consumption of 6 instructions. A simple estimate would indicate that combining these paths
together would result in a 4-cycle penalty for the taken path due to the fall-through path’s long dependence height. Figure 4b
shows this code segment after hyperblock formation and further optimizations. The first optimization performed is renaming
to eliminate the false dependences [7,8] and [8, 10]. This reduces the dependence height of the hyperblock to 3 cycles.

If a heuristic could foresee that dependence height would no longer be an issue, it may still not chose to form this hyper-
block due to resource consumption. An estimate of 10 instructions could be made by inspecting Figure 4a. Unfortunately,
10 instructions need at least 4 cycles to complete on a 3-issue machine, which would still penalize the taken path by one
cycle indicating that the combination of these paths may not be beneficial. After an instruction merging optimization in
which instructions 2 and 6 are combined and 4 and 11 are combined, the instruction count becomes 8. The final schedule
takes only 3 cycles, a win for both paths when the control dependence from instruction 1 is considered.

Figure 4 shows that in even simple cases a heuristic which forms hyperblocks before some optimizations must anticipate
the effectiveness of those optimizations in order to form hyperblocks effectively. In this example, some optimizations could
have been done before hyperblock formation, such as renaming. However, others, like operation merging, could not have
been. In addition, some optimizations may be done differently because of different trade-offs which would be made in the
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Figure 5: Hyperblock formation of seemingly compatible paths with negative results.

context of the different code characteristics.
Anticipating exactly how effective future optimizations will be is intractable, but perhaps empirical data could be used

to estimate what it should expect from the optimizer. Using this information, the hyperblock former may be able to make
intelligent decisions. Assume that empirical data correctly suggests that the resource consumption of the resulting hyper-
block will be 66% of the original, that its dependence height will remain unchanged. Under these conditions there may still
be problems, as Figure 5 demonstrates. Figure 5a consists of two paths each with a dependence height of 4. The resource
consumption, or equivalently for this machine, the instruction count is 18 instructions. Using the predicted optimization
effects, the resulting hyperblock should contain 12 instructions and have a dependence height of 4 cycles, for a total cycle
count of 4 cycles. Indeed, Figure 5b shows that the optimized code meets these expectations. Unfortunately, predicting the
outcome of optimization in this way is inaccurate in the majority of cases. Consider the code segment shown in Figure 5c.
Like the code in Figure 5a, this segment of code also has two paths with dependence heights of 4 and an instruction count of
18 instructions. Figure 5d shows this code after optimization. Here the predicted dependence height and resource count was
obtained. However, the resulting schedule height is 6 cycles, a 50% slowdown. The discrepancy between the predicated
schedule and the actual schedule is caused by the destructive interaction between dependences and resources. This effect
demonstrates that to be useful the exact outcome of further optimization must be predicted not just at a high level, but in a
very accurate and precise manner. Due to the complex interactions of different optimizations, the only reliable way predict
the exact outcome of optimizations is to actually perform them. Since these optimizations need to be applied to each candi-
date path selection set for each hyperblock, the optimization anticipation method is either cost prohibitive or too inaccurate
to be useful.

The challenge of forming efficient hyperblocks does not end there. Further complications result when we consider the
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Figure 6: An efficient hyperblock formed through the inclusion of a partial path.

fact that including part of a path may sometimes be more beneficial than including or excluding that entire path. This gives
a hyperblock formation heuristic many more possibilities to consider. It also gives it the responsibility to be accurate at the
instruction level, not just the path level. Taken together, this further complicates the already seemingly impossible task it
must perform. If-conversion which can include parts of paths is referred to as partial if-conversion. Partial if-conversion is
generally effective when the resource consumption or dependence height of an entire candidate path is too large to permit
profitable if-conversion, but there is a performance gain to be had by overlapping a part of the candidate path with the other
paths selected for inclusion in the hyperblock.

Figure 6 shows an example in which partial path inclusion results in better code than full inclusion or exclusion. Figure 6a
shows two paths which are otherwise incompatible. However, by including all of the taken path and 4 instructions from the
fall-through path an efficient hyperblock is created. This hyperblock is shown in Figure 6b. Notice that branch instruction 2
has been split into two instructions. The condition computation, labeled ��, and a branch based on that computation, labeled
���. The schedule did not benefit from the complete removal of branch instruction 2, as the branch instruction � �� has the
same characteristics of the original. However, the schedule did benefit from the extra speculation drawn from both paths.
The destination of branch instructions ��� is shown in Figure 6c.

The splitting of branch instruction 2 into a condition computation and a predicated jump has some interesting side effects.
In this small example, the condition computation and branch have not been moved very far apart, however, in typical
hyperblocks which are much larger these instructions may be scheduled many cycles apart. An architecture which can
identify this situation may be able to eliminate the need to make a prediction on instruction ��� if the result of �� has already
been computed. Furthermore, one can reasonably expect that predicated architectures will not have a single instruction
compare-and-branch of the form of instruction 2, but will only support separate predicate compare and predicated jumps of
the form of instructions �� and ���. Other ramifications of having only predicated jumps perform conditional branches are
explored in [17].

3 Compilation Frameworks

Compilation for predicated execution can be challenging as described in Section 2. To create efficient code, a delicate
balance between control flow and predication must be created. The desired balance is highly dependent on final code
characteristics and the resource characteristics of the target processor. An effective compilation framework for predicated
execution must provide a structure for making intelligent tradeoffs between control flow and predication so the desired
balance can be achieved.

The second question that must be addressed is when to apply if-conversion in the compilation procedure. At the broadest
level, if-conversion may be applied early in the backend compilation procedure or may be delayed to occur in conjunction
with scheduling. Applying if-conversion early enables the full use of the predicated representation by the compiler to
facilitate ILP optimizations and scheduling. In addition, complex control flow transformations may be recast into the data
dependence domain to make them practical and profitable. Examples of such transformations include branch reordering,
control height reduction [12], and branch combining [15]. On the other hand, delaying if-conversion to as late as possible
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Figure 7: The If-Conversion During Scheduling Framework.

makes answering the first question much more practical. Since many of the if-conversion decisions are tightly coupled to
the scheduler and its knowledge of the processor characteristics, applying if-conversion at schedule time is the most natural
choice. Also, applying if-conversion during scheduling alleviates the need to make the entire compiler backend cognizant
of a predicated representation.

NEED TO JUSTIFY PREDICATED REPRESENTATION. ISCA99 stuff, opti on predicated codes, global scheduling
without global scheduler, complex control flow optimizations for free. Still an active area of study. Evidence suggests that
any attempt to use predication without the predicated representation will fall far short of the full potential of predication.

3.1 The If-Conversion During Scheduling Framework

Given the difficulties presented in Section ?? with forming hyperblocks early in the backend compilation process, a seem-
ingly natural strategy is to perform if-conversion in conjunction with instruction scheduling. This can be achieved by
integrating if-conversion within the scheduling process itself. A scheduler not only accurately models the detailed resource
constraints of the processor but also understands the performance characteristics of the code. Therefore, the scheduler is
ideally suited to make intelligent if-conversion decisions. In addition, all compiler optimizations are usually complete when
scheduling is reached, thus the problem of the code changing after if-conversion does not exist.

However, a very serious problem associated with performing if-conversion during scheduling time is the restriction on
the compiler’s use of the predicate representation to perform control flow transformations and predicate specific optimiza-
tions. With the schedule-time framework, the introduction of the predicate representation is delayed until schedule time. As
a result, all transformations targeted to the predicate representation must either be foregone or delayed. If these transforma-
tions are delayed, much more complexity is added to a scheduler which must already consider many issues including control
speculation, data speculation, and register pressure to achieve desirable code performance. Additionally, delaying only some
optimizations until schedule time creates a phase ordering which can cause severe difficulties for the compiler. Generally,
most transforms have profound effects on one another and must be repeatedly applied in turn to achieve desirable results.
For example, a transformation, such as control height reduction [12], may subsequently expose a critical data dependence
edge that should be broken by expression reformulation. However, until the control dependence height is reduced, there is
no profitability to breaking the data dependence edge, so the compiler will not apply the transform. This is especially true
since expression reformulation has a cost in terms of added instructions. The net result of the schedule-time framework is a
restriction in the use of the predicate representation which limits the effectiveness of back-end optimizations.

3.2 The Hyperblock Compilation Framework

The original approach used in the IMPACT compiler to support predicated execution is to form hyperblocks using heuristics
based on resource utilization, dependence height, hazard presence, and execution frequency. Hyperblocks are formed
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early in the backend compilation procedure to expose the predicate representation throughout all the backend compilation
phases. Heuristic hyperblock formation has been shown to perform well for relatively regular machine models. In these
machines, balancing resource consumption, balancing dependence height, and eliminating hazards are done effectively by
the carefully crafted heuristics. However, experience shows that several serious problems exist that are difficult to solve
with this approach. Three such problems presented here are optimizations that change code characteristics, unpredictable
resource interference, and partial path inclusion.

Subsequent Optimization. The first problem manifests itself as code is transformed following hyperblock formation. In
general, forming hyperblocks early facilitates optimization techniques that take advantage of the predicate representation.
However, the hyperblock formation decisions can change dramatically with compiler transformations. The design of the hy-
perblock compilation framework reflects a philosophy that the power of the predicated representation outways any potential
performance loss introduced by subsequent optimizations. ISCA PAPER, FUTURE WORK, DYNAMIC IF CONVERSON
8

Resource/Dependence Interference. A second problem with heuristic hyperblock formation is that false conclusions
regarding the resource compatibility of the candidate paths may often be reached. As a result, paths which seem to be
compatible for if-conversion turn out to be incompatible. The problem arises because resource usage estimation techniques,
such as the simple ones used in this section or even other more complex techniques, generally assume that resource usage
is evenly distributed across the block. In practice, however, few paths exhibit uniform resource utilization. Interactions
between dependence height and resource consumption cause violations of the uniform utilization assumption. In general,
most paths can be subdivided into sections that are either relatively parallel or relatively sequential. The parallel sections
demand a large number of resources, while the sequential sections require few resources. When two paths are combined,
resource interference may occur when the parallel sections of the paths overlap. For those sections, the demand for resources
is likely to be larger than the available resources, resulting in a performance loss.

Partial Paths. The final problem with current heuristic hyperblock formation is that paths may not be subdivided when
they are considered for inclusion in a hyperblock. In theory, hyperblock formation heuristics may be extended to support
partial paths. Since each path could be divided at any instruction in the path, the heuristics would have to consider many
more possible selection alternatives. However, the feasibility of extending the selection heuristics to operate at the finer
granularity of instructions, rather than whole paths, is questionable due the complex nature of the problem.

3.3 The Proposed Compilation Framework

Given that if-conversion at schedule time limits the use of the predicate representation for optimization and given that
if-conversion at an early stage is limited in its ability to estimate the final code characteristics, it is logical to look to an
alternative compilation framework. This paper proposes such a framework. This framework overcomes limitations of
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Figure 9: The Partial Reverse If-Conversion Predication Framework.

other schemes by utilizing two phases of predicated code manipulation to support predicated execution. Aggressive if-
conversion is applied in an early compilation phase to create the predicate representation and to allow flexible application
of predicate optimizations throughout the backend compilation procedure. Then at schedule time, the compiler adjusts the
final amount of predication to efficiently match the target architecture. The compilation framework, shown in Figure 9,
consists of two phases of predicate manipulation surrounding classical, predicate specific, and ILP optimizations. The
first predicate manipulation phase, hyperblock formation, has been addressed thoroughly in [14]. The second predicate
manipulation phase, adjustment of hyperblocks during scheduling, is proposed in this work and has been termed partial
reverse if-conversion.

The first phase of the compilation framework is to aggressively perform hyperblock formation. The hyperblock for-
mer does not need to exactly compute what paths, or parts of paths, will fit in the available resources and be completely
compatible with each other. Instead, it forms hyperblocks which are larger than the target architecture can handle. The
large hyperblocks increase the scope for optimization and scheduling, further enhancing their benefits. In many cases, the
hyperblock former will include almost all the paths. This is generally an aggressive decision because the resource height
or dependence height of the resulting hyperblock is likely to be much greater than the corresponding heights of any of its
component paths. However, the if-converter relies on later compilation phases to ensure that this hyperblock is efficient.
One criteria that is still enforced in the first phase of hyperblock formation is avoiding paths with hazards. As was discussed
in Section 2, hazards reduce the compiler’s effectiveness for the entire hyperblock, thus they should be avoided to facilitate
more aggressive optimization.

The second phase of the compilation framework is to adjust the amount of predicated code in each hyperblock as the
code is scheduled via partial reverse if-conversion. Partial reverse if-conversion is conceptually the application of reverse
if-conversion to a particular predicate in a hyperblock for a chosen set of instructions [18]. Reverse if-conversion was
originally proposed as the inverse process to if-conversion. Branching code that contains no predicates is generated from
a block of predicated code. This allows code to be compiled using a predicate representation, but executed on a processor
without support for predicated execution.

The scheduler with partial reverse if-conversion operates by identifying the paths composing a hyperblock. Paths which
are profitable to overlap remain unchanged. Conversely, a path that interacts poorly with the other paths is removed from
the hyperblock. In particular, the partial reverse if-converter decides to eject certain paths, or parts of paths, to enhance
the schedule. To do this, the reverse if-converter will insert a branch that is taken whenever the removed paths would have
been executed. This has the effect of dividing the lower portion of the hyperblock into two parts, corresponding to the taken
and fall-through paths of the inserted branch. The decision to reverse if-convert a particular path consists of three steps.
First, the partial reverse if-converter determines the savings in execution time by inserting control flow and applying the
full resources of the machine to two hyperblocks instead of only one. Second, it computes the loss created by any penalty
associated with the insertion of the branch. Finally, if the gain of the reverse if-conversion exceeds the cost, it is applied.
Partial reverse if-conversion may be repeatedly applied to the same hyperblock until the resulting code is desirable.
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Figure 10: Predicate flow graph with partial dead code elimination given that r3 and r4 are not live out of this region.

The strategy used for this compilation framework can be viewed analogously to the use of virtual registers in many
compilers. With virtual registers, program variables are promoted from memory to reside in an infinite space of virtual
registers early in the compilation procedure. The virtual register domain provides a more effective internal representation
than do memory operations for compiler transformations. As a result, the compiler is able to perform more effective
optimization and scheduling on the virtual register code. Then, at schedule time, virtual registers are assigned to a limited
set of physical registers and memory operations are reintroduced as spill code when the number of physical registers was
over-subscribed. The framework presented in this paper does for branches what virtual registers do for program variables.
Branches are removed to provide a more effective internal representation for compiler transformations. At schedule time,
branches are inserted according to the capabilities of the target processor. The branches reinserted have different conditions,
targets, and predictability than the branches originally removed. The result is that the branches in the code are there for
the benefit of performance for a particular processor, rather than as a consequence of code structure decisions made by the
programmer.

The key to making this predication and control flow balancing framework effective is the partial reverse if-converter.
The mechanics of performing partial reverse if-conversion, as well as a proposed policy used to guide partial reverse if-
conversion, are presented in the next section.

4 Partial Reverse If-Conversion

The partial reverse if-conversion process consists of three components: analysis, transformation, and decision. These
components are integrated into an instruction scheduler in the partial reverse if-conversion compilation framework. This
section consists of a description of these components and their integration into a hyperblock scheduler. The section is
concluded with a realistic code example to illustrate the operation of the framework.

4.1 Analysis

Before any manipulation or analysis of execution paths can be performed, these paths must be identified in the predicated
code. Execution paths in predicated code are referred to as predicate paths. Immediately after hyperblock formation, the
structure of the predicate paths is identical to the control flow graph of the code before hyperblock formation. The structure
of the predicate paths can be represented in a form called the predicate flow graph (PFG). The predicate flow graph is simply
a control flow graph (CFG) in which predicate execution paths are also represented. After optimizations, the structure of the
PFG can change dramatically. For reasons of efficiency and complexity, the compiler used in this work does not maintain
the PFG across optimizations, instead it is generated from the resulting predicated N -address code.

The synthesis of a PFG from predicated N -address code is analogous to creating a CFG from N -address code. A simple
example is presented to provide some insight into how this is done. Figure 10 shows a predicated code segment and its
predicate flow graph. The predicate flow graph shown in Figure 10b is created in the following manner. The first instruction
in Figure 10a is a predicate definition. At this definition, p1 can assume TRUE or FALSE. A path is created for each of
these possibilities. The complement of p1, p2, shares these paths because it does not independently create new conditional
outcomes. The predicate defining instruction 2 also creates another path. In this case, the predicates p3 and p4 can only
be TRUE if p1 is TRUE because their defining instructions is predicated on p1, so only one more path is created. The
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Figure 11: Predicate flow graph (a) and a partial reverse if-conversion of predicate p1 located after instructions 1 and 2 (b).

creation of paths is determined by the interrelations of predicates, which are provided by mechanisms addressed in other
work [19][20]. For the rest of the instructions, the paths that contain these instructions are determined by the predicate
guarding their execution. For example, instruction 3 is based on predicate p1 and is therefore only placed in paths where p1
is TRUE. Instruction 4 is not predicated and therefore exists in all paths. The type of predicate defines used in all figures
in this paper are unconditional, meaning they always write a value [8]. Since they write some value regardless of their
predicate, their predicate can be ignored, and the instruction’s destinations must be placed in all paths.

Paths in a PFG can be merged when a predicate is no longer used and does not affect any other predicate later in the
code. However, this merging of paths may not be sufficient to solve all potential path explosion problems in the PFG. This
is because the number of paths in a PFG is exponentially proportional to the number of independent predicates whose live
ranges overlap. Fortunately, this does not happen in practice until code scheduling. After code scheduling, a complete PFG
will have a large number of paths and may be costly. A description of how the partial reverse if-converter overcomes this
problem is located in Section 4.2. A more general solution to the path explosion problem for other aspects of predicate code
analysis is currently being constructed by the authors.

With a PFG, the compiler has the information necessary to know which instructions exist in which paths. In Figure 10,
if the path in which p1 and p3 are TRUE is to be extracted, the instructions which would be placed into this path would
be 3, 4 and 7. The instructions that remain in the other two paths seem to be 3, 4, 5, and 6. However, inspection of the
dataflow characteristics of these remaining paths reveals that the results of instructions 3 and 4 are not used, given that r3
and r4 are not live out of this region. This fact makes these instructions dead code in the context of these paths. Performing
traditional dead code removal on the PFG, instead of the CFG, determines which parts of these operations are dead. Since
this application of dead code removal only indicates that these instructions are dead under certain predicate conditions, this
process is termed predicate partial dead code removal and is related to other types of partial dead code removal [21]. The
result of partial dead code removal indicates that instructions 3 and 4 would generate correct code and would not execute
unnecessarily if they were predicated on p3.

At this point, all the paths have been identified and unnecessary code has been removed by partial dead code removal.
The analysis and possible ejection of these paths now becomes possible.

4.2 Transformation

Once predicate analysis and partial dead code elimination have been completed, performing reverse if-conversion at any
point and for any predicate requires a small amount of additional processing. This processing determines whether each
instruction belongs in the original hyperblock, the new block formed by reverse if-conversion, or both. Figure 11 is used to
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Figure 12: Simple code size reduction on multiple partial reverse if-conversions applied to an unrolled loop. Each square
represents an unroll of the original loop.

aid this discussion.
The partial reverse if-converted code can be subdivided into three code segments. These are: the code before the reverse

if-converting branch, the code ejected from the hyperblock by reverse if-conversion, and the code which remains in the
hyperblock below the reverse if-converting branch. Instructions before the location of the partial reverse if-converting branch
are left untouched in the hyperblock. Figure 11b shows the partial reverse if-conversion created for p1 after instructions 1
and 2. This means that instructions 1 and 2 are left in their originally scheduled location and the reverse if-converting branch,
predicated on p1, is scheduled immediately following them. The location of instructions after the branch is determined by
the PFG. To use the PFG without experiencing a path explosion problem, the PFG’s generated during scheduling are done
only with respect to the predicate which is being reverse if-converted. This keeps the number of paths under control since
a the single predicate PFG can contain no more than two paths. Figure 11a shows the PFG created for the predicate to be
reverse if-converted, p1. Note that the partial dead code has already been removed as described in the previous section.
Instructions which exist solely in the p1 is FALSE path, such as 5 and 6, remain in the original block. Instructions which
exist solely in the p1 is TRUE path, such as 3, 4, and 7, are moved from the original block to the newly formed region. An
instruction which exists in both paths must be placed in both regions.

Notice that the hyperblock conditionally jumps to the code removed from the hyperblock but there is no branch from this
code back into the original hyperblock. While this is possible, it was not implemented in this work. Branching back into the
hyperblock would violate the hyperblock semantics since it would no longer be a single entry region. Violating hyperblock
semantics may not be problematic since the benefits of the hyperblock have already been realized by the optimizer and
prepass scheduler. However, the postpass hyperblock scheduler may experience reduced scheduling freedom since all re-
entries into the hyperblock effectively divide the original hyperblock into two smaller hyperblocks.

The advantage of branching back into the original hyperblock is a large reduction in code size through elimination of
unnecessarily duplicated instructions. However, as will be shown in the experimental section, code size was generally not
a problem. One code size optimization which was performed merges targets of partial reverse if-conversion branches if the
target blocks are identical. This resulted in a large code size reduction in codes where loop unrolling was performed. If a loop
in an unrolled hyperblock needed to be reverse if-converted, it is likely that all iterations needed to be reverse if-converted.
This creates many identical copies of the loop body subsequent to the loop being reverse if-converted. Figure 12a shows the
original result of repeated reverse if-conversions on an unrolled loop. Figure 12b shows the result obtained by combining
identical targets. While this simple method works well in reducing code growth, it does not eliminate all unnecessary code
growth. To remove all unnecessary code growth, a method which jumps back into the hyperblock at an opportune location
needs to be created.

4.3 Policy

After creating the predicate flow graph and removing partial dead code, the identity and characteristics of all paths in a
hyperblock are known. With this information, the compiler can make decisions on which transformations to perform. The
decision process for partial reverse if-conversion consists of two parts: deciding which predicates to reverse if-convert
and deciding where to reverse if-convert the selected predicates. To determine the optimal reverse if-conversion for a
given architecture, the compiler could exhaustively try every possible reverse if-conversion, compute the optimal cycle
count for each possibility, and choose the one with the best performance. Unfortunately, there are an enormous number of



1 Initialize ready priority queue;
2 ric queue = NULL;
3 cycle = 0;
4 num unsched = Number of operations;
5 schedno ric = Compute dynamic cycles for hyperblock;

// Each trip through this loop is a new cycle
6 WHILE num unsched != 0 DO

// Handle reverse if-converting branches first
7 FOREACH ric op IN ric queue DO
8 IF Schedule Op(ric op, cycle) THEN
9 Compute location for each unscheduled op;
10 schedric taken = Compute dynamic cycles in ric taken path;
11 schedric hb = Compute dynamic cycles in ric hyperblock;
12 mipredric = Estimate ric mispreds * miss penalty;
13 ric cycles = schedric hb � schedric taken;
14 ric cycles = ric cycles�mispredric;
15 IF (schedno ric � ric cycles) THEN
16 schedno ric = schedric hb;
17 Place all ops in their no ric schedule location;
18 ELSE
19 Unschedule OP(ric op);
20 Remove ric op from ric queue;

// Then handle regular operations
21 FOREACH regular op IN ready priority queue DO
22 IF Schedule Op(regular op, cycle) THEN
23 Remove regular op from ready priority queue;
24 num unsched = num unsched� �;
25 IF Is Predicate Define(regular op) THEN
26 Add reverse if-converting branch to ric queue;
27 cycle = cycle� �;

Figure 13: An algorithm incorporating partial reverse if-conversion into a list scheduler

possible reverse if-conversions for any given hyperblock. Consider a hyperblock with p predicates and n instructions. This
hyperblock has �p combinations of predicates chosen for reverse if-conversion. Each of these reverse if-conversions can
then locate its branch in up to n locations in the worst case. Given that each of these possibilities must be scheduled to
measure its cycle count, this can be prohibitively expensive. Obviously, a heuristic is needed. While many heuristics may
perform effective reverse if-conversions, only one is studied in this paper. This heuristic may not be the best solution in all
applications, but for the machine models studied in this work it achieves a desirable balance between final code performance,
implementation complexity, and compile time.

The process of choosing a heuristic to perform partial reverse if-conversion is affected greatly by the type of scheduler
used. Since partial reverse if-conversion is integrated into the prepass scheduler, the type of information provided by the
scheduler and the structure of the code at various points in the scheduling process must be matched with the decision of
what and where to if-convert. An operation-based scheduler may yield one type of heuristic while a list scheduler may yield
another. The policy determining how to reverse if-convert presented here was designed to work within the context of an
existing list scheduler. The algorithm with this policy integrated into the list scheduler is shown in Figure 13.

The first decision addressed by the proposed heuristic is where to place a predicate selected for reverse if-conversion. If
a location can be shown to be generally more effective than the rest, then the number of locations to be considered for each
reverse if-conversion can be reduced from n to �, an obvious improvement. Such a location exists under the assumption
that the reverse if-converting branch consumes no resources and the code is scheduled by a perfect scheduler. It can be
shown that there is no better placement than the first cycle in which the value of the predicate to be reverse if-converted



is available after its predicate defining instruction.1 Since the insertion of the branch has the same misprediction or taken
penalty regardless of its location, these effects do not favor one location over another. However, the location of the reverse
if-converting branch does determine how early the paths sharing the same resources are separated and given the full machine
bandwidth. The perfect scheduler will always do as well or better when the full bandwidth of the machine is divided among
fewer instructions. Given this, the earlier the paths can be separated, the fewer the number of instructions competing for the
same machine resources. Therefore, a best schedule will occur when the reverse if-converting branch is placed as early as
possible.

Despite this fact, placing the the reverse if-converting branch as early as possible is a heuristic. This is because the two
assumptions made, a perfect scheduler and no cost for the reverse if-converting branch, are not valid in general. It seems
reasonable, however, that this heuristic would do very well despite these imperfections. Another consideration is code
size, since instructions existing on multiple paths must be duplicated when these paths are separated. The code size can be
reduced if the reverse if-converting branch is delayed. Depending on the characteristics of the code, this delay may have no
cost or a small cost which may be less than the gain obtained by the reduction in code size. Despite these considerations,
the placement of the partial reverse if-converting branch as early as possible is a reasonable choice.

The second decision addressed by the heuristic is what to reverse if-convert. Without a heuristic, the number of reverse
if-conversions which would need to be considered with the heuristic described above is �p. The only way to optimally
determine which combination of reverse if-conversions yields the best results is to try them all. A reverse if-conversion of
one predicate can affect the effectiveness of other reverse if-conversions. This interaction among predicates is caused by
changes in code characteristics after a reverse if-conversion has removed instructions from the hyperblock.

In the context of a list scheduler, a logical heuristic is to consider each potential reverse if-conversion in a top-down
fashion, in the order in which the predicate defines are scheduled. This heuristic is used in the algorithm shown in Figure 13.
This has the desirable effect of making the reverse if-conversion process fit seamlessly into a list scheduler. It is also
desirable because each reverse if-conversion is considered in the context of the decisions made earlier in the scheduling
process.

In order to make a decision on each reverse if-conversion, a method to evaluate it must be employed. For each prospec-
tive reverse if-conversion, three schedules must be considered: the code schedule without the reverse if-conversion, the
code schedule of the hyperblock with the reverse if-converting branch inserted and paths excluded, and the code schedule
of the paths excluded by reverse if-conversion. Together they yield a total of �p schedules for a given hyperblock. Each
of these three schedules needs to be compared to determine if a reverse if-conversion is profitable. This comparison can
be written as: sched cyclesno ric � sched cyclesric hb � sched cyclesric taken � �mispredric �miss penalty� where
sched cyclesno ric is the number of dynamic cycles in the schedule without reverse if-conversion applied, sched cyclesric hb

is the number of dynamic cycles in the schedule of the transformed hyperblock, sched cyclesric taken is the number of dy-
namic cycles in the target of the reverse if-conversion, and mispredric is the number of mispredictions introduced by the
reverse if-conversion branch. The mispredric can be obtained through profiling or static estimates. miss penalty is the
branch misprediction penalty. This comparison is computed by lines 9 through 15 in Figure 13.

While the cost savings due to the heuristic is quite significant, �p schedules for more complicated machine models can
still be quite costly. To reduce this cost, it is possible to reuse information gathered during one schedule in a later schedule.

The first source of reuse is derived from the top-down property of the list scheduler itself. At the point each reverse if-
conversion is considered, all previous instructions have been scheduled in their final location by lines 8 or 22 in Figure 13.
Performing the scheduling on the reverse if-conversion and the original scenario only needs to start at this point. The
number of schedules is still �p, but the number of instructions in each schedule has been greatly reduced by the removal of
instructions already scheduled.

The second source of reuse takes advantage of the fact that, for the case in which the reverse if-conversion is not done,
the schedule has already been computed. At the time the previous predicate was considered for reverse if-conversion, the
schedule was computed for each outcome. Since the resulting code schedule in cycles is already known, no computation is
necessary for the current predicate’s sched cyclesno ric. This source of reuse takes the total schedules computed down to
�p�� with each schedule only considering the unscheduled instructions at each point due to the list scheduling effect. This
reuse is implemented in Figure 13 by lines 5 and 16.

Another way to reduce the total number of instructions scheduled is to take advantage of the fact that the code purged

1There exist machines where the placement of a branch a number of cycles after the computation of its condition removes all of its mispredictions [17].
In these machines, there are two locations which should be considered, immediately after the predicate defining instruction and in the cycle in which the
branch mispredictions are eliminated.
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Figure 14: The control flow graph from the UNIX utility wc.

from the block is only different in the “then” and “else” blocks but not in the control equivalent split or join blocks. Once
the scheduler has completely scheduled the “then” and “else” parts, no further scheduling is necessary since the remaining
schedules are likely to be very similar. The only differences may be dangling latencies or other small differences in the
available resources at the boundary. To be more accurate, the schedules can continue until they become identical, which is
likely to occur at some point, though is not guaranteed to occur in all cases. An additional use for the detection of this point
is code size reduction. This point is a logical location to branch from the ejected block back into the original hyperblock.

With all of the above schedule reuse and reduction techniques, it can be shown that the number of times an instruction is
scheduled is usually � � �d, where d is that instruction’s depth in its hammock. In the predication domain, this depth is the
number of predicates defined in the chain used to compute that instruction’s guarding predicate.

If the cost of scheduling is still high, estimates may be used instead. There are many types of scheduling estimates which
have been proposed and can be found in the literature. While many may do well for machines with regular structures, others
do not. It is possible to create a hybrid scheduler/estimator which may balance good estimates with compile time cost. As
mentioned previously, the schedule height of the two paths in the hammock must be obtained. Instead of purely scheduling
both paths, which may be costly, or just estimating both paths, which may be inaccurate, a part schedule and part estimate
may obtain more accurate results with lower cost. In the context of a list scheduler, one solution is the following. The
scheduler could schedule an initial set of operations and estimate the schedule on those remaining. Accurate results will
be obtained by the scheduled portion, in addition, the estimate may be able to benefit from information obtained from the
schedule, as the characteristics of the scheduled code may be likely to match the characteristics of the code to be estimated.
In the experiments presented in the next section, actual schedules are used in the decision to reverse if-convert because the
additional compile time was acceptable.



4.4 Code Example

The examples presented up to this point in this section have been artificially crafted to illustrate the application of partial
reverse if-conversion. However, it is useful to examine the operation of the framework in a more realistic setting. The inner
loop from our smallest benchmark, the UNIX utility wc, is chosen for this purpose. Figure 14 presents the original control
flow graph for this code segment. Instructions are numbered 1 through 34 for reference. For this code segment, there are 22
paths of execution. The hyperblock formation heuristics must consider all of the possible paths to identify those profitable
for inclusion in a hyperblock. The interaction between the paths is also important because they share many instructions.

The hyperblock formation heuristics select all instructions except 5-8 to combine into a single hyperblock. The resultant
schedule of the hyperblock for an example three-issue processor is shown in Figure 15a. The processor utilized for this
example is assumed to consist of one arithmetic unit, one memory unit, and one branch unit. All instructions have a
latency of one cycle except loads which have a latency of two cycles. Using branch profile information, the estimated
execution cycles for the hyperblock is 2.0M cycles. Unfortunately, the original code where each basic block is scheduled
separately requires only 1.7M cycles to execute. The hyperblock formation heuristics were too aggressive leading to an over
subscription of the processor resources.

The partial reverse if-conversion framework is used to overcome this performance loss. The main problem with the
original hyperblock is the arithmetic unit is over-saturated with instructions. Therefore, the scheduler needs to choose one
or more paths to eject to reduce the pressure on the arithmetic unit. The resultant schedule with partial reverse if-conversion
is shown in Figure 15b. Two reverse if-conversions are performed. First, predicate p3 is reverse if-converted by inserting
a new jump instruction (18�). The jump conditionally branches to a new hyperblock, labeled B, when p3 is TRUE. The
new jump is inserted into the schedule of the original hyperblock at the earliest cycle when p3 is available, cycle 8. All
unscheduled instructions are put into one of three categories: required when p3 is TRUE, required when p3 is FALSE, or
required for either value of p3. Instructions 19, 21, 22, 23 and 24 are only needed when p3 is TRUE, thus they are ejected
from the original hyperblock. Instructions 15 and 16 are needed for either value of p3, thus they must be replicated in both
the original and the new hyperblock. The remainder of the instructions are required when p3 is FALSE, so they remain in
the original hyperblock. The remainder of the original hyperblock is scheduled without further reverse if-conversions.

A second reverse if-conversion is applied when hyperblock B is scheduled. Predicate p4 is reverse if-converted by
introducing a new jump instruction (19�). The jump conditionally branches to the new hyperblock, labeled C, when p4 is
TRUE. As a result of the transformation, instructions 21, 22, 23 and 24 are ejected from hyperblock B. Further, instructions
15 and 16 are again replicated. The scheduling process is complete when hyperblock C is scheduled.

The overall result is the execution cycles for the code with partial reverse if-conversion is reduced to 1.3M cycles. This
compares with the 2.0M cycles for the original hyperblock code and 1.7M cycles for the original basic block code. The
primary reason for the improvement in this example was the ability to eject instructions to reduce the contention for the
arithmetic unit.

5 Experimental Results

The partial reverse if-conversion framework described in this paper has been implemented in the second generation instruc-
tion scheduler of the IMPACT compiler. This section presents an experimental evaluation of this framework.

5.1 Methodology

The IMPACT compiler utilizes a machine description file to generate code for a parameterized superscalar processor. To
measure the effectiveness of the partial reverse if-conversion technique, a machine model similar to many current processors
was chosen. The machine modeled is a 4-issue superscalar processor with in-order execution that contains two integer
ALU’s, two memory ports, one floating point ALU, and one branch unit. The instruction latencies assumed match those of
the HP PA-7100 microprocessor [22]. The instruction set contains a set of non-trapping versions of all potentially excepting
instructions, with the exception of branch and store instructions, to support aggressive speculative execution. The instruction
set also contains support for predication similar to that provided in the PlayDoh architecture [8].

The execution time for each benchmark is derived from the static code schedule weighted by dynamic execution frequen-
cies obtained from profiling. Static branch prediction based on profiling is also utilized. Benchmark performance ignores
dynamic stall cycles associated with the memory system including instruction and data cache misses. Previous experience
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Figure 15: Schedule for wc after hyperblock formation and optimization (a), and schedule after partial reverse if-conversion
of that hyperblock (b).
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Figure 16: Performance increase over superblock exhibited by the hyperblock and partial reverse if-conversion frameworks
with no misprediction penalty.

with this method of run time estimation has demonstrated that it accurately estimates simulations of an equivalent machine
with perfect caches.

The benchmarks used in this experiment consist of 14 non-numeric programs: the six SPEC CINT92 benchmarks,
008.espresso, 022.li, 023.eqntott, 026.compress, 072.sc, and 085.cc1; two SPEC CINT95 benchmarks, 132.ijpeg and
134.perl; and six UNIX utilities cccp, cmp, eqn, grep, wc, and yacc.

5.2 Results

For the experiments, the performance of the traditional hyperblock and the new partial reverse if-conversion frameworks
are compared. The hyperblocks formed in these experiments represent those currently formed by the IMPACT compiler’s
hyperblock formation heuristic for the target machine [14]. For the traditional hyperblock framework, these hyperblocks
are directly scheduled for the target machine. These same hyperblocks were also used as input to the partial reverse if-
conversion framework. In this case, the hyperblocks are scheduled and reverse if-converted as appropriate for the target
machine. The performance of both frameworks is presented relative to the results obtained with superblock compilation for
the same target machine. Superblock compilation performance is chosen as the base because it represents the best possible
performance currently obtainable by the IMPACT compiler without predication [23].

Overall performance. Figures 16 and 17 compare the overall benchmark performance of the hyperblock and partial
reverse if-conversion frameworks. Performance is reported as the speedup in execution cycles versus superblock compilation
with the height of the bars in both graphs are computed as, superblock cycles�technique cycles.

Figure 16 shows the performance of the hyperblock and partial reverse if-conversion frameworks assuming no branch
misprediction penalty. Since branch mispredictions are not factored in, benchmarks exhibiting performance improvement
in this graph show that predication has performed well as a compilation model. In particular, the compiler has successfully
overlapped the execution of multiple paths of control to increase ILP. Hyperblock compilation achieves some speedup
for half of the benchmarks, most notably for 023.eqntott, cmp, 072.sc, grep, and wc. For these programs, the hyperblock
techniques successfully overcome the problem superblock techniques were having in fully utilizing processor resources. On
the other hand, hyperblock compilation results in a performance loss for the other half of the benchmarks. This dichotomy
is a common problem experienced with hyperblocks and indicates that hyperblocks can do well, but often performance is
victim to poor hyperblock selection.

In all cases, partial reverse if-conversion improved upon or matched the performance of the hyperblock code. For six
of the benchmarks, partial reverse if-conversion was able to change a loss in performance by hyperblock compilation into
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Figure 17: Performance increase over superblock exhibited by the hyperblock and partial reverse if-conversion frameworks
with a four cycle misprediction penalty.

a gain. This is most evident for 008.espresso where a 28% loss was converted into a 39% gain. For 072.sc, 134.perl, and
cccp, partial reverse if-conversion was able to significantly magnify relatively small gains achieved by hyperblock compi-
lation. These results indicate that the partial reverse if-converter was successful at undoing many of the poor hyperblock
formation decisions while capitalizing on the effective ones. For the four benchmarks where hyperblock techniques were
highly effective, 023.eqntott, cmp, grep, and wc, partial reverse if-conversion does not have a large opportunity to increase
performance since the hyperblock formation heuristics worked well in deciding what to if-convert.

It is useful to examine the performance of the worst performing benchmark, 085.cc1, more closely. For this benchmark,
both frameworks result in a performance loss with respect to superblock compilation. Partial reverse if-conversion was not
completely successful in undoing the bad hyperblock formation decisions. This failure is due to the policy that requires the
list scheduler to decide the location of the reverse if-converting branch by its placement of the predicate defining instruction.
Unfortunately, the list scheduler may delay this instruction as it may not be on the critical path and is often deemed to have a
low scheduling priority. Delaying the reverse if-conversion point can have a negative effect on code performance. To some
extent this problem occurs in all benchmarks, but is most evident in 085.cc1.

Figure 17 shows the performance of the benchmarks in the same manner as Figure 16 except with a branch misprediction
penalty of four cycles. In general, the relative performance of hyperblock code is increased the most when mispredicts are
considered because it has the fewest mispredictions. The relative performance of the partial reverse if-conversion code is
also increased because it has fewer mispredictions than the superblock code. But, partial reverse if-conversion inserts new
branches to accomplish its transformation, so this code contains more mispredictions than the hyperblock code. For several
of the benchmarks, the number of mispredictions was actually larger for hyperblock and partial reverse if-conversion than
that of superblock. When applying control flow transformations in the predicated representation, the compiler will actually
create branches with much higher mispredict rates than those removed. Additionally, the branches created by partial reverse
if-conversion may be more unbiased than the the combination of branches in the original superblock they represent.

Function-level performance. It is illustrative to examine performance at a smaller granularity for a better understanding
of the results. Figure 18 compares the performance of selected functions from the benchmarks in the same manner as
Figure 16. The figure assumes no branch misprediction penalty for the results. The functions were selected based on two
criteria: contributing a high fraction of the overall benchmark execution time and benefiting a large amount from partial
reverse if-conversion. The figure shows potential of partial reverse if-conversion to increase performance dramatically.
In particular, two functions in 132.ijpeg achieve greater than 250% gain with partial reverse if-conversion. Hyperblock
compilation is relatively ineffective for these two functions. But, the ability to adjust the control structure of the code
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Figure 18: Selected function level performance increase over superblock exhibited by the hyperblock and partial reverse
if-conversion frameworks with no misprediction penalty.

during scheduling enables the execution time of these same hyperblocks to be dramatically reduced. Even the worst overall
benchmark, 085.cc1, contains an important function that achieves 100% gain with partial reverse if-conversion.

One of the best overall performing benchmarks was 072.sc. For this program, hyperblock compilation increased perfor-
mance by a fair margin, but the partial reverse if-conversion increased this gain substantially. Most of 072.sc’s performance
gain was achieved by transforming a single function update. This function with superblock compilation executes in 25.6
million cycles. However, the schedule is rather sparse due to a large number of data and control dependences. Hyperblock
compilation increases the available ILP by eliminating a large fraction of the branches and overlapping the execution of
multiple paths of control. This brings the execution time down to 19.7 million cycles. While the hyperblock code is much
better than the superblock code, it has excess resource consumption on some paths which penalizes other paths. The partial
reverse if-converter was able to adjust the amount of if-conversion to match the available resources to efficiently utilize the
processor. As a result, the execution time for the update function is reduced to 16.8 million cycles with partial reverse
if-conversion, a 52% performance improvement over the superblock code.

Code size. The static code size exhibited by using the hyperblock and partial reverse if-conversion frameworks with
respect to the superblock techniques is presented in Figure 19. From the figure, the use of predicated execution by the
compiler has varying effects on the code size. The reason for this behavior is a tradeoff between increased code size
caused by if-conversion with the decreased code size due to less tail duplication. With superblocks, tail duplication is
performed extensively to customize individual execution paths. Whereas with predication, multiple paths are overlapped
via if-conversion, so less tail duplication is required. The figure also shows that the code produced with the partial reverse
if-conversion framework is consistently larger than the hyperblock framework. On average, the partial reverse if-conversion
code is 14% larger than the hyperblock code, with the largest growth occurring for yacc.

Common to all the benchmarks which exhibit a large code growth was a failure of the simple code size reduction
mechanism presented Section 4. Inspection of the resulting code indicates that many instructions are shared in the lower
portion of the tail duplications created by the partial reverse if-converter. For this reason, one can expect these benchmarks
to respond well to a more sophisticated code size reduction scheme.

Application statistics. Finally, the frequency of partial reverse if-conversions that were performed to generate the
performance data is presented in Table 1. The “Reverse If-Conversions” column specifies the actual number of reverse
if-conversions that occurred across the entire benchmark. The “Opportunities” column specifies the number of reverse
if-conversions that could potentially have occurred. The number of opportunities is equivalent to the number of unique
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Figure 19: Relative static code size exhibited by the hyperblock and partial reverse if-conversion frameworks compared
with superblock.

Benchmark Reverse If-Conversions Opportunities
008.espresso 204 1552
022.li 50 393
023.eqntott 43 443
026.compress 11 56
072.sc 33 724
085.cc1 479 3827
132.ijpeg 134 1021
134.perl 42 401
cccp 77 1046
cmp 4 49
eqn 33 326
grep 3 103
wc 0 88
yacc 247 1976

Table 1: Application frequency of partial reverse if-conversion.



predicate definitions in the application, since each predicate define can be reverse if-converted exactly once. All data in
Table 1 are static counts. The table shows that the number of reverse if-conversions that occur is a relatively small fraction
of the opportunities. This behavior is desirable as the reverse if-converter should try to minimize the number of branches it
inserts to achieve the desired removal of instructions from a hyperblock. In addition, the reverse if-converter should only be
invoked when a performance problem exists. In cases where the performance of the original hyperblock cannot be improved,
no reverse if-conversions need to be performed. The table also shows the expected correlation between large numbers of
reverse if-conversions and larger code size increases of partial reverse if-conversion over hyperblock (Figure 19).

6 Conclusion

In this paper, we have presented an effective framework for compiling applications for architectures which support pred-
icated execution. The framework consists of two major parts. First, aggressive if-conversion is applied early in the com-
pilation process. This enables the compiler to take full advantage of the predicate representation to apply aggressive ILP
optimizations and control flow transformations. The second component of the framework is applying partial reverse if-
conversion at schedule time. This delays the final if-conversion decisions until the point during compilation when the
relevant information about the code content and the processor resource utilization are known.

A first generation partial reverse if-converter was implemented and the effectiveness of the framework was measured
for this paper. The framework was able to capitalize on the benefits of predication without being subject to the sometimes
negative side effects of over-aggressive hyperblock formation. Furthermore, additional opportunities for performance im-
provement were exploited by the framework, such as partial path if-conversion. These points were demonstrated by the
hyperblock performance losses which were converted into performance gains, and by moderate gains which were further
magnified. We expect continuing development of the partial reverse if-converter and the surrounding scheduling infrastruc-
ture to further enhance performance. In addition, the framework provides an important mechanism to undo the negative
effects of overly aggressive transformations at schedule time. With such a backup mechanism, unique opportunities are
introduced for the aggressive use and transformation of the predicate representation early in the compilation process.
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