
Proceedings of the 20th Annual International Conference on Parallel Processing, pp. 142-145. 142

THE EFFECT OF COMPILER OPTIMIZATIONS ON AVAILABLE PARALLELISM IN

SCALAR PROGRAMS

Scott A. Mahlke Nancy J. Warter William Y. Chen Pohua P. Chang Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana, IL 61801

Abstract

In this paper we analyze the e�ect of compiler optimizations
on �ne grain parallelism in scalar programs. We character-

ize three levels of optimization: classical, superscalar, and

multiprocessor. We show that classical optimizations not
only improve a program's e�ciency but also its parallelism.

Superscalar optimizations further improve the parallelism

for moderately parallel machines. For highly parallel ma-
chines, however, they actually constrain available paral-

lelism. The multiprocessor optimizations we consider are

memory renaming and data migration.

Introduction

Compiler optimizations are designed to reduce a program's

execution time. Traditionally, these optimizations are cus-
tomized for a given machine model. Classical optimizations

are designed to improve the program's e�ciency for a ma-

chine model which has one thread of execution and can
issue one instruction per cycle. Superscalar optimizations

are designed for a machine model with a single thread of

execution and a limited instruction issue rate. Multipro-
cessors are built using either uniprocessors or superscalar

processors and thus there is more than one machine model

to optimize for. Therefore, it is important to understand
the interactions of these optimizations and their e�ect on

available parallelism and speedup.

There has been signi�cant research done to analyze the

available parallelism in numeric programs [1] [3]. Previous

researchers have shown that for numeric programs the most

parallelism can be found at either the instruction-level or

the loop-level [1]. However for scalar programs, Larus sug-
gests that there is not much loop-level parallelism available

because the loops tend to be small and have few iterations

[5]. Therefore, it may be better to exploit �ne grain paral-

lelism for scalar applications.

In this paper we analyze the e�ect of classical and super-
scalar optimizations on �ne grain parallelism and speedup

for scalar programs. Using code generated by the IMPACT-

I C compiler, we study the e�ectiveness of these optimiza-
tions for a range of machines that can exploit increasing

levels of �ne grain parallelism. Furthermore, in order to

study the e�ect of classical and superscalar optimizations

on highly parallel code we simulate two powerful multi-

processor optimizations that have been shown to uncover
large amounts of parallelism within an application program:

memory renaming and data migration to high speed mem-

ory [2] [4].

Compiler Optimizations

Compiler optimizations remove arti�cial constraints im-
posed by the programmer and the programming language,

in order to increase the program's e�ciency and expose its

inherent parallelism. We have classi�ed these optimizations
into three levels: classical, superscalar, and multiprocessor.

Classical Optimizations

Classical optimizations are made up of two components,

local and global optimizations. Local optimizations are
applied to instructions within a basic block, and use no

knowledge of the program as a whole (e.g., data
ow

analysis) to make optimization decisions. The local op-
timizations considered in this paper are constant propa-

gation, copy propagation, common subexpression elimina-

tion, redundant load/store elimination, constant folding,
strength reduction, operation folding, constant combining,

and code reordering. On the other hand, global opti-

mizations are applied among operations within the same
function. The global optimizations considered in this pa-

per are constant propagation, copy propagation, common

subexpression elimination, redundant load/store elimina-
tion, dead code removal, loop invariant code removal, loop

induction variable strength reduction, loop induction vari-

able elimination, and loop global variable migration. The
goal of classical optimizations is to reduce the execution

time of a program by eliminating redundant instructions

and replacing a set of instructions with a more e�cient set.
The e�ect of these optimizations on the available paral-

lelism is not clear.

Reducing the number of instructions will typically reduce
the available parallelism within the program. Consider the

following code before and after common subexpression elim-

ination is applied:

Proceedings of the 20th Annual International Conference on Parallel Processing, pp. 142-145. 143

Before After

t1 = 2 � i t1 = 2 � i
x = a[t1] x = a[t1]

t2 = 2 � i b[t1] = x

b[t2] = x

Before optimization, since the �rst and third instructions

can execute concurrently, the parallelism is 4/3 (for these
examples we assume unit time delay unless otherwise spec-

i�ed). However, after optimization the parallelism is 3/3.

Therefore, code removal reduces the available parallelism
but the execution time remains the same in parallel pro-

cessing systems and is reduced in a uniprocessor system.

On the other hand, loop induction variable strength re-

duction will typically increase the available parallelism by
reducing the length of the critical path. For example, con-

sider the following code before and after induction strength

reduction:

Before After

t1 = 3 � j

L1 : t1 = 3 � j L1 : t2 = t2 + a[t1]

t2 = t2 + a[t1] j = j � 1
j = j � 1 t1 = t1 � 3

if j > c goto L1 if j > c goto L1

Assuming that the multiply instruction takes six time units

and the other instructions require one time unit, the par-

allelism within the loop before optimization is 4/8. After
optimization, the parallelism within the loop becomes 4/2.

In addition, there are some optimizations such as loop in-

variant code removal which can either decrease or increase
the parallelism depending on whether or not the optimiza-

tion reduces the critical path.

Superscalar Optimizations

Superscalar optimizations combine and enlarge basic blocks

to expose more parallelism. The following superscalar op-
timizations are considered in this paper: superblock forma-

tion, loop unrolling, loop peeling, branch target expansion,

induction variable expansion, memory disambiguation, and
register renaming. A superblock is the basic scope for opti-

mizations. Superblock formation consists of �rst combining

basic blocks which tend to execute in sequence into a trace,
and then performing code duplication to eliminate all side

entrances from the trace.

Loop unrolling replicates the body of a superblock loop
several times. Loop peeling fully unrolls loops with small

numbers of iterations. Branch target expansion copies the

target superblock of a frequently taken branch into its fall-
through path. Induction variable expansion removes the

dependencies between induction variables in unrolled copies

of a loop body. Memory disambiguation and register re-

naming are used to remove arti�cial dependencies between

instructions.

Superblock formation and superblock optimizations add

additional bookkeeping instructions to the less frequently

executed portions of a program. For superscalar architec-

tures with a limited scheduling scope, these additional in-
structions do not have much impact on the resultant paral-

lelism. However, for larger parallel machines, these added

instructions may increase the critical path which e�ectively
decreases the available parallelism.

To understand why the critical path may increase for

multiprocessors consider the doacross loop shown in Fig-
ure 1a. The superscalar execution and multiprocessor exe-

cution traces before and after the superscalar transforma-

tions are shown in Figures 1b and 1c. In a superscalar ma-
chine, the restricted issue will limit the amount of overlap

between a parallel section and the subsequent sequential

section. Since this overlap is anticipated to be small, we
do not include it in this example (e.g., Pi does not over-

lap with Si+1 in the superscalar execution). In a highly

parallel machine, a parallel section Pi cannot overlap the
proceeding sequential section Si and the sequential sections

cannot overlap. However, two parallel sections Pi and Pj

may overlap.
After the superscalar optimization, the size of the sequen-

tial code, Si, is increased to S0

i and the size of the parallel

code, Pi, is reduced to P 0

i . The critical path of the super-
scalar code is

critical pathsuperscalar =

NX

i=1

(Si + Pi) (1)

If the superscalar optimizations reduce the sum of the par-

allel sections more than they increase the sum of the se-

quential sections, the critical path will be reduced. For-
mally stated, the optimizations are e�ective for superscalar

machines if

NX

i=1

(S0

i � Si) <

NX

i=1

(Pi � P
0

i) (2)

The critical path of the multiprocessor code is

critical pathmultiprocessor =

NX

i=1

Si + PN (3)

The critical path will be longer if the increase in execution

time of the sequential sections is greater than the decrease
in the parallel section, PN . Formally stated, the superscalar

optimizations are e�ective for multiprocessors if

NX

i=1

(S0

i � Si) < PN � P
0

N (4)

Comparing equations 2 and 4, it is clear that superscalar

optimizations are much more likely to increase the critical
path and thus reduce the parallelism on a highly parallel

machine than on a superscalar machine.

Proceedings of the 20th Annual International Conference on Parallel Processing, pp. 142-145. 144

a: Sample code

c: Multiprocessor execution

.
.
.

processor

 t
 i
m
 e

S1

P
1

P
N

S
N

xform

.
.
.

S’
1

P’
1

S’
2

2
P’

P’
N

S’
N

S
2

P
2

b: Superscalar execution

 t
 i
m
 e

.

.

.

S
2

P
2

S1

P
1

P
N

S
N

.

.

.

S’
1

P’
1

S’
2

2
P’

P’
N

S’
N

xform

doacross
 wait(i)

advance(i+1)

end doacross

S

P S = serial code
P = parallel code

Figure 1: Superscalar versus multiprocessor execution.

Multiprocessor Optimizations

Memory renaming and data migration to high speed mem-
ory are powerful compiler optimizations that uncover the

inherent parallelism within an application program. Mem-

ory renaming refers to renaming all memory variables such
that they only hold one value. Since a memory variable

is never written more than once, all memory output and

anti-dependencies are removed. Data migration refers to
loading frequently used memory variables into high speed

memory such as registers.

It is obvious that memory renaming will improve the par-
allelism because it removes data dependencies. However,

the e�ect of data migration on parallelism depends on the

level of data migration. For example, consider the high level

language (HLL) code statement in Figure 2a. The assembly

language of the code statement is shown in Figure 2b for

migration to high-speed memory. For this code segment,
the parallelism and execution time is shown for load delays

of 1, 2, and 4. It can be seen that reducing the load delay

both increases the parallelism and decreases the execution
time. Now, consider the assembly code in Figure 2c when

the variables can be migrated to registers. The parallelism

decreases with respect to load delay 1 but the execution
time still improves. Therefore, parallelism and e�ciency

are not always mutually attainable goals.

Method

We have developed IMPACT-I, a retargetable C compiler

with classical and superscalar optimization capability. To

r1 = mem(B) r2 = mem(C)

r3 = r1 + r2

mem(A) = r3

A = B + Ca: HLL code

load delay parallelism cycles
 4 0.66 6
 2 1.00 4
 1 1.33 3

b: assembly code - migration to
 high-speed memory

r3 = r1 + r2

parallelism cycles
 1.00 1

c: assembly code -
 migration to regs

Figure 2: E�ect of data migration on parallelism and e�-

ciency.

calibrate the quality of the classical optimizations, we com-
pare the execution times of the code generated by our com-

piler and the MIPS C compiler on a DEC 3100 worksta-

tion. Our benchmark set consists of �ve programs, eqntott ,
espresso, and xlisp, are from the SPEC benchmark set,

and the others, lex and yacc, are commonly used scalar

programs. Table 1 shows the speedup we obtain over the
MIPS C compiler using its highest degree of optimization.

For this study it is important to start with highly optimized

program MIPS-O4 IMPACT

eqntott 1.0 1.04

espresso 1.0 1.02

lex 1.0 1.01

xlisp 1.0 1.13

yacc 1.0 1.00

Table 1: Speedup comparison.

code because naive code may contain redundant operations

which show deceptive amounts of �ne grain parallelism.

We simulate memory renaming by only preserving the
memory data
ow dependencies. Data migration is simu-

lated by reducing the load operation latency. For load delay

zero, the memory loads and stores are not counted in the
instruction count. However, we were not able to remove

the address calculations.

The machine is assumed to have in�nite computational
resources, perfect branch prediction, in�nite branch looka-

head, an in�nite register �le, and out-of-order execution.

The basic processing element for all machines has deter-
ministic operation latencies. All integer operations have a

1 cycle latency with the exception of multiply (6 cycles)

and divide (12 cycles). The memory load latency is 2 cy-

cles. Finally, all
oating point operations have a 6 cycle

latency with the exception of divide (12 cycles).

The level of parallelism the machine can exploit is varied

by changing the window size. The smaller window sizes are

used to model the behavior of superscalar machines, while

the larger window sizes are used to model highly parallel

Proceedings of the 20th Annual International Conference on Parallel Processing, pp. 142-145. 145

0

5

10

15

20

25

30

1 10 100 1000 10000

P
a
r
a
l
l
e
l
i
s
m

(instr/

cycle)

Window Size (instr)

Superscalar opt. 3

3 3
3
3
3

3

3

3

3

3Global opt. +

+ + +
+
+

+

+

+

+

+

Local opt. 2

2 2
2
2
2
2

2

2

2

2

Figure 3: E�ect of classical and superscalar optimizations.

multiprocessors. However, it is di�cult to specify exact
machine boundaries (e.g., a superscalar machine may have

a low issue rate, but the compile-time scheduling window

is actually much larger).

Experiments

For the results presented in this section, each data point

represents the harmonic mean of the parallelism or speedup
of the �ve benchmarks in Table 1. The base machine for the

speedup calculations has a window size of one with global

optimization. For all of the results, each optimization level
is applied to code optimized by the previous level (e.g.,

global includes local and superscalar includes global).

The e�ects of classical and superscalar optimizations on
parallelism and speedup are shown in Figures 3 and 4.

Figure 3 shows the importance of optimizing for a target

machine. For small window sizes the optimizations have
little e�ect on the available parallelism. For the interme-

diate range of window sizes the global optimizations reveal

more parallelism than local, and superscalar optimizations
have the highest available parallelism. However, for very

large window sizes, the overhead of the superscalar opti-

mizations actually decreases the available parallelism and
speedup. This supports the analysis of superscalar opti-

mizations for highly parallel machines discussed earlier in

this paper.

Figures 5 and 6 show the interaction of classical, su-

perscalar and multiprocessor optimizations with respect to

parallelism and speedup for an in�nite window. Note that

the data migration results include memory renaming. For

highly parallelized code, we see that global optimizations

continue to perform signi�cantly better than local and that

0

5

10

15

20

25

30

1 10 100 1000 10000

S
p
e
e
d
u
p

Window Size (instr)

Superscalar opt. 3

3 3
3
3
3

3

3

3

3

3

Global opt. +

+ + +
+
+

+

+

+

+

+

Local opt. 2

2 2
2
2
2
2

2

2

2

2

Figure 4: E�ect of classical and superscalar optimizations.

100

200

300
global

superscalar

Optimization Level

local

(instr/cycle)
Parallelism

base
 opt.

w/ mem
 rename

 w/ data
migration
(LD = 1)

 w/ data
migration
(LD = 0)

Figure 5: The interaction of classical, superscalar and mul-

tiprocessor optimizations for an 1 window.

Proceedings of the 20th Annual International Conference on Parallel Processing, pp. 142-145. 146

100

200

300

400

local

global

superscalar

Optimization Level

Speedup

base
 opt

w/ mem
 rename

 w/ data
migration
(LD = 1)

 w/ data
migration
(LD = 0)

Figure 6: The interaction of classical, superscalar and mul-
tiprocessor optimizations for an 1 window.

superscalar optimizations continue to have a negative ef-

fect on parallelism and speedup. Figure 5 shows that there

is signi�cant �ne grain parallelism available in scalar pro-
grams, especially after memory renaming and data migra-

tion. Memory renaming is the most e�ective optimization

for revealing parallelism. Data migration also improves the
parallelism but it is most e�ective at improving the e�-

ciency of programs (Figure 6). Note that as discussed ear-

lier, data migration reduces the parallelism when the load
delay is decreased from 1 to 0.

Conclusions

In this paper we have shown that optimizations designed for

a speci�c processor are not necessarily valid when this pro-

cessor is embedded within a multiprocessor machine. For
instance, for multiprocessors which can exploit a moderate

amount of �ne grain parallelism, superscalar optimizations

expose signi�cant parallelism. However, for multiprocessors
which can exploit large amounts of �ne grain parallelism,

superscalar optimizations may actually degrade the paral-

lelism. Furthermore, we have shown that for highly parallel

machines, global optimizations which are designed to im-

prove a program's e�ciency for uniprocessors also reveal

more parallelism than might be expected.

Acknowledgements

The authors would like to thank Sadun Anik, Paul Chen,
and all members of the IMPACT research group for their

support, comments, and suggestions. This research has

been supported by NSF under Grant MIP-8809478, NCR,

AMD, NASA under contract NASA NAG 1-613 in cooper-

ation with ICLASS, and ONR under contract N00014-88-

K-0656.

References

[1] D. -K. Chen, H. -M. Su, and P. -C. Yew, \The Impact
of Synchronization and Granularity on Parallel Sys-

tems", Proceedings of the 17th Annual International

Symposium on Computer Architecture, June 1990, pp.
239-248.

[2] R. Cytron and J. Ferrante, \What's in a Name? The

Value of Renaming for Parallelism Detection and Stor-
age Allocation", Proceedings of the 1987 International

Conference on Parallel Processing, August 1987, pp.

19-27.

[3] D. J. Kuck, Y. Muraoka, and S. -C. Chen, \On the

Number of Operations Simultaneously Executable in

Fortran-Like Programs and Their Resulting Speedup",
IEEE Transactions on Computers, vol. C-21, no. 12,

December 1972, pp. 1293-1310.

[4] M. Kumar, \E�ect of Storage Allocation/Reclamation
Methods on Parallelism and Storage Requirements",

Proceedings of the 14th Annual International Sympo-

sium on Computer Architecture, June 1987, pp. 197-
205.

[5] J. R. Larus, \Parallelism in Numeric and Symbolic

Programs", Proceedings of the 1990 Irvine Workshop,
July 1990.

