
Using Pro�le Information to Assist Classic Code Optimizations

Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu

Center for Reliable and High-performance Computing

University of Illinois, Urbana-Champaign

hwu@crhc.uiuc.edu

SUMMARY

This paper describes the design and implementation of an optimizing compiler that automati-

cally generates pro�le information to assist classic code optimizations. This compiler contains two

new components, an execution pro�ler and a pro�le-based code optimizer, which are not commonly

found in traditional optimizing compilers. The execution pro�ler inserts probes into the input pro-

gram, executes the input program for several inputs, accumulates pro�le information, and supplies

this information to the optimizer. The pro�le-based code optimizer uses the pro�le information

to expose new optimization opportunities that are not visible to traditional global optimization

methods. Experimental results show that the pro�le-based code optimizer signi�cantly improves

the performance of production C programs that have already been optimized by a high-quality

global code optimizer.

Key Words: C, code optimization, compiler, pro�le-based code optimization, pro�ler

INTRODUCTION

The major objective of code optimizations is to reduce the execution time. Some classic code

optimizations, such as dead code elimination, common subexpression elimination, and copy propa-

gation, reduce the execution time by removing redundant computation. Other code optimizations,

such as loop invariant code removal and loop induction variable elimination, reduce the execution

time by moving instructions from frequently executed program regions to infrequently executed

program regions. This paper describes an optimizing compiler that accurately identi�es frequently

executed program paths and optimizes them.

1

To appear: Software - Practice & Experience 2

Static analysis, such as loop detection [1], can estimate execution counts, but the estimates are

imprecise: outcome of conditional statements, loop iteration counts, and recursion depth are rarely

predictable using static techniques. For example, a loop nested within a conditional statement does

not contribute to the execution time if the condition for its evaluation is never true. Optimizing

such a loop may degrade the overall program performance if it increases the execution time of other

parts of the program.

Classic code optimizations use other static analysis methods, such as live-variable analysis,

reaching de�nitions, and de�nition-use chain, to ensure the correctness of code transformations[1].1

These static analysis methods do not distinguish between frequently and infrequently executed

program paths. However, there are often instances where a value is destroyed on an infrequently

executed path, which exists to handle rare events. As a result, one cannot apply optimizations to

the frequently executed paths unless the infrequently executed paths are systematically excluded

from the analysis. This requires an accurate estimate of the program run-time behavior.

Pro�ling is the process of selecting a set of inputs for a program, executing the program with

these inputs, and recording the run-time behavior of the program. By carefully selecting inputs,

one can derive accurate estimate of program run-time behavior with pro�ling. The motivation to

integrate a pro�ler into a C compiler is to guide the code optimizations with pro�le information. We

refer to this scheme as pro�le-based code optimization. In this paper, we present a new method for

using pro�le information to assist classic code optimizations. The idea is to transform the control

ow graph according to the pro�le information so that the optimizations are not hindered by rare

conditions. Because pro�le-based code optimizations demand less work from the user than hand-

tuning of a program does, pro�le-based code optimizations can be applied to very large application

1In this paper, we assume that the reader is familiar with the static analysis methods.

To appear: Software - Practice & Experience 3

programs. With pro�le-based code optimizations, much of the tedious work can be eliminated from

the hand-tuning process. The programmers can concentrate on more intellectual work, such as

algorithm tuning.

The contribution of this paper is a description of our experience with the generation and use of

pro�le information in an optimizing C compiler. The prototype pro�ler that we have constructed

is robust and tested with large C programs. We have modi�ed many classic code optimizations to

use pro�le information. Experimental data show that these code optimizations can substantially

speedup realistic non-numeric C application programs. We also provide insight into why these code

optimizations are e�ective.2

The intended audience of this paper is optimizing compiler designers and production software

developers. Compiler designers can reproduce the techniques that are described in this paper. Pro-

duction software developers can evaluate the cost-e�ectiveness of pro�le-based code optimizations

for improving product performance.

RELATED STUDIES

Using pro�le information to hand-tune algorithms and programs has become a common practice

for serious program developers. Several UNIX 3 pro�lers are available, such as prof=gprof [2] [3]

and tcov[4]. The prof output shows the execution time and the invocation count of each function.

The gprof output not only shows the execution time and the invocation count of each function,

but also shows the e�ect of called functions in the pro�le of each caller. The tcov output is an

annotated listing of the source program. The execution count of each straight-line segment of C

2It should be noted that pro�le-based code optimizations are not alternatives to conventional optimizations, but

are meant to be applied in addition to conventional optimizations.
3UNIX is a Trademark of AT&T.

To appear: Software - Practice & Experience 4

statements is reported. These pro�ling tools allow programmers to identify the most important

functions and the most frequently executed regions in the functions.

Recent studies of pro�le-based code optimizations have provided solutions to speci�c architec-

tural problems. The accuracy of branch prediction is important to the performance of pipelined

processors that use the squashing branch scheme. It has been shown that pro�le-based branch

prediction at compile time performs as well as the best hardware schemes[5] [6]. Trace scheduling

is a popular global microcode compaction technique[7]. For trace scheduling to be e�ective, the

compiler must be able to identify frequently executed sequences of basic blocks. It has been shown

that pro�ling is an e�ective method to identify frequently executed sequences of basic blocks in

a ow graph[8] [9]. Instruction placement is a code optimization that arranges the basic blocks

of a ow graph in a particular linear order to maximize the sequential locality and to reduce the

number of executed branch instructions. It has been shown that pro�ling is an e�ective method

to guide instruction placement[10] [11]. A C compiler can implement a multiway branch, i.e., a

switch statement in C, as a sequence of branch instructions or as a hash table lookup jump. If

most occurrences are satis�ed by few case conditions, then it is better to implement a sequence

of branch instructions, starting from the most likely case to the least likely case. Otherwise, it is

better to implement a hash table lookup jump[12].

Pro�le information can help a register allocator to identify the frequently accessed variables[13]

[14]. Function inline expansion eliminates the overhead of function calls and enlarges the scope of

global code optimizations. Using pro�le information, the compiler can identify the most frequently

invoked calls and determine the best expansion sequence[15]. A counter-based execution pro�ler

that measures the average execution times and their variance can be optimized to achieve a run-

time overhead less than 5% [16]. The estimated execution times can be used to guide program

To appear: Software - Practice & Experience 5

partitioning and scheduling for multiprocessors [17].

DESIGN OVERVIEW

Box C.

Box B.

Box A.

Input data

Host Assemblers

Pro�ler

AMD29ki860SPARCMIPS

Code

Intermediate

Optimizer

Code

Generator

Code

Frontend

Compiler

C programs

Figure 1: A block diagram of our prototype C compiler.

Figure 1 shows the major components of our prototype C compiler. Box A contains the com-

piler front-end and the code generator. Box B is the global code optimizer that operates on the

intermediate form. Table 1 lists the local and global code optimizations that we have implemented

in our prototype compiler. In order to have pro�le-based code optimizations, we have added a new

To appear: Software - Practice & Experience 6

Box C to the prototype compiler. The pro�le information is then integrated into the intermediate

code. Some code optimizations in Box B are modi�ed to use the pro�le information. These code

optimizations form a separate pass that is performed after the classic global code optimizations.

Our prototype compiler generates code for several existing processor architectures: MIPS R2000,

SPARC, Intel i860, and AMD29k.

local global

constant propagation constant propagation

copy propagation copy propagation

common subexpression elimination common subexpression elimination

redundant load elimination redundant load elimination

redundant store elimination redundant store elimination

constant folding loop unrolling

strength reduction loop invariant code removal

constant combining loop induction strength reduction

operation folding loop induction elimination

dead code removal dead code removal

code reordering global variable migration

Table 1: Classic code optimizations.

Program representation Our intermediate code has the following properties: (1) The operation

codes are very close to those of the host machines, e.g., MIPS R2000 and SPARC. (2) It is a

load/store architecture. Arithmetic instructions are register-to-register operations. Data transfers

between registers and memory are speci�ed by explicit memory load/store instructions. (3) The

intermediate code provides an in�nite number of temporary registers.

In optimizing compilers, a function is typically represented by a ow graph[1], where each node

is a basic block and each arc is a potential control ow path between two basic blocks. Because

To appear: Software - Practice & Experience 7

classic code optimizations have been developed based on the ow graph data structure4, we extend

the ow graph data structure to contain pro�le information. We de�ne a weighted ow graph as

a quadruplet fV;E; count; arc countg, where each node in V is a basic block, each arc in E is

a potential control ow path between two basic blocks, count(v) is a function that returns the

execution count of a basic block v, and arc count(e) is a function that returns the taken count of

a control ow path e.

Each basic block contains a straight-line segment of instructions. The last instruction of a

basic block may be one of the following types: (1) an unconditional jump instruction, (2) a 2-way

conditional branch instruction, (3) a multi-way branch instruction, or (4) an arithmetic instruction.

For simplicity, we assume that a jump-subroutine instruction is an arithmetic instruction because

it does not change the control ow within the function where the jump-subroutine instruction is

de�ned.5 Except the last instruction, all other instructions in a basic block must be arithmetic

instructions that do not change the ow of control to another basic block.

Pro�ler implementation We are interested in collecting the following information with the

pro�ler.

1. The number of times a program has been pro�led.

2. The invocation count of each function.

3. The execution count of each basic block.

4. For each 2-way conditional branch instruction, the number of times it has been taken.

4Algorithms for �nding dominators, detecting loops, computing live-variable information, and other dataow

analysis have been developed on the ow graph data structure[1].
5An exception is when a longjmp() is invoked by the callee of a jump-subroutine instruction and the control does

not return to the jump-subroutine instruction. Another exception is when the callee of a jump-subroutine instruction

is exit(). However, these exceptions do not a�ect the correctness of code optimizations based on ow graphs.

To appear: Software - Practice & Experience 8

5. For each multi-way branch instruction, the number of times each case has been taken.

With this information, we can annotate a ow graph to form a weighted ow graph.

Automatic pro�ling is supported by four tools: a probe insertion program, an execution monitor,

a program to combine several pro�le �les into a summarized pro�le �le, and a program that maps

the summarized pro�le data into a ow graph to generate a weighted ow graph data structure.

All that a user has to do to perform pro�ling is to supply input �les. The compiler automatically

performs the entire pro�ling procedure in �ve steps:

(a) The probe insertion program assigns a unique id to each function and inserts a probe at the

entry point of each function. Whenever the probe is activated, it produces a function(id)

token. In a function(id) token, id is the unique id of the function. The probe insertion

program also assigns a unique id to each basic block within a function. The probe insertion

program inserts a probe in each basic block to produce a bb(fid; bid; cc) token every time that

basic block is executed. In a bb(fid; bid; cc) token, fid identi�es a function, bid identi�es a

basic block in that function, and cc is the branch condition. The output of the probe insertion

program is an annotated intermediate code.

(b) The annotated intermediate code is compiled to generate an executable program which pro-

duces a trace of tokens every time the program is executed.

(c) The execution monitor program consumes a trace of tokens and produces a pro�le �le. We

have implemented the execution monitor program in two ways. It can be a separate program

which listens through a UNIX socket for incoming tokens. Alternatively, it can be a function

which is linked with the annotated user program. The second approach is at least two orders

of magnitude faster than the �rst approach, but may fail when the original user program

To appear: Software - Practice & Experience 9

contains a very large data section that prevents the monitor program from allocating the

necessary memory space. Fortunately, we have not yet encountered this problem.

(d) Step (c) is repeated once for each additional input. All pro�le �les are combined into a pro�le

�le by summing the counts and keeping a counter that indicates the number of pro�le �les

combined. From the above information, the average execution counts can be derived.

(e) Finally, the average pro�le data is mapped into the original intermediate code using the assigned

function and basic block identi�ers.

CODE OPTIMIZATION ALGORITHMS

Optimizing frequently executed paths All pro�le-based code optimizations presented in this

section explore a single concept: optimizing the most frequently executed paths. We illustrate

this concept using an example. Figure 2 shows a weighted ow graph which represents a loop

program. The count of basic blocks fA;B;C;D;E;Fg are f100; 90; 10; 0; 90; 100g, respectively.

The arc count of fA ! B;A ! C;B ! D;B ! E;C ! F;D ! F;E ! F; F ! Ag are

f90; 10; 0; 90; 10; 0; 90; 99g, respectively. Clearly, the most frequently executed path in this example

is the basic block sequence < A;B;E; F >. Traditionally, the formulation of non-loop based

classic code optimizations are conservative and do not perform transformations that may increase

the execution time of any basic block. The formulation of loop based classic code optimizations

consider the entire loop body as a whole and do not consider the case where some basic blocks

in the loop body are rarely executed because of a very biased if statement. In the rest of this

section, we describe several pro�le-based code optimizations that make more aggressive decisions

and explore more optimization opportunities.

To appear: Software - Practice & Experience 10

99

1

100

900

0 90

90
10

1

1090

100

F

ED

CB

A

Figure 2: A weighted ow graph.

To appear: Software - Practice & Experience 11

We propose the use of a simple data structure, called a super-block, to represent a frequently

executed path. A super-block is a linear sequence of basic blocks that can be reached only from the

�rst block in the sequence. The program control may leave the super-block from any basic block.

When execution reaches a super-block, it is very likely that all basic blocks in that super-block are

executed.

The basic blocks in a super-block do not have to be consecutive in the code. However, our

implementation restructures the code so that as far as the optimizer is concerned, all blocks in a

super-block are always consecutive.

Forming super-blocks The formation of super-blocks is a two step procedure: trace selection

and tail duplication. Trace selection identi�es basic blocks that tend to execute in sequence and

groups them into a trace. The de�nition of a trace is the same as the de�nition of a super-

block, except that the program control is not restricted to enter at the �rst basic block. Trace

selection was �rst used in trace scheduling[7] [8]. An experimental study of several trace selection

algorithms was reported in [9]. The outline of a trace selection algorithm is shown in Figure 3.

The best predecessor of(node) function returns the most probable source basic block of node, if

the source basic block has not yet been marked. The growth of a trace is stopped when the most

probable source basic block of the current node has been marked. The best successor of(node)

function is de�ned symmetrically.

Figure 2 shows the result of trace selection. Each dotted-line box represents a trace. There

are three traces: fA;B;E; Fg, fCg, and fDg. After trace selection, each trace is converted into a

super-block by duplicating the tail part of the trace, in order to ensure that the program control

can only enter at the top basic block. The tail duplication algorithm is shown in Figure 4. Using

To appear: Software - Practice & Experience 12

algorithm trace_selection(a weighted flow graph G) begin

mark all nodes in G unvisited;

while (there are unvisited nodes) begin

seed = the node with the largest execution count

among all unvisited nodes;

mark seed visited;

/* grow the trace forward */

current = seed;

loop

s = best_successor_of(current);

if (s=0) exit loop;

add s to the trace;

mark s visited;

current = s;

end_loop

/* grow the trace backward */

current = seed;

loop

s = best_predecessor_of(current);

if (s=0) exit loop;

add s to the trace;

mark s visited;

current = s;

end_loop

end_while

end_algorithm

Figure 3: A trace-selection algorithm.

algorithm tail_duplication(a trace B(1..n)) begin

Let B(i) be the first basic block that

is an entry point to the trace, except for i=1;

for (k=i..n) begin

create a trace that contains a copy of B(k);

place the trace at the end of the function;

redirect all control flows to B(k), except

the ones from B(k-1), to the new trace;

end_for

end_algorithm

Figure 4: The tail-duplication algorithm.

To appear: Software - Practice & Experience 13

the example in Figure 2, we see that there are two control paths that enter the fA;B;E; Fg trace at

basic block F . Therefore, we duplicate the tail part of the fA;B;E; Fg trace starting at basic block

F . Each duplicated basic block forms a new super-block that is appended to the end of the function.

The result is shown in Figure 5.6 More code transformations are applied after tail duplication to

eliminate jump instructions. For example, the F 0 super-block in Figure 5 could be duplicated and

each copy be combined with the C and D super-blocks to form two larger super-blocks.

In order to control the amount of code duplication, we exclude all basic blocks whose execution

count is below a threshold value, e.g., 100 per run, from the trace selection process. They are also

excluded from pro�le-based code optimization to control the increase in compile time.

Formulation of code optimizations Table 2 shows a list of classic code optimizations that we

have extended to use pro�le information. The original formulation of these classic code optimiza-

tions can be found in [1] [19]. In Table 2, the scope column describes the extended scopes of these

code optimizations. The non-loop based code optimizations work on a single super-block at a time.

The loop based code optimizations work on a single super-block loop at a time. A super-block

loop is a super-block that has a frequently taken back-edge from its last node to its �rst node.

The optimizer �rst applies live-variable analysis to detect variables that are live across super-block

boundaries, and then optimizes one super-block at a time. For each super-block, the pro�le-based

code optimizations are applied one or more times, up to a limit or when no more opportunities can

be detected.

In the following discussion, each code optimization consists of a precondition function and

an action function. The precondition function is used to detect optimization opportunities and

6Note that the pro�le information has to be scaled accordingly. Scaling the pro�le information will destroy the
accuracy. Fortunately, code optimizations after forming super-blocks only need approximate pro�le information.

To appear: Software - Practice & Experience 14

99(10/100) (10/100)

(90/100)
99(90/100)

90

10

10

F'

900

0 90

90
10

1

1090

100

F

ED

CB

A

Figure 5: Forming super-blocks.

To appear: Software - Practice & Experience 15

name scope

constant propagation super-block

copy propagation super-block

constant combining super-block

common subexpression elimination super-block

redundant store elimination super-block

redundant load elimination super-block

dead code removal super-block

loop invariant code removal super-block loop

loop induction variable elimination super-block loop

global variable migration super-block loop

Table 2: Super-block code optimizations.

to ensure that the transformation improves overall program performance. The action function

performs the actual code transformation. To apply a code optimization, the optimizer identi�es

sets of instructions that may be eligible for the optimization. The precondition function is then

invoked to make an optimization decision for each set. With the approval from the precondition

function, the action function transforms the eligible sets into their more e�cient equivalents.

We denote the set of variables that an instruction op(i) modi�es by dest(i).7 We denote the

set of variables that op(i) requires as source operands by src(i). We denote the operation code of

op(i) by fi. Therefore, op(i) refers to the operation dest(i) fi(src(i)).

Local optimizations extended to superblocks There are several local code optimizations that

can be extended in a straightforward manner to super-blocks. 8 These local optimizations include

constant propagation, copy propagation, constant combining, common subexpression elimination,

redundant load elimination, and redundant store elimination [1] [19].

7In this paper, we assume that there can be at most one element in dest(i) of any instruction op(i).
8The details of the required extensions can be found in a technical report [18].

To appear: Software - Practice & Experience 16

Traditionally, local optimization cannot be applied across basic blocks and global code opti-

mization must consider each possible execution path equally. However, there are often instances

where an optimization opportunity is inhibited by an infrequently executed path. As a result, one

cannot apply optimizations to the frequently executed paths unless the infrequently executed paths

are systematically excluded from the analysis. Forming superblocks with tail duplication achieves

this e�ect. Therefore, pro�le-based code optimizations can �nd more opportunities than traditional

code optimizations.

To illustrate why local code optimizations are more e�ective when they are applied to super-

blocks, consider the case of common subexpression elimination shown in Figure 6. The original

program is shown in Figure 6(a). After trace selection and tail duplication, the program is shown

in Figure 6(b). Because of tail duplication, opC cannot be reached from opB; therefore, common

subexpression elimination can be applied to opA and opC.

Dead code removal Dead code removal operates on one instruction at a time. Let op(x) be an

instruction in a super-block. The traditional formulation of the precondition function of dead code

removal is that if the values of dest(x) will not be used later in execution, op(x) can be eliminated.

To take full advantage of pro�le information, we propose an extension to dead code removal. In

the extension, the precondition function consists of the following boolean predicates.

1. The super-block where op(x) is de�ned is not a super-block loop.

2. Op(x) is not a branch instruction.

3. Dest(x) is not used before rede�ned in the super-block.

To appear: Software - Practice & Experience 17

(c)

(b)

(a)

opC': r3 = r2*3;

opC': r3 = r2*3;

opC: r3 = r1;

opA: r1 = r2*3;

opB: r2 = r2+1;

1

99

1

99 opB: r2 = r2+1;

opC: r3 = r2*3;

opA: r1 = r2*3;

1

1

99

opC: r3 = r2*3;

opB: r2 = r2+1;

opA: r1 = r2*3;

Figure 6: An example of super-block common subexpression elimination. (a) Original program

segment. (b) Program segment after super-block formation. (c) Program segment after common

subexpression elimination.

To appear: Software - Practice & Experience 18

4. Find an integer y, such that op(y) is the �rst instruction that modi�es dest(x) and x < y. If

dest(x) is not rede�ned in the super-block, set y to m+1, where op(m) is the last instruction

in the super-block. Find an integer z, such that op(z) is the last branch instruction in

fop(k); k = x + 1::y � 1g. Either there is no branch instruction in fop(k); k = x + 1::y � 1g

or src(x) is not modi�ed by an instruction in fop(j); j = x+ 1::zg.

The action function of dead code removal consists of the following steps.

1. For every branch instruction in fop(i); i= x+1::y�1g, if dest(x) is live9 when op(i) is taken,

copy op(x) to a place between op(i) and every possible target super-block of op(i) when op(i)

is taken.

2. If y is m+ 1 and the super-block where op(x) is de�ned has a fall-thru path because the last

instruction in the super-block is not an unconditional branch, copy op(x) to become the last

instruction of the super-block.

3. Eliminate the original op(x) from the super-block.

Dead code elimination is like common subexpression elimination in that tail duplication is a

major source of opportunities to apply it. A special feature of our dead code elimination is that it

can eliminate an instruction from a super-block by copying it to some control ow paths that exit

from the middle of the super-block. This code motion is bene�cial because the program control

rarely exits from the middle of a super-block.

Figure 7 shows a simple example of dead code removal. The program is a simple loop that

has been unrolled four times. The loop index variable (r0) has been expanded into four registers

9A variable is live if its value will be used before rede�ned. An algorithm for computing live variables can be
found in [1].

To appear: Software - Practice & Experience 19

...

...

...

r0 = r4;

r0 = r2;

r0 = r1;

r4 = r0+4;

r3 = r0+3;

r2 = r0+2;

r1 = r0+1;r1 = r0+1;

r2 = r0+2;

r3 = r0+3;

r4 = r0+4;

r0 = r1;

r0 = r2;

r0 = r3;

r0 = r4;

...

...

...

(a) (b)

X

Y

Z

X

Y

Z

Figure 7: An example of super-block dead code removal. (a) Original program segment. (b)

Program segment after dead code removal.

To appear: Software - Practice & Experience 20

(r1,r2,r3,r4) that can be computed in parallel. If the loop index variable is live after the loop

execution, then it is necessary to update the value of r0 in each iteration, as shown in Figure

7(a). According to the de�nition of super-block dead code removal, these update instructions (e.g.,

r0=r1,r0=r2, and r0=r3) become dead code, since their uses are replaced by r1,r2,r3, and r4. These

update instructions can be moved out from the super-block, as shown in Figure 7(b).

Loop optimizations Super-block loop optimizations can identify more optimization opportuni-

ties than traditional loop optimizations that must account for all possible execution paths within a

loop. Super-block loop optimizations reduce the execution time of the most likely path of execution

through a loop. In traditional loop optimizations, a potential optimization may be inhibited by

a rare event, such as a function call to handle a hardware failure in a device driver program, or

a function call to re�ll a large character bu�er in text processing programs. In super-block loop

optimizations, function calls that are not in the super-block loop do not a�ect the optimization of

the super-block loop.

We have identi�ed three important loop optimizations that most e�ectively utilize pro�le in-

formation: invariant code removal, global variable migration and induction variable elimination.

Each optimization is discussed in a following subsection.

Loop invariant code removal Invariant code removal moves instructions whose source operands

do not change within the loop to a preheader block. Instructions of this type are then executed

only once each time the loop is invoked, rather than on every iteration. The precondition function

for invariant code removal consists of the following boolean predicates that must all be satis�ed.

1. src(x) is not modi�ed in the super-block.

To appear: Software - Practice & Experience 21

2. op(x) is the only instruction which modi�es dest(x) in the super-block.

3. op(x) must precede all instructions which use dest(x) in the super-block.

4. op(x) must precede every exit point of the super-block in which dest(x) is live.

5. If op(x) is preceded by a conditional branch in the super-block, it must not possibly cause an

exception.

The action function of invariant code removal is moving op(x) to the end of the preheader block of

the super-block loop.

In the precondition function, predicate 5 returns true if op(x) is executed on every iteration of

the super-block loop. An instruction that is not executed on every iteration may not be moved to the

preheader if it can possibly cause an exception. Memory instructions, oating point instructions,

and integer divide are the most common instructions which cannot be removed unless they are

executed in every iteration.

Predicates 1 and 2 depends on two optimization components: memory disambiguation and

interprocedural analysis. Currently our prototype C compiler performs memory disambiguation,

but no interprocedural analysis. Thus, if op(x) is a memory instruction, predicate 2 will return

false if there are any subroutine calls in the super-block loop.

The increased optimization opportunities created by limiting the search space to within a super-

block for invariant code removal is best illustrated by an example. Figure 8 shows a simple example

of super-block loop invariant code removal. In Figure 8(a), opA is not loop invariant in the tradi-

tional sense because its source operand is a memory variable, and opD is a function call that may

modify any memory variable. On the other hand, opA is invariant in the super-block loop. The

result of super-block loop invariant code removal is shown in Figure 8(b).

To appear: Software - Practice & Experience 22

(a)

12047 opD: re�ll();

opC: r1 = r1+1;

opB: r3 = r2>r1;

opA: r2 = bu�er.length;

(b)

opA: r2 = bu�er.length;

opB: r3 = r2>r1;

opC: r1 = r1+1;

opD: re�ll();

Figure 8: An example of super-block loop invariant code removal. (a) Original program segment.

(b) Program segment after loop invariant code removal.

To appear: Software - Practice & Experience 23

Global variable migration Global variable migration moves frequently accessed memory vari-

ables, such as globally declared scalar variables, array elements, or structure elements, into registers

for the duration of the loop. Loads and stores to these variables within the loop are replaced by

register accesses. A load instruction is inserted in the preheader of the loop to initialize the register,

and a store is placed at each loop exit to update memory after the execution of the loop.

The precondition function for global variable migration consists of the following boolean pred-

icates that must all be satis�ed. If op(x) is a memory access, let address(x) denote the memory

address of the access.

1. op(x) is a load or store instruction.

2. address(x) is invariant in the super-block loop.

3. If op(x) is preceded by a conditional branch, it must not possibly cause an exception.

4. The compiler must be able to detect, in the super-block loop, all memory accesses whose

addresses can equal address(x) at run-time, and these addresses must be invariant in the

super-block loop.

The action function of global variable migration consists of three steps.

1. A new load instruction op(a), with src(a) = address(x) and dest(a) = temp reg, is inserted

after the last instruction of the preheader of the super-block loop.

2. A store instruction op(b), with dest(b) = address(x) and src(b) = temp reg, is inserted as

the �rst instruction of each block that can be immediately reached when the super-block loop

is exited.10

10If a basic block that is immediately reached from a control ow exit of the super-block loop can be reached from

To appear: Software - Practice & Experience 24

3. All loads in the super-block loop with src(i) = address(x) are converted to register move

instructions with src(i) = temp reg, and all stores with dest(i) = address(x) are converted

to register move instructions with dest(i) = temp reg. The unnecessary copies are removed

by later applications of copy propagation and dead code removal.

Figure 9 shows a simple example of super-block global variable migration. The memory variable

x[r0] cannot be migrated to a register in traditional global variable migration, because r0 is not loop

invariant in the entire loop. On the other hand, r0 is loop invariant in the super-block loop, and

x[r0] can be migrated to a register by super-block global variable migration. The result is shown in

Figure 9(b). Extra instructions (opX and opY) are added to the super-block loop boundary points

to ensure correctness of execution.

Loop induction variable elimination Induction variables are variables in a loop incremented

by a constant amount each time the loop iterates. Induction variable elimination replaces the uses

of an induction variable by another induction variable, thereby eliminating the need to increment

the variable on each iteration of the loop. If the induction variable eliminated is needed after the

loop is exited, its value can be derived from one of the remaining induction variables.

The precondition function for induction variable elimination consists of the following boolean

predicates that must all be satis�ed.

1. op(x) is an inductive instruction of the form dest(x) dest(x) +K1.

2. op(x) is the only instruction which modi�es dest(x) in the super-block.

3. op(y) is an inductive operation of the form dest(y) dest(y) +K2.

multiple basic blocks, a new basic block needs to be created to bridge the super-block loop and the originally reached

basic block.

To appear: Software - Practice & Experience 25

opY: x[r0] = r2;

opC: r0 = r0+1;

opA: r2 = r2+r1;

opB: r1 = r1+1;

opY: x[r0] = r2;

(b)

(a)

opX: r2 = x[r0];

100 0 opC: r0 = r0+1;

opB: r1 = r1+1;

opA: x[r0] = x[r0]+r1;

Figure 9: An example of super-block loop global variable migration. (a) Original program segment.

(b) Program segment after global variable migration.

To appear: Software - Practice & Experience 26

4. op(y) is the only instruction which modi�es dest(y) in the super-block.

5. op(x) and op(y) are incremented by the same value, i.e., K1 = K2.11

6. There are no branch instructions between op(x) and op(y).

7. For each operation op(j) in which src(j) contains dest(x), either j = x or all elements of src(j)

except dest(x) are loop invariant.

8. All uses of dest(x) can be modi�ed to dest(y) in the super-block without incurring time

penalty.12

The action function of induction variable elimination consists of 4 steps.

1. op(x) is deleted.

2. A subtraction instruction op(m), dest(m) dest(x) � dest(y), is inserted after the last

instruction in the preheader of the super-block loop.

3. For each instruction op(a) which uses dest(x), let other src(a) denote the src operand of op(a),

which is not dest(x). A subtraction instruction op(n), dest(n) other src(a)� dest(m), is

inserted after the last instruction in the preheader. The source operands of op(a) are then

changed from dest(x) and other src(a) to dest(y) and dest(n), respectively.

4. An addition instruction op(o), dest(x) dest(y)+dest(m), is inserted as the �rst instruction

of each block that can be immediately reached when the super-block loop is exited in which

dest(x) is live in.

11The restriction of predicate 5 (K1 = K2) can be removed in some special uses of dest(x), however these special

uses are too complex to be discussed in this paper.
12For example, if we know that dest(x) = dest(y) + 5 because of di�erent initial values, then a (branch if not

equal) bne(dest(x);0) instruction is converted to a bne(dest(y);�5) instruction. For some machines, bne(dest(y);�5)

needs to be broken down to a compare instruction plus a branch instruction; then, the optimization may degrade

performance.

To appear: Software - Practice & Experience 27

It should be noted that step 3 of the action function may increase the execution time of op(a) by

changing a source operand from an integer constant to a register. For example, a branch-if-greater-

than-zero instruction becomes a compare instruction and a branch instruction if the constant zero

source operand is converted to a register. Predicate 8 prevents the code optimizer from making a

wrong optimization decision. In traditional loop induction elimination, we check the entire loop

body for violations of precondition predicates. In super-block loop induction elimination, we check

only the super-block and therefore �nd more optimization opportunities.

Extension of super-block loop optimizations In order to further relax the conditions for

invariant code removal and global variable migration, the compiler can unroll the super-block loop

body once. The �rst super-block serves as the �rst iteration of the super-block loop for each

invocation, while the duplicate is used for iterations 2 and above. The compiler is then able

to optimize the duplicate super-block loop knowing each instruction in the super-block has been

executed at least once. For example, instructions that are invariant, but conditionally executed

due to a preceding branch instruction, can be removed from the duplicate super-block loop. With

this extension, precondition predicates 3, 4, and 5 for invariant code removal and predicate 3 for

global variable migration can be eliminated. The implementation of our C compiler includes this

extension.

EXPERIMENTATION

Table 3 shows the characteristics of the benchmark programs. The size column indicates the

sizes of the benchmark programs measured in numbers of lines of C code. The description column

briey describes the benchmark programs.

To appear: Software - Practice & Experience 28

name size description

cccp 4787 GNU C preprocessor

cmp 141 compare �les

compress 1514 compress �les

eqn 2569 typeset mathematical formulas for tro�

eqntott 3461 boolean minimization

espresso 6722 boolean minimization

grep 464 string search

lex 3316 lexical analysis program generator

mpla 38970 pla generator

tbl 2817 format tables for tro�

wc 120 word count

xlisp 7747 lisp interpreter

yacc 2303 parsing program generator

Table 3: Benchmarks.

name input description

cccp 20 C source �les (100 - 5000 lines)

cmp 20 similar / di�erent �les

compress 20 C source �les (100 - 5000 lines)

eqn 20 ditro� �les (100 - 4000 lines)

eqntott 5 boolean equations

espresso 20 boolean functions (original espresso benchmarks)

grep 20 C source �les (100 - 5000 lines) with various search strings

lex 5 lexers for C, Lisp, Pascal, awk, and pic

mpla 20 boolean functions minimized by espresso (original espresso benchmarks)

tbl 20 ditro� �les (100 - 4000) lines

wc 20 C source �les (100 - 5000) lines

xlisp 5 gabriel benchmarks

yacc 10 grammars for C, Pascal, pic, eqn, awk, etc.

Table 4: Input data for pro�ling.

To appear: Software - Practice & Experience 29

For each benchmark program, we have selected a number of input data for pro�ling. Table 4

shows the characteristics of the input data sets. The input column indicates the number of inputs

that are used for each benchmark program. The description column briey describes the input

data. For each benchmark program, we have collected one additional input and used that input

to measure the performance. The execution time of the benchmark programs that are annotated

with probes for collecting pro�le information is from 25 to 35 times slower than that of the original

benchmark programs. It should be noted that our pro�ler implementation is only a prototype and

has not been tuned for performance.

name global pro�le MIPS.O4 GNU.O

cccp 1.0 1.04 0.93 0.92

cmp 1.0 1.42 0.96 0.95

compress 1.0 1.11 0.98 0.94

eqn 1.0 1.25 0.92 0.91

eqntott 1.0 1.16 0.96 0.75

espresso 1.0 1.03 0.98 0.87

grep 1.0 1.21 0.97 0.81

lex 1.0 1.01 0.99 0.96

mpla 1.0 1.18 0.95 0.87

tbl 1.0 1.03 0.98 0.93

wc 1.0 1.32 0.96 0.87

xlisp 1.0 1.16 0.88 0.76

yacc 1.0 1.08 1.00 0.90

avg. 1.0 1.15 0.96 0.88

s.d. - 0.12 0.03 0.07

Table 5: DEC3100 execution speed for each individual benchmark.

Table 5 shows the output code quality of our prototype compiler. We compare the output code

speed against that of the MIPS C compiler (release 2.1, -O4) and the GNU C compiler (release

1.37.1, -O), on a DEC3100 workstation which uses a MIPS-R2000 processor. The numbers that

are shown in Table 5 are the speedups over the actual execution times of globally optimized code

To appear: Software - Practice & Experience 30

name global pro�le

cccp 1.0 1.03

cmp 1.0 1.11

compress 1.0 1.01

eqn 1.0 1.10

eqntott 1.0 1.00

espresso 1.0 1.07

grep 1.0 1.09

lex 1.0 1.08

mpla 1.0 1.13

tbl 1.0 1.06

wc 1.0 1.01

xlisp 1.0 1.20

yacc 1.0 1.09

avg. 1.0 1.07

s.d. - 0.06

Table 6: Ratios of code expansion.

produced by our prototype compiler. The profile column shows the speedup that is achieved by

applying pro�le-based code optimizations in addition to global code optimizations. Note that the

input data used to measure the performance of pro�le-based code optimizations is di�erent from

those used to gather the pro�le information.

The MIPS:O4 column shows the speedup that is achieved by the MIPS C compiler over our

global code optimizations. The GNU:O column shows the speedup that is achieved by the GNU C

compiler over our global code optimizations. The numbers in the MIPS:O4 and GNU:O columns

show that our prototype global code optimizations performs slightly better than the two production

compilers for all benchmark programs. Table 5 clearly shows the importance of these super-block

code optimizations.

The sizes of the executable programs directly a�ect the cost of maintaining these programs in

a computer system in terms of disk space. In order to control the code expansion due to tail-

To appear: Software - Practice & Experience 31

duplication, basic blocks are added into a trace only if their execution counts exceed a prede�ned

constant threshold. For these experiments we use an execution count threshold of 100. Table 6

shows how code optimizations a�ect the sizes of the benchmark programs. The profile column

shows the sizes of pro�le-based code optimized programs relative to the sizes of globally optimized

programs. In Table 6, we show that our prototype compiler has e�ectively controlled the code

expansion due to forming super-blocks.

The cost of implementing the pro�le-based classic code optimizations is modest. The conven-

tional global code optimizer in our prototype compiler consists of approximately 32,000 lines of C

code. The pro�le-based classic code optimizer consists of approximately 11,000 lines of C code. The

pro�ler is implemented with about 2,000 lines of C code and a few assembly language subroutines.

CONCLUSIONS

We have shown how an execution pro�ler can be integrated into an optimizing compiler to

provide the compiler with run-time information about input programs. We have described our

design and implementation of pro�le-based classic code optimizations. We have identi�ed two

major reasons why these code optimizations are e�ective: (1) eliminating control ows into the

middle sections of a trace, and (2) optimizing the most frequently executed path in a loop. Exper-

imental results have shown that pro�le-based classic code optimizations signi�cantly improve the

performance of production C programs.

Acknowledgements

The authors would like to thank Nancy Warter, Andy Glew, William Chen and all members

of the IMPACT research group for their support, comments and suggestions. We would like to

acknowledge the anonymous referees whose comments have helped us to improve the quality of

this paper signi�cantly. This research has been supported by the National Science Foundation

(NSF) under Grant MIP-8809478, Dr. Lee Hoevel at NCR, the AMD 29K Advanced Processor

REFERENCES 32

Development Division, the National Aeronautics and Space Administration (NASA) under Contract

NASA NAG 1-613 in cooperation with the Illinois Computer laboratory for Aerospace Systems and

Software (ICLASS).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,

Addison-Wesley Publishing Company, 1986.

[2] S. L. Graham, P. B. Kessler, and M. K. McKusick, "gprof: A Call Graph Execution Pro�ler",

Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN Notices,

Vol.17, No.6, pp.120-126, June 1982.

[3] S. L. Graham, P. B. Kessler, and M. K. McKusick, "An Execution Pro�ler for Modular

Programs", Software-Practice and Experience, Vol.13, John Wiley & Sons, Ltd., New York,

1983.

[4] AT&T Bell Laboratories, UNIX Programmer's Manual, Murray Hill, N.J., January 1979.

[5] S. McFarling and J. L. Hennessy, "Reducing the Cost of Branches", The 13th International

Symposium on Computer Architecture Conference Proceedings, pp.396-403, Tokyo, Japan,

June 1986.

[6] W. W. Hwu, T. M. Conte, and P. P. Chang, "Comparing Software and Hardware Schemes For

Reducing the Cost of Branches", Proceedings of the 16th Annual International Symposium

on Computer Architecture, Jerusalem, Israel, May 1989.

[7] J. A. Fisher, "Trace scheduling: A technique for global microcode compaction", IEEE Trans-

actions on Computers, Vol.C-30, No.7, July 1981.

[8] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, The MIT Press, 1986.

[9] P. P. Chang and W. W. Hwu, "Trace Selection for Compiling Large C Application Pro-

grams to Microcode", Proceedings of the 21st Annual Workshop on Microprogramming and

Microarchitectures, pp.21-29, San Diego, California, November 1988.

[10] W. W. Hwu and P. P. Chang, "Achieving High Instruction Cache Performance with an

Optimizing Compiler", Proceedings, 16th Annual International Symposium on Computer

Architecture, Jerusalem, Israel, June 1989.

[11] K. Pettis and R. C. Hansen, "Pro�le Guided Code Positioning", Proceedings of the ACM

SIGPLAN '90 Conference on Programming Language Design and Implementation, pp.16-27,

June 1990.

[12] P. P. Chang and W. W. Hwu, "Control Flow Optimization for Supercomputer Scalar Process-

ing", Proceedings, 1989 International Conference on Supercomputing, Crete, Greece, June

1989.

[13] D. W. Wall, "Global Register Allocation at Link Time", Proceedings of the SIGPLAN 1986

Symposium on Compiler Construction, June 1986.

REFERENCES 33

[14] D. W. Wall, "Register Window vs. Register Allocation", Proceedings of the SIGPLAN '88

Conference on Programming Language Design and Implementation, June 1988.

[15] W. W. Hwu and P. P. Chang, "Inline Function Expansion for Compiling Realistic C Pro-

grams", Proceedings, ACM SIGPLAN'89 Conference on Programming Language Design and

Implementation, Portland, Oregon, June 1989.

[16] V. Sarkar, "Determining Average Program Execution Times and Their Variance", Proceed-

ings of the SIGPLAN '89 Conference on Programming Language Design and Implementation,

June 1989.

[17] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, Pitman, Lon-

don and The MIT Press, Cambridge, Massachusetts, 1989.

[18] P. P. Chang, S. A. Mahlke, W. W. Hwu, Using Pro�le Information to Assist Classic Code Op-

timizations, Technical Report, Center for Reliable and High-Performance Computing, CRHC-

91-12, University of Illinois, Urbana-Champaign, 1991.

[19] F. Allen and J. Cocke, "A Catalogue of Optimizing Transformations", pp.1-30 of [20], 1972.

[20] R. Rustin (Editor), Design and Optimization of Compilers, Prentice-Hall, Englewood Cli�s,

N.J., 1972.

