
Register Connection: A New Approach to Adding Registers into

Instruction Set Architectures

Tokuzo Kiyohara Scott Mahlke, William Chen, Roger Bringmann
Richard Hank, Sadun Anik, Wen-mei Hwu

Media Research Laboratory Coordinated Science Laboratory
Matsushita Electric Industrial Co., Ltd. University of Illinois at Urbana-Champaign

Kadoma-shi, Osaka, 571 Japan Urbana, IL 61801

Abstract

Code optimization and scheduling for superscalar
and superpipelined processors often increase the reg-
ister requirement of programs. For existing instruc-
tion sets with a small to moderate number of regis-
ters, this increased register requirement can be a fac-
tor that limits the e�ectiveness of the compiler. In
this paper, we introduce a new architectural method
for adding a set of extended registers into an architec-
ture. Using a novel concept of connection, this method
allows the data stored in the extended registers to be
accessed by instructions that apparently reference core
registers. Furthermore, we address the technical issues
involved in applying the new method to an architec-
ture: instruction set extension, procedure call conven-
tion, context switching considerations, upward com-
patibility, e�cient implementation, compiler support,
and performance. Experimental results based on a pro-
totype compiler and execution driven simulation show
that the proposed method can signi�cantly improve the
performance of superscalar processors with a small or
moderate number of registers.

1 Introduction

Designing high-performance processors often in-
volves exploiting instruction-level parallelism (ILP).
An example of such an approach, pipelining, has been
widely used, and many pipelined designs are capable
of executing nearly one instruction per cycle. Fur-
ther performance improvement can be achieved either
by executing more than one instruction per cycle, or
by increasing the depth of pipelining. Superscalar
and VLIW processors fetch, decode, and execute more
than one instruction per cycle by providing multiple
functional units and datapaths. Superpipelined pro-
cessors divide the pipeline into smaller segments that
have less delay, allowing the clock cycle to be short-
ened and more instructions to overlap with each other.

In order to assist the hardware to achieve perfor-
mance objectives, compilers for superscalar, VLIW,
and superpipelined processors use optimization and
code scheduling techniques to exploit ILP. The code
optimization techniques for these processors create ad-
ditional temporary variables to eliminate data and
control dependences among instructions. The code
scheduling techniques reorder instructions so that in-
structions that are close to each other tend to be inde-
pendent of each other. Both can greatly improve the
e�ectiveness of a processor that exploits ILP. How-
ever, they also tend to increase the number of vari-
ables that are simultaneously live at each point of
program execution. For instruction set architectures
with small register �les, such as the Intel i80X86 and
the Motorola 680X0, with 8 and 16 registers respec-
tively, these simultaneously live variables cannot be
accommodated in registers. As a result, some of the
variables have to be spilled to memory. Extra memory
loads must be executed before using these spilled vari-
ables and extra stores must be executed after modi-
fying them. Spilling tends to add to the latency of
computation and consume memory access bandwidth,
which reduces the e�ectiveness of the optimization and
scheduling techniques.

A straightforward solution to a shortage of registers
is to increase the number of registers in the instruc-
tion set architecture. However, major di�culties exist
with this approach. In the case of designing a new
instruction set, the number of bits required to select
among registers may be too large for a given instruc-
tion format. For thirty two bit instruction formats,
supporting more than thirty two registers imposes a
strict limit on the number of bits available to opcodes
and constants. For existing architectures, the sizes of
the opcodes and constants are already �xed, leaving
no room for indexing into an enlarged register �le.

In this paper, we introduce a method referred to
as Register Connection (RC) to add a set of extended
registers to an architecture. We will refer to the regis-
ters in the original architecture as core registers. The

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 2

novel aspect of the RC method is that rather than
explicitly moving data between the core and the ex-
tended registers, it speci�es a small set of opcodes to
dynamically connect the register indices to a large set
of registers. When a register index is connected to a
register, all accesses using the register index are au-
tomatically directed to the appropriate register of the
enlarged register �le.

The concept of connecting registers without data
movement enables an e�cient implementation of our
proposed method. The basic idea is to have all the
processor function units directly access a enlarged reg-
ister �le. A translation is performed by keeping track
of the connection between the addressable registers in
the instruction set and the larger number of registers
available in the architecture. With this translation,
instructions with small register indices end up access-
ing the large register �le before they are issued into
the function units. By systematically scheduling the
connect instructions, one can achieve a performance
level similar to that with a large register �le for an
architecture with RC support.

Although the basic idea of RC is simple, there are
important technical issues involved in applying RC to
an instruction set. The rest of this paper is structured
to address these issues. Section 2 describes the archi-
tectural support for RC. Section 3 discusses register
allocation issues. Section 4 addresses upward compat-
ibility. Section 5 reports experiments on the perfor-
mance advantage of RC using a prototype compiler
and execution-driven simulation. Finally, concluding
remarks are o�ered in Section 6.

2 Architecture Support for Register
Connection

2.1 Design overview

RC requires several architectural extensions to in-
crease the number of registers in existing instruction
sets. The base architecture to which these extensions
are applied is a generic, pipelined, superscalar pro-
cessor with an m-entry register �le. A summary of
the changes to the base architecture to support RC is
presented in Figure 1. First, the base register �le is
replaced by an n-entry register �le, n > m. The en-
larged register �le consists of two logical components,
the core section and the extended section. The core
section contains the �rst m registers and corresponds
to the original register �le of the base architecture.
The extended section contains the remaining n � m

registers that have been added to the architecture.
The second extension is the addition of an m-entry

register mapping table. The register mapping table
is used to map between the m addressable registers
in the instruction set and the n registers available in

Decode/
Dispatch

.

.

.

.

.

.

.

.

.

FU FU FUFU. . . .

Result Bus

Register
File

0

m

.

.

.

.

.

.

Register
Mapping
Table

0

m-1

Read
Map

Write
Map

D
E
C
O
D
E
R

m-1

n-1

Core
Section

Extended
Section

Figure 1: Superscalar processor supporting register
connection.

the extended architecture. In order to provide for
this mapping, register accesses in the base architec-
ture are converted to indirect accesses through the
register mapping table. Therefore, in the extended
architecture, each register access consists of the follow-
ing steps: a register number speci�ed in the operand
�eld of a machine instruction is used to index into the
register mapping table. The register mapping table is
then accessed to obtain the physical register number.
Finally, the register �le entry speci�ed by the physical
register number is accessed. The register mapping ta-
ble used for RC is similar to the mapping used in the
PDP-11 to map a smaller addressable memory space
into a larger physical memory [1].

To make register mapping more exible, each map-
ping entry contains both a read map and a write
map. The read/write map speci�es the physical reg-
ister to be utilized when the register is speci�ed as a
source/destination register. Separate read and write
maps allow more e�cient use of a limited number of
register mapping table entries. This exibility be-
comes more important for smaller values of m in the
base architecture.

The �nal extension is a modi�ed decode/dispatch
stage in the processor pipeline. Since registers are ac-
cessed indirectly, two accesses are required to fetch
each register source operand of an instruction. First,
the register mapping table is accessed to determine
the physical register numbers for all registers utilized
by the instruction. Second, the register �le is accessed
to obtain the register source operand values. A pos-
sible side e�ect of RC is an increased time to per-
form decode/dispatch. This may require an additional
pipeline stage to perform decode/dispatch to prevent
an increase in cycle time.

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 3

connect-use Ri1, Rp10
connect-use Ri2, Rp7
connect-def Ri3, Rp6
Ri3 Ri1 +Ri2

1
2

0

3

Read Write
0
1
2
3
4
5
6
7
8
9

10
11

7
10

6

Figure 2: Connection instruction example.

2.2 Connection instructions

To utilize the enlarged register �le, two instructions
referred to as connect-use and connect-def are added to
the instruction set. The connect-use and connect-def
instructions change the register mapping information
within the register mapping table. Both instructions
take two input operands: a register mapping table in-
dex Ri and a register number Rp of the physical regis-
ter �le. Connect-use inserts the register number into
the read map entry referenced by the register mapping
table index. All subsequent reads using Ri are redi-
rected to Rp. Similarly, connect-def updates the write
map entry, and redirects subsequent writes using Ri
to Rp.

The functionality of connect-use and connect-def
can be illustrated with the code sequence in Fig-
ure 2. The core section has only four registers and
the extended section adds another eight registers. The
connect-use and connect-def instructions redirect the
accesses made by the add instruction to the extended
section of the register �le. With the redirection, the
add instruction will access Rp10 and Rp7 for its input
operands and deposit its results into Rp6.

To reduce the number of connect instructions, it
is possible to combine two connects into a single in-
struction provided the instruction size is large enough.
There are three possible combinations: connect-use-
use, connect-def-use, and connect-def-def . By incor-
porating these three new multiple-connect instructions
instead of connect-use and connect-def , a more com-
pact code schedule can be obtained. 1 The function-

1
For illustration purposes, the connect-use and connect-def

model is used for clarity. However, for the experimental re-

sults, the connect-use-use, connect-def-use, and connect-def-def
model is used.

R W

After register writeBefore register write

R W

R W R W

a) Model 1 b) Model 2

c) Model 3 d) Model 4

R W

Home

Figure 3: Four RC models. a) The register map is
unchanged after a register write. b) The write map
is reset to the home location after a register write.
c) The write map is reset to the home location after
a register write and the read map is replaced by the
previous write map entry. d) Both the write and read
maps are reset to the home location after a register
write.

ality of the multiple-connect instructions remain the
same as connect-use and connect-def ; however, the
number of operands is four instead of two.

2.3 Alternative techniques for automatic
register connection

In order to reduce the number of connect instruc-
tions, other instructions can be allowed to perform
automatic register connection as a side e�ect. In this
section, four alternative models of automatic register
connection are discussed: (1) no reset, (2) write reset,
(3) write reset with read update, and (4) read/write
reset.

The �rst model provides for no automatic register
connection. Therefore, the register mapping informa-
tion may only be changed by explicit connect instruc-
tions. The other three models perform varying degrees
of automatic register connection after an execution of
a register write. In all models, only the register map-
ping table entry corresponding to the destination reg-
ister is altered. Other strategies for automatic register
connection for the source registers are possible; how-
ever, they are not considered in this paper. Figure 3
shows the updated register connection information af-
ter a register write for the four models.

Model two attempts to avoid an extra connect-def
instruction by relocating the write map after a reg-
ister write. When writing into a register pointed to
by Rix, Rixwrite (write map of Rix) is reset to Rpx
(referred to as the home location of Rix) for subse-
quent writes. However, to read the written value, a
subsequent connect-use for Rix is still required.

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 4

Fetch/
Issue

Decode/
Dispatch Execute Writeback

map writemap read

register fetch
before dispatch after dispatch

Figure 4: Example pipeline con�guration with two
variations.

In addition to adjusting the write map done with
model two, model three also modi�es the read map
in an attempt to eliminate an extra connect-use in-
struction. In this model, when writing into a register
pointed to byRix, the automatic reset mechanism sets
Rixread to Rixwrite, and Rixwrite to Rpx. The auto-
matic adjustment of connections provides the result of
the execution for subsequent reads of Rix, and avoids
the destruction of the data saved in Rix by subse-
quent writes of Rpx. Model three is chosen for imple-
mentation and performance simulation in this paper.
The compiler algorithm to utilize this automatic reset
model is discussed in Section 3.

Model four emphasizes the free use of the regis-
ters in the core section. When writing into a register
pointed to by Rix, both the read map and the write
map entries of Rix are set to Rpx. Future reads and
writes of Rix are redirected to Rpx without extra con-
nect instructions.

2.4 Zero-cycle execution latency of con-
nect instructions

Since the RC mechanism does not require actual
data movement, connect-use and connect-def can be
implemented with zero-cycle execution latency. In or-
der for these instructions to have zero-cycle latency,
the implementation must allow them to a�ect the reg-
ister accesses of instructions issued at the same cycle.
This requires some forwarding logic to update the reg-
ister accesses with the information contained in the
connect instructions issued at the same cycle.

The forwarding that is performed varies slightly
with the pipeline con�guration. A simple four-stage
pipeline to illustrate the necessary forwarding is shown
in Figure 4 with two variations: register fetch is per-
formed before dispatch or after dispatch. The regis-
ter mapping table for both variations of this model
is read late during the decode stage and updated at
the beginning of the execute stage. Therefore, all con-
nect instructions are ensured to update the register
mapping table so that instructions in the next cycle
can read the correct value. However, any instructions

con_use Ri0, Rp2
mov Rp0, Ri0=Rp1

Fetch/Issue Decode/Dispatch Execute

-1
5
6

0
1
2

Register File

0
1

1
0

Register Mapping Table

map update Ri0 =2
mov Rp0, Ri0=Rp2=6

mov Ri1, Ri0
con_use Ri0, Rp2

Initial
State

time

Figure 5: Example of forwarding when register fetch
is performed after instruction dispatch.

con_use Ri0, Rp2= 6
mov Rp0, Ri0=Rp1=5

mov Rp0, 6

Fetch/Issue Decode/Dispatch Execute

-1
5
6

0
1
2

Register File

0
1

1
0

Register Mapping Table

mov Ri1, Ri0
con_use Ri0, Rp2

Initial
State

time

map update Ri0=2

Figure 6: Example of forwarding when register fetch
is performed before instruction dispatch.

which utilize connect instructions issued at the same
cycle will obtain stale data from the register mapping
table.

When register fetch is performed after dispatch,
connect-use and connect-def must forward updated
physical register numbers to other instructions dur-
ing dispatch. Therefore, the correct physical registers
are always either fetched during register fetch or avail-
able for writeback of the results. This forwarding is
illustrated in the example shown in Figure 5. In this
example, a 2-entry register mapping table and a 3-
entry physical register �le with the initial states shown
in the �gure are assumed. A connect-use which up-
dates map location 0 is issued at the same time as
a move instruction which utilizes map location 0 as
a source operand. During decode, the move instruc-
tion reads the register mapping table, however stale
data is obtained (Mapping table entry 0 contains a
1 rather than the desired value of 2). The connect-
use, therefore, forwards the updated physical register
number to the move instruction during dispatch, so
the correct physical register contents are read during
the execution stage.

When register fetch is performed before dispatch,
the forwarding mechanism for connect-def instruc-

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 5

tions is not changed. However, connect-use instruc-
tions must forward the data value of the correct regis-
ter to other instructions rather than the updated phys-
ical register numbers because register fetch has already
been performed. The previous example illustrating
the modi�ed forwarding is shown in Figure 6. In the
decode stage, the move instruction obtains the wrong
data for Ri0 since map location 0 is stale. In order to
properly forward the correct data to the move prior
to execution, connect-use instructions are required to
read the physical register contents which the read map
is being set to. Thus in this example, connect-use
reads the contents of Rp2 during the decode stage.
During the dispatch stage, a simultaneous use of Ri0
is detected, and the correct data is forwarded from the
connect-use to the move.

The timing constraints of these forwarding mech-
anisms must be addressed for any processor design.
In the case of connect-def , there is likely su�cient
time to perform to proper updates since the desti-
nation register is not required until a late stage in
the pipeline. In the case of connect-use instructions,
there is a more strict timing requirement. For this
paper, it is assumed there is su�cient timing freedom
prior to instruction dispatch to accommodate the nec-
essary forwarding; however, this may not be the case
for all implementations. In Section 5, the performance
degradation in the case where an extra pipeline stage
is required for RC support is evaluated.

2.5 Comparison with previous work

At the architecture level, the extended registers are
similar to the T registers in the CRAY-1 architec-
ture [2]. The similarity is that both techniques pro-
vide additional registers to hold more values than may
be addressed in the instruction set. However, explicit
data movement is necessary in the CRAY-1 architec-
ture to utilize data in the T registers. In contrast,
the RC method requires no explicit data movement to
utilize data in the core and extended sections of the
register �le. Dynamic connection through the regis-
ter mapping table is utilized to access both core and
extended sections of the register �le.

The register mapping table used in RC is similar to
the mapping table used in the IBM RS/6000 [3]. In
the RS/6000 the mapping table is utilized to perform
dynamic register renaming. Each instruction accesses
the mapping table to determine the appropriate phys-
ical register to access. In comparison, the RC method
provides explicit instructions to modify the mapping
table. Therefore, the extended registers are exposed
to the code optimizer, code scheduler, and register al-
locator for use.

3 Register Allocation

The RC method requires a number of changes to
the register allocation process [4]. The register al-
locator now has a much larger register �le available
with the addition of the extended registers. However,
the decision to place a variable in a core register over
an extended register depends upon the architectural
model of register connection and the register alloca-
tion method chosen.

The register allocation method we chose attempts
to place the most important variables into the core reg-
isters, while storing the less important variables in the
extended registers or memory. This method is similar
to the caller/callee save convention used in many com-
pilers. The automatic reset RC models can naturally
take advantage of this method since its reset mecha-
nism can eliminate many connect instructions. The
no-reset model treats all physical registers uniformly.
However, if the number of active variables is larger
than the number of mapping indices at any time, a
large number of connect instructions may be required.
The above allocation method automaticallyminimizes
the number of connection instructions by maximizing
the use of the core registers.

Once register allocation is complete, appropriate
connect instructions must be inserted to enable in-
structions to access the variables allocated to extended
registers. This can be accomplished by emulating the
register mapping table and either selecting the index
entry currently pointing to the physical register as its
index or selecting the least important index as the new
index. Consider the code sequence shown below that
uses model three (Section 2.3). The core register �le
size is eight registers (R1-R8). Two variables have
been allocated to extended registers, R9 and R10.

1) R2 R2 + R9
2) R10 R3 + 1
3) R4 R10 + R5

connect use Ri6,Rp9
1) Ri2 Ri2 + Ri6
connect def Ri7,Rp10
2) Ri7 Ri3 + 1
3) Ri4 Ri7 + Ri5

If we assume that the register maps for registers
R1-R8 are currently pointing to their home locations,
the code sequence requires two connect instructions.
A connect-use is required prior to instruction 1 to al-
low reading of Rp9, in which case we use the register
read map of Ri6. Also, the destination of instruction
2 was assigned to extended register Rp10, requiring
a connect-def to set the register write map of Ri7 to
Rp10. Note that a connect-use is not required prior
to instruction 3 since the register read map of Ri7 is
set to the register write map as a side a�ect of writing
into the register. The selection of the register map
entry used to access an extended register is arbitrary;
however, with proper selection, the register allocator
can attempt to minimize the arti�cial dependences in-

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 6

troduced by these instructions and maximize the code
motion opportunity available to the scheduler.

4 Upward Compatibility

One important reason for extending an architecture
with the RC method instead of adding more registers
to the operand �elds in the instruction set, is to ensure
upward compatibility with existing program binaries.
On the surface, the RC method should trivially sat-
isfy the upward compatibility requirement. Since the
programs compiled for the original architecture will
not contain any connect-use and connect-def instruc-
tions, all of the core registers will remain connected
to their home locations throughout the program exe-
cution. The register access operations will operate as
if there were no extended register �le. However, there
are three situations which must be addressed to com-
pletely ensure upward compatibility - subroutine calls,
context switching, and trap and interrupt handling.

4.1 Subroutine calls

A typical approach to saving one of the extended
registers across subroutine calls is to perform a
connect-use to the extended register and then store
the contents to memory. If the register is not subse-
quently reconnected to its core register, it is possible
for the called subroutine to incorrectly access a reg-
ister that it treats as a callee save register. For ex-
ample, assume map entry 5 is connected to extended
register 30 prior to the subroutine call so that it can
be saved to memory. At the beginning of the called
subroutine, core register 5 is saved since it is being
treated as a callee-save register. Since the register is
still connected to register 30, the wrong register con-
tents are saved. Any subsequent write to register 5
will set the read map to correctly point to register 5.
Prior to exiting the subroutine, register 5 must be re-
stored from memory. Unfortunately, the contents of
register 30 would be restored to register 5, introducing
a possible program error.

This problem could be prevented by �rst perform-
ing a connect-use to register 5 and then saving its
content. However, programs compiled for the original
architecture cannot take advantage of this. It could
also be prevented by requiring the calling subroutine
to re-connect the core registers. In the worst case sce-
nario, this could introduce one instruction for every
core register. A more e�cient solution to this prob-
lem is to make the jsr instruction also reset the map
to point to the original core registers. The hardware
to perform the reset of the register map is required by
the architecture to ensure correct mapping of the core
registers after power-up initialization.

A similar problem can also occur when returning
from a subroutine. It is possible that a register is con-
nected to an extended register to compute a returned
value from the subroutine. Any connect-use instruc-
tions would be live across the subroutine return. Thus,
reading a caller-save core register may actually access
the extended set and introduce a program error. This
problem can be eliminated by also requiring the rts
instruction to reset the register map.

4.2 Context switches

A subtle issue of upward compatibility arises in
the case of context switching. Programs compiled to
use the RC extension require the connection informa-
tion to be maintained across any context switch point.
Therefore, core registers, extended registers and the
connection information should be saved and restored.
For programs compiled for the original architecture,
only core registers need to be saved and restored, al-
though saving and restoring extended registers and
connection informationwould still result in correct op-
eration. Therefore, there is an opportunity to avoid
saving the extended registers and the connection in-
formation for programs compiled for the original ar-
chitecture. This optimization would require a ag in
the process status word to mark the program as either
for the original architecture or for the extended archi-
tecture. The context switching routine can use this
bit to choose di�erent formats of the process context
representation in the process control blocks.

4.3 Traps and Interrupts

Traps and interrupts are slightly more complicated
than subroutine calls since they occur outside the con-
trol of the program. To permit access to registers, the
method discussed for handling context switches can
be used. However, traps and interrupts are typically
used to implement time critical device drivers and per-
form instruction emulation. If any register is used, it
must be saved and restored. However, to access the
correct physical register, the map entry must also be
saved, connected to the correct register and �nally re-
stored. The addition of the connect instructions could
cause a severe performance penalty for device drivers
that require few registers. A simple alternative to this
approach is to bypass the register map for traps and
interrupts. This can be accomplished by adding a reg-
ister map enable ag to the processor status word. A
trap or interrupt would disable this ag. Any subse-
quent register accesses would go directly to the core
registers. The return from exception or interrupt con-
dition will restore the original processor status word,
which will automatically re-enable the register map.

If the trap or interrupt require more than the core
registers, the register map can be re-enabled by writ-
ing to the processor status word. The register map

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 7
Instruction Latency Instruction Latency

INT ALU 1 FP ALU 3
INT multiply 3 FP conversion 3
INT divide 10 FP multiply 3
branch 1/1-slot FP divide 10
memory load 2 or 4 memory store 1

Table 1: Instruction latencies.

thus used must be saved, reset and restored prior to
the return.

5 Experimental Results

5.1 Compiler support

In order to conduct meaningful experimental eval-
uation of the RC method, the required register al-
location, code scheduling, and code generation sup-
port for RC have been implemented in the IMPACT-I
compiler. All benchmark programs are compiled with
full-scale classical and instruction-level parallelization
code optimizations [5]. The register allocator uses a
graph coloring algorithm that utilizes pro�le informa-
tion in its priority calculations. All compiler optimiza-
tions are veri�ed by executing the output code on a
DEC-3100 workstation.

For the original architecture, the compiler gener-
ates spill code needed to access variables spilled out to
memory. For the extended architecture, the compiler
manages the register �le through the register map-
ping table and generates connect-use and connect-def
instructions to access variables in the register �le. In
addition, the compiler generates save and restore code
for the registers at procedure call interfaces. The code
scheduler is designed to take advantage of the zero-
cycle latency of the connect instructions as illustrated
in Section 2.4. For all core register �le sizes, four in-
teger registers are reserved as spill registers and one
integer register is reserved for Stack Pointer.

5.2 Architecture assumptions

The instruction set used in all experiments is the
MIPS R2000 instruction set extended with additional
branch opcodes to allow general operand comparison
and to facilitate static branch prediction. In the ex-
periments, the size of the number of core integer reg-
isters is varied from 8 to 64, and the number of the
core oating-point registers is varied from 16 to 128
to study the e�ect of the register �le size. Double pre-
cision oating point variables use two oating point
registers.

In experiments with integer benchmarks, RC sup-
port is evaluated only for the integer register �le

1

2

3

4

5

6

0

7

8

[issue]2 4 8
cccp

2 4 8

cmp

2 4 8
compress

2 4 8

eqn

2 4 8
eqntott

2 4 8

espresso grep
lex

yacc
matrix300

nasa7
tomcatv

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

1

2

3

4

5

6

0

7

8

[issue]2 4 8
cccp

2 4 8

cmp

2 4 8
compress

2 4 8

eqn

2 4 8
eqntott

2 4 8

espresso grep
lex

yacc
matrix300

nasa7
tomcatv

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

4-cycle load latency

2-cycle load latency

2-memory channels
4-memory channels
8-memory channels

[speedup]

[speedup]

Figure 7: Speedup for processors with an unlimited
number of registers, varying issue rates and memory
channels.

while a �xed oating point register �le of 64 entries
is assumed. Conversely, for experiments with oat-
ing point benchmarks, RC support is evaluated only
for the oating point register �le while a �xed integer
register �le of 64 entries is assumed. Furthermore, in
experiments with RC support, the register �le is as-
sumed to contain a total of 256 registers with the size
of the core section speci�ed in the experiment. The
size of the extended section is therefore the di�erence
between the core size and 256. In experiments without
RC support, the register �le contains only the speci-
�ed number of core registers.

The underlying microarchitecture is assumed to
have deterministic instruction latencies (see Table 1)
and CRAY-1 style register interlocking [2]. Given an
issue rate, all combinations of instruction patterns are
allowed to be executed in parallel assuming homoge-
neous pipelined function units. The only exception is
that memory accesses are restricted to a subset of the
function units in the experiments. For 2-issue and 4-
issue models, there are two memory channels and in
the 8-issue model there are four memory channels.

5.3 Results

The performance of the RC mechanism is evalu-
ated using nine integer and three oating-point bench-
marks. The integer benchmarks are cccp, cmp, com-
press, eqn, eqntott, espresso, grep, lex and yacc, and
the oating-point benchmarks are matrix300, nasa7
and tomcatv. The execution time of each bench-
mark, assuming a 100% cache hit rate, is derived using
execution-driven simulation. The base con�guration
for the speedup calculations is a single-issue processor
with an unlimited number of registers using conven-
tional compiler scalar optimizations.

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 8

matrix300
16 32 64128 [core reg]

nasa7
16 32 64128

tomcatv
16 32 6412848 48 48

cccp
8 16 32 64

eqntott
8 16 32 64

espresso
8 16 32 64

8 16 32 64

[core reg]
compress

8 16 32 64
eqn

8 16 32 64

yacc

[core reg]

cmp
8 16 32 64

grep
8 16 32 64

lex
8 16 32 64

1

2

3

4

5

0

1

2

3

4

0

1

2

3

4

0

with Register Connect
without Register Connect
unlimited registers

24

24 24

24

24 2424

24 24

[speedup]

[speedup]

[speedup]

Figure 8: Speedup for a 4-issue processor with 2-cycle
load latency and varying number of core registers.

The speedup for processors with unlimited regis-
ters, varying issue rates and memory channels is shown
in Figure 7. The goal of the RC method is to approach
the unlimited register performance with the combina-
tion of a small number of core registers.

E�ect of the number of core registers

Figure 8 shows the bene�t of the RC method for pro-
cessors with varying numbers of core registers. The
white bars show the speedup of the model without
RC support, (referred to as the without-RC model).
The shaded bars show the speedup of the model with
RC support, (referred to as the with-RC model). All
results in this �gure assume a 4-issue processor and 2-
cycle load latency. The dotted lines show the speedup
of the model with the unlimited number of integer
registers.

For the integer benchmarks, 32 and 64 core registers
for both with-RC and without-RC models achieve al-
most the same performance level as the unlimited reg-
ister case. The performance degradation of both mod-
els starts in the 24-register case and becomes more se-
vere in the 16-register case. For oating-point bench-
marks, performance degradation starts around 32 reg-
isters and becomes more severe for 16 registers. All
benchmarks run with a small number of core registers
demonstrate a large performance advantage using the
with-RC model over the without-RC model.

Figure 9 presents the percentage increase of code
size after register allocation. The white bars show
the percentage of code size increase for the without-
RC model. The shaded/black bars show the per-
centage increase for the with-RC model. The black
part corresponds to the percentage increase caused by

[core reg]

[core reg]

0%

+50%

+100%

0%

+50%

+100%

0%

+50%

+100%

eqntott
8 16 32 64

cccp
8 16 32 64

cmp
8 16 32 64

grep
8 16 32 64

espresso
8 16 32 64

lex
8 16 32 64

16 32 64 1288 16 32 64

compress
8 16 32 64

eqn
8 16 32 64

16 32 64 128
yacc

16 32 64 128

with Register Connect without Register Connect
(black part is caused by save/restore overhead caused by
 subroutine calls)

[core reg]
nasa7matrix300 tomcatv

24

24 24

2424 24

4824

24 24

48 48

[code size increase]

[code size increase]

[code size increase]

Figure 9: Percentage of code size increase due to spill
code for a 4-issue processor with 2-cycle load latency
and varying number of core registers.

save/restore of the extended registers before and after
procedure calls.

As expected, with 32 and 64 core registers, the code
size increase of both models for integer benchmarks is
very small: approximately 10% or less. The code size
expansion for both models starts with the 16 register
case, which corresponds to the extra spill code or con-
nect instructions inserted by the compiler. Although
the code size increase of the with-RC model is signi�-
cantly more than the without-RC model, the with-RC
model achieves higher performance.

E�ect of issue rate and load latency

Figures 10 and 11 illustrate the bene�t of the RC
method for di�erent load latencies and instruction is-
sue rates. The white bars show the speedup of the
without-RC model with 16 core integer registers for
the integer benchmarks and 32 core oating-point reg-
isters for the oating-point benchmarks. The shaded
bars show the speedup of the with-RC model with the
same number of registers. The dotted lines correspond
to the speedup achievable using an unlimited number
of registers.

The performance improvement due to the RC
method is more signi�cant for higher issue rates, es-
pecially in the 8-issue case. The RC method reduces
the overhead caused by spill code. This overhead is
attributed to the spill load latency and the schedul-
ing restrictions imposed by dependences between spill
registers. For higher issue rate processors, the impact
of these two factors on the scheduled code and the
instruction level parallelism is more signi�cant. Fur-

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 9

7

8

1

2

3

4

5

6

0

[issue]

[issue]

1

2

3

4

5

0

with Register Connect
without Register Connect
unlimited registers

2 4 8
cccp

2 4 8
cmp

2 4 8
compress

2 4 8
eqn

2 4 8
eqntott

2 4 8
espresso

2 4 8
grep

2 4 8
lex

2 4 8 2 4 8 2 4 8 2 4 8
yacc matrix300 nasa7 tomcatv

[speedup]

[speedup]

Figure 10: Speedup for 2-cycle load latency, 16
core integer registers for integer benchmarks, 32 core
oating-point registers for oating-point benchmarks,
and varying issue rate.

thermore, in the 8-issue case, the number of empty in-
struction slots at each clock cycle increases because of
the limited instruction level parallelism in the bench-
marks. This allows the compiler to hide the adverse
e�ects of the code expansion due to the RC method.

The shorter load latency increases the e�ciency
of the spill code, so the performance improvement
achieved by the RC method is less for two cycle load
latency than for four cycle load latency. Nevertheless,
there is sizable bene�t for both latencies.

E�ects of di�erent RC implementations

Figure 12 compares the performance of four possi-
ble implementation scenarios for a 4-issue processor
with 2-cycle load latency. The most e�cient im-
plementation considered is zero-cycle latency connect
instructions implemented within an existing proces-
sor pipeline. The zero-cycle latency connect instruc-
tion and additional pipeline stage scenario considers
adding a pipeline stage for accessing the register map-
ping table, and implementing forwarding to instruc-
tions issued in the same cycle. The one-cycle latency
implementation of the connect instruction does not
require forwarding. Similarly, the additional pipeline
stage is evaluated with one-cycle latency connect in-
structions. The results show that there is very little
performance loss when the RC method cannot be im-
plemented within an existing pipeline with zero-cycle
latency. This makes the RC method a feasible im-
provement even for high speed implementations.

E�ect of a limited number of memory channels

The number of memory channels can greatly a�ect the
processor implementation cost. Figure 13 shows the

7

8

1

2

3

4

5

6

0

[issue]

[issue]

1

2

3

4

5

0

with Register Connect
without Register Connect
unlimited registers

2 4 8
cccp

2 4 8
cmp

2 4 8
compress

2 4 8
eqn

2 4 8
eqntott

2 4 8
espresso

2 4 8
grep

2 4 8
lex

2 4 8 2 4 8 2 4 8 2 4 8
yacc matrix300 nasa7 tomcatv

[speedup]

[speedup]

Figure 11: Speedup for 4-cycle load latency, 16
core integer registers for integer benchmarks, 32 core
oating-point registers for oating-point benchmarks,
and varying issue rate.

1

2

3

4

0

5

0-cycle connect instructions

1-cycle connect instructions
1-cycle connect instructions & additional pipeline stage

cc
cp

cm
p

co
m

pr
es

s

eq
n

eq
nt

ot
t

es
pr

es
so

gr
ep le

x

ya
cc

m
at

rix
30

0

na
sa

7

to
m

ca
tv

0-cycle connect instructions & additional pipeline stage

[speedup]

Figure 12: Speedup for an 4-issue processor, 2-
cycle load latency, 16 core integer registers for inte-
ger benchmarks, 32 core oating-point registers for
oating-point benchmarks, and varying architecture
support and pipeline implementation.

e�ect of increasing the the number of memory channels
from two to four for a 4-issue processor with 2 and 4-
cycle load latency. The white bars show the speedup
of the without-RC model and the shaded bars show
the speedup of the with-RC model for two memory
channels. The upper solid bars show the additional
gain in speedup by increasing the memory channels to
four for the without-RC model. The dotted lines show
the speedup with an unlimited number of registers and
two memory channels.

Figure 13 shows that for a 4-issue processor, the
bene�t of increasing the number of memory channels
from two to four is much less than the bene�t of im-
plementing the RC method for two memory channels.
This demonstrates that the RC method improves per-
formance not only by reducing the frequency of mem-
ory accesses but also by providing a more e�cient
mechanism.

The 20th International Symposium on Computer Architecture, San Diego, CA, May 17-19, 1993 10

1

2

3

4

5

0

with Register Connect (2-memory channels)
without Register Connect (2-memory channels)

unlimited registers

cc
cp

cm
p

co
m

pr
es

s

eq
n

eq
nt

ot
t

es
pr

es
so

gr
ep le

x

ya
cc

m
at

rix
30

0

na
sa

7

to
m

ca
tv

1

2

3

4

5

6

0

cc
cp

cm
p

co
m

pr
es

s

eq
n

eq
nt

ot
t

es
pr

es
so

gr
ep le

x

ya
cc

m
at

rix
30

0

na
sa

7

to
m

ca
tv

2-cycle load latency

4-cycle load latency

without Register Connect (4-memory channels)

[speedup]

[speedup]

Figure 13: Speedup, varying the number of memory
channels and register rename channels, for 4-issue pro-
cessor with 2 and 4-cycle load latency.

6 Conclusion

The e�ectiveness of compilers for superscalar and
superpipelined processors can be limited by the size
of the register �les in existing architectures. In this
paper, we have introduced the Register Connection
(RC) method to add a large number of registers into
an architecture. We have shown that the RC method
does not require any change to the format of existing
instructions. It allows the compiler to take advantage
of a large register �le which can be conveniently ac-
cessed through a small register mapping table. We
have also addressed the issues regarding procedure
calls and context switches. Overall, the RC method
can be added to an existing architecture in an upward
compatible manner.

An implementation of the RC method has been de-
scribed. By overlapping the execution of the connect
instructions with the instruction dispatch logic in su-
perscalar processors, one can achieve zero-cycle e�ec-
tive execution latency for the connect instructions. As
a result, the connect instructions can a�ect the imme-
diate subsequent instructions issued in the same clock
cycle. This makes it extremely inexpensive for instruc-
tions to access the extended register �le.

Experimental evaluation shows that the RC
method improves the performance of superscalar pro-
cessors with 16 or fewer core registers. The perfor-
mance improvement increases with the issue rate. A
four-issue processor with 16 core integer registers and
240 extended registers, and a 2 cycle load latency
can achieve 90% of the performance of an equivalent

processor with an unlimited number of core registers.
This performance result shows that the RC method is
a very promising technique to extend existing instruc-
tion set architectures for high performance superscalar
implementation. As new code parallelization methods
become available, we expect that the RC method will
become bene�cial for architectures with 32 or more
registers.

Acknowledgements

The authors would to thank John Gyllenhaal and
Grant Haab, along with all members of the IMPACT
research group for their comments and suggestions.
Special thanks to the anonymous referees whose com-
ments and suggestions helped to improve the quality
of this paper signi�cantly. This research has been sup-
ported by JSEP under Contract N00014-90-J-1270,
Dr. Lee Hoevel at NCR, the AMD 29K Advanced
Processor Development Division, Matsushita Electric
Industrial Co. Ltd., Hewlett-Packard, and NASA un-
der Contract NASA NAG 1-613 in cooperation with
ICLASS. Scott Mahlke is also supported by fellowship
provided by Intel Foundation.

References

[1] Digital Equipment Corporation, Marlboro, Mas-
sachusetts, Microcomputers and Memories, 1982.

[2] R. M. Russell, \The Cray-1 computer system," Com-

munications of the ACM, vol. 21, pp. 63{72, January
1978.

[3] G. F. Grohoski, \Machine organization of the IBM
RISC System/6000 processor," IBM Journal of Re-
search and Development, vol. 34, pp. 37{58, January
1990.

[4] G. J. Chaitin, \Register allocation and spilling via
graph coloring," in Proceedings of the ACM SIGPLAN

82 Symposium on Compiler Construction, pp. 98{105,
June 1982.

[5] W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter,
R. Bringmann, R. Ouellete, R. Hank, T. Kiyohara,
G. Haab, J. Holm, and D. Lavery, \The superblock: An
e�ective technique for VLIW and superscalar compila-
tion," The Journal of Supercomputing, January 1993.

