
To appear: Proceedings of Supercomputing '92 1

Compiler Code Transformations for Superscalar-Based

High-Performance Systems

Scott A. Mahlke William Y. Chen John C. Gyllenhaal Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana-Champaign, IL 61801

Pohua P. Chang

Intel Corporation

Hillsboro, OR 97124

Tokuzo Kiyohara

Matsushita Electric Industrial Co., LTD.

Osaka, Japan

Abstract

Exploiting parallelism at both the multiprocessor level

and the instruction level is an e�ective means for su-

percomputers to achieve high-performance. The amount

of instruction-level parallelism available to superscalar or

VLIW node processors can be limited, however, with con-

ventional compiler optimization techniques. In this pa-

per, a set of compiler transformations designed to increase

instruction-level parallelism is described. The e�ectiveness

of these transformations is evaluated using 40 loop nests

extracted from a range of supercomputer applications. This

evaluation shows that increasing execution resources in su-

perscalar/VLIW node processors yields little performance

improvement unless loop unrolling and register renaming

are applied. It also reveals that these two transforma-

tions are su�cient for DOALL loops. However, more ad-

vanced transformations are required in order for serial and

DOACROSS loops to fully bene�t from the increased exe-

cution resources. The results show that the six additional

transformations studied satisfy most of this need.

1 Introduction

Supercomputers can potentially achieve large performance
improvements by exploiting parallelism at both the mul-
tiprocessor and instruction level. Instruction-level paral-
lelism (ILP) refers to executing low level machine instruc-
tions, such as memory loads and stores, integer adds, and

oating point multiplies, in parallel [1]. In a supercom-
puter, ILP is often exploited within superscalar or VLIW
node processors. For example, the Alliant FX/2800 system
supports parallel execution among its 28 Intel i860 node
processors and each processor is capable of completing two
instructions per clock cycle. The Intel Touchstone system
and the Thinking Machines CM5 system provide additional
examples of program parallelism exploited at both the mul-
tiprocessor and instruction level. The importance of ex-
ploiting ILP to improve the performance of superscalar or

VLIW node processors will continue to grow in future su-
percomputer systems.

The amount of ILP available to superscalar or VLIW
node processors, though, can be limited with conventional
compiler optimization techniques, which are designed for
scalar processors. The primary objective of a traditional
optimizer is to reduce the number and complexity of the
instructions executed by the processor [2]. Due to their
limited amount of execution resources, scalar processors
bene�t little from increased ILP. Superscalar and VLIW
processors, on the other hand, achieve higher performance
by exploiting ILP with multiple data paths and functional
units. As the amount of parallel hardware within node
processors continues to grow, optimizers will be required
to expose increasing levels of ILP to e�ectively utilize the
parallel hardware.

In this paper, a set of compiler transformations designed
to increase the ILP for superscalar and VLIW node proces-
sors are presented. We assume an execution model where
multiprocessor parallelism is exploited in outer loops and
instruction-level parallelism in inner loops. This model is
also assumed in the Alliant FX/2800. We further assume
that transformations to adjust the granularity and depen-
dence patterns of outer loops are done by a high level re-
structurer such as KAP [3]. The objective of the transfor-
mations discussed in this paper is to increase the ILP within
each inner loop. This is achieved by removing dependences
between instructions within each iteration as well as across
iterations. This removal of dependences makes more in-
structions independent from each other, thereby increasing
the number of instructions that can be executed concur-
rently.

The transformations presented in this paper have been
incorporated in the IMPACT-I prototype compiler devel-
oped at the University of Illinois. This prototype has made
it possible to quantify the e�ectiveness of these transfor-
mations. In particular, the e�ect of these transformations
on loop nests collected from supercomputer applications
is evaluated for superscalar/VLIW processors. Section 3

shows that the performance of these processors is severely
limited with only conventional optimizations. It also shows
that performance improves drastically with the ILP in-
creasing transformations described in this paper. The per-
formance improvement, however, does not come without
cost. To fully exploit the increased ILP, the hardware must
provide su�cient registers. Consequently, the register �le
requirements for these transformations are reported.

1.1 Related Work

Many researchers have addressed compile-time transforma-
tions to remove dependences between instructions. Kuck
et al. discussed transformations, such as scalar expansion
and variable renaming, to eliminate anti and output depen-
dences [4]. Nakatani and Ebcioglu presented an operation
combining method that removes
ow dependences between
pairs of instructions [5]. Anantha and Long described a
parallelizing compiler that employs loop unrolling, loop
peeling, and variable renaming to assist Aiken and Nico-
lau's percolation scheduling [6]. Techniques to eliminated
dependences between unrolled iterations were implemented
in the Bulldog, Multi
ow trace and Cydra 5 compilers
[7] [8] [9]. Several height reduction techniques that re-
duce the length of dependence chains in arithmetic calcu-
lations have been proposed [10] [11]. The transformations
discussed in this paper utilize the concepts presented in
these previous studies.
The use of code scheduling schemes that can take ad-

vantage of eliminated dependences is necessary to get per-
formance improvement from these transformations. Many
previous studies have focused on such code scheduling
strategies for VLIW and superscalar processors. Fisher
developed trace scheduling to e�ectively schedule instruc-
tions across basic blocks which are likely to execute in
sequence (trace) [12]. Trace scheduling has been utilized
in both the Bulldog compiler [7] and the Multi
ow Trace
compiler [8] [13]. Superblock scheduling is an extension of
trace scheduling which removes some of the bookkeeping
complexity associated with code reordering in a trace [14].
Superblock scheduling is the scheduling method used for
this study.
Software pipelining is an e�ective scheduling method to

overlap the execution of loop iterations on VLIW and su-
perscalar processors. Rau et al. derived and productized
a software pipelining technology which takes advantage of
special hardware support in the Cydra 5 compiler [9]. Lam
presented a software pipelining algorithm that does not re-
quire special hardware support [15]. Aiken and Nicolau
derived an optimal algorithm for software pipelining for a
given set of dependences across loop iterations [16]. These
methods also bene�t from dependence elimination but the
e�ect of the transformations on these methods is not eval-
uated in this study.

1.2 Organization of this Paper

The remainder of this paper is organized into 3 sections.
Section 2 presents the compiler code transformations for

Function Latency Function Latency

Int ALU 1 FP ALU 3
Int multiply 3 FP conversion 3
Int divide 10 FP multiply 3
branch 1 / 1 slot FP divide 10
memory load 2 memory store 1

Table 1: Instruction latencies. These latencies are used for
the examples and the experimental evaluation presented in
this paper.

VLIW and superscalar node processors. An experimen-
tal evaluation of the code transformations is presented in
Section 3. Finally, some concluding remarks are o�ered in
Section 4.

2 Compiler Code Transformations

Eight compiler transformations to increase ILP for super-
scalar and VLIW processors are described in this section.
Two widely used transformations, loop unrolling and reg-
ister renaming, are �rst brie
y explained. Then more spe-
cialized transformations, which expose increasing levels of
ILP, are discussed. These transformations consist of accu-
mulator variable expansion, induction variable expansion,
search variable expansion, operation combining, strength
reduction, and tree height reduction. The �rst three of
these expose increasing levels of ILP of unrolled loops. The
remaining three increase the utilization of a superscalar or
VLIW processor's arithmetic hardware. A side e�ect of
most of these transformations is to substantially increase
the number of processor registers utilized by the program.
This e�ect will be experimentally evaluated in Section 3.

Loop Unrolling. Loop unrolling is a technique com-
monly used to overlap the execution of multiple iterations
of a loop. A loop unrolled N times has N � 1 copies of
the loop body are appended to the original loop. The con-
trol transfers to the beginning of the loop are adjusted to
account for the unrolling. If the iteration count is known
on loop entry, it is possible to remove many of these con-
trol transfers by using a preconditioning loop to execute
the �rst Mod N iterations. All of the loop examples used
in this paper are of this type. After loop unrolling, the
loop body contains N iterations of the loop which can be
scheduled as a single unit by the compiler.

Register Renaming. Reuse of registers by the com-
piler and variables by the programmer introduces arti�cial
anti and output dependences and restricts the e�ective-
ness of a superscalar or VLIW processor. Many of these
arti�cial dependences can be eliminated with register re-
naming [4]. Register renaming assigns unique registers to
di�erent de�nitions of the same register. A common use of
register renaming is to rename registers within individual
loop bodies of an unrolled loop. An example to illustrate
this is shown in Figure 1. The instruction latencies shown
in Table 1 are used for all examples in this section.

r2f = MEM(A+r1i)

r3f = MEM(B+r1i)

r4f = r2f+r3f

r2f = MEM(A+r1i)

MEM(C+r1i) = r4f

r3f = MEM(B+r1i)

r4f = r2f+r3f

MEM(C+r1i) = r4f

r2f = MEM(A+r1i)

r4f = r2f+r3f

r3f = MEM(B+r1i)

blt (r1i r5i) L1

MEM(C+r1i) = r4f

19 cycles / 3 iterations

r1i = r1i + 4

r1i = r1i + 4

r1i = r1i + 4

Assembly IT

0

0

2

5

5

6

6

8

11

11

12

12

14

17

17

18

r2f = MEM(A+r1i)

r3f = MEM(B+r1i)

r4f = r2f+r3f

blt (r1i r5i) L1

MEM(C+r1i) = r4f

7 cycles / 1 iteration

r1i = r1i + 4

0

0

2

5

5

6

Assembly IT

r21f = MEM(A+r11i)

r31f = MEM(B+r11i)

r41f = r21f+r31f

MEM(C+r11i) = r41f

r22f = MEM(A+r12i)

r32f = MEM(B+r12i)

r42f = r22f+r32f

MEM(C+r12i) = r42f

r23f = MEM(A+r13i)

r33f = MEM(B+r13i)

r43f = r23f+r33f

MEM(C+r13i) = r43f

blt (r11i r5i) L1

8 cycles / 3 iterations

r12i = r11i + 4

r13i = r12i + 4

r11i = r13i + 4

0

0

2

5

0

1

1

3

6

1

2

2

4

7

2

7

Assembly IT

do 10 j = 1,n

C(j) = A(j)+B(j)

continue10

Unrolling
After Loop(c)

Renaming
(d) After Register

L1:

L1:

L1:

Assembly Code(b)Original Loop(a)

Figure 1: Example of loop unrolling and register renaming.
All examples in this paper assume a superscalar processor
with in�nite resources and no register renaming hardware.
Also, the issue times (IT) shown are for the code after code
scheduling but in order to preserve clarity, the unscheduled
code is shown. Sorting by issue time yields the scheduled
code.

A simple inner loop (Figure 1a) and its corresponding
assembly code (Figure 1b) are shown. Without either un-
rolling or renaming, each loop iteration requires 7 cycles to
execute. If the loop is unrolled 3 times (Figure 1c), each
loop iteration requires an average of 6.3 cycles. Finally, if
register renaming is applied in addition to loop unrolling
(Figure 1d), the average execution time of each loop itera-
tion is reduced to 2.7 cycles.
These two transformations alone are often expose su�-

cient ILP for low issue machines. However, for higher issue
machines additional transformations are needed to utilize
hardware e�ectively. The following transformations ful�ll
this additional demand.
Accumulator Variable Expansion. An accumulator

variable accumulates a sum or product in each iteration
of a loop. A common example is the computation of a dot
product between two vectors. For loops of this type, the ac-
cumulation operation often de�nes the critical path within
the loop. Accumulator variable expansion eliminates re-
de�nitions of an accumulator variable within an unrolled
loop by creating k (k refers to the number of accumulation
instructions for that accumulation register in the unrolled

accumulator variable expansion(loop)
f
for each variable V in loop:
Determine if V is an accumulator variable by checking if
the following conditions are satis�ed:
1. All instructions modifying V are increment/decrement
instructions

2. V is only referenced in the above inc/dec instructions
3. The loop contains more than one of the above
inc/dec instructions

If V is an accumulator variable, do this transformation
to make the inc/dec instructions independent:
1. Let k be the number of inc/dec instructions
2. Allocate k new virtual registers (temp accumulators)
3. Insert initialization code for the above k registers
into the loop preheader as follows:
a. Initialize the �rst register to V's value
b. Initialize the other k-1 registers to zero

4. For each inc/dec instruction, replace V by one of
the above k temp accumulators using each
accumulator exactly once

5. At all loop exit points, insert a summation of the k
temporary accumulators to generate V's exit value

g

Figure 2: Algorithm for accumulator variable expansion.

loop body) temporary accumulators. Each temporary ac-
cumulator replaces one de�nition of the original accumu-
lator in the loop. In this manner all
ow, anti, and out-
put dependences are eliminated between the accumulation
instructions. To recover the value of the original accumu-
lator variable, the temporary accumulators are summed at
all exit points of the loop.

An algorithm to perform accumulator variable expansion
for a loop is shown in Figure 2. Note that accumulator
variables are only allowed to be modi�ed in the loop by
increment or decrement instructions. Also, since the total
value of the accumulator is not computed until the loop is
exited, no instructions in the loop other than accumulation
instructions may use the accumulator variable.

An example to illustrate the application of accumula-
tor variable expansion is presented in Figure 3. This loop
(Figure 3a) is the inner most loop for matrix multiplication.
After conventional compiler optimization (Figure 3b), each
iteration of the loop requires 8 cycles to execute. Loop un-
rolling and register renaming (Figure 3c) further improves
the average execution time to 4.7 cycles per iteration. How-
ever, it is clear that the accumulation of the sum into r1
limits the ILP in the loop. Accumulator variable expansion
(Figure 3d), removes the dependences between instructions
which increment/decrement r1 by introducing 3 temporary
accumulators, r11, r12, and r13. With this transforma-
tion, an average of 3.3 cycles is required for each iteration.
Also, the application of the induction variable expansion,
described next, would improve this time to 2.7 cycles per
iteration.

Induction Variable Expansion. Induction variables
are used within loops to index through loop iterations and
through regular data structures such as arrays. The value

After Unrolling
and Renaming

(c)

r1f = MEM(C+r2i)

r71f = r31f * r51f

r1f = r1f + r71f

r31f = MEM(A+r41i)

r72f = r32f * r52f

r1f = r1f + r72f

r52f = MEM(B+r62i)

r32f = MEM(A+r42i)

r73f = r33f * r53f

r1f = r1f + r73f

MEM(C+r2i) = r1f

14 cycles / 3 iterations

r53f = MEM(B+r63i)

r33f = MEM(A+r43i)

r51f = MEM(B+r61i)

r42i = r41i + 4

r43i = r42i + 4

r41i = r43i + 4

r62i = r61i + r8i

r63i = r62i + r8i

r61i = r63i + r8i

blt (r41i r9i) L1

--

--

0

0

2

5

8

11

0

0

1

1

3

1

1

2

2

4

2

2

11

r1f = MEM(C+r2i)

r7f = r3f * r5f

MEM(C+r2i) = r1f

r1f = r1f + r7f

8 cycles / 1 iteration

Original Loop(a) Assembly Code(b)

r4i = r4i + 4

r6i = r6i + r8i

blt (r4i r9i) L1

r5f = MEM(B+r6i)

r3f = MEM(A+r4i)

--

--

0

0

2

5

0

0

Assembly IT

L1:

5

After Accumulator
Expansion

(d)

10 cycles / 3 iterations

r71f = r31f * r51f

r31f = MEM(A+r41i)

r72f = r32f * r52f

r52f = MEM(B+r62i)

r32f = MEM(A+r42i)

r73f = r33f * r53f

r53f = MEM(B+r63i)

r33f = MEM(A+r43i)

r51f = MEM(B+r61i)

r42i = r41i + 4

r43i = r42i + 4

r41i = r43i + 4

r62i = r61i + r8i

r63i = r62i + r8i

r61i = r63i + r8i

blt (r41i r9i) L1

r11f = MEM(C+r2i)

r12f = 0

r13f = 0

r11f = r11f + r71f

r12f = r12f + r72f

r13f = r13f + r73f

r11f = r11f + r12f

r11f = r11f + r13f

MEM(C+r2i) = r11f

--

--

--

0

0

2

5

0

0

1

1

3

6

1

1

2

2

4

7

3

3

7

--

--

--

do 10 k = 1,SIZE

continue10

A(i,k) * B(k,j)

C(i,j) = C(i,j) +

Assembly IT Assembly IT

L1:L1:

Figure 3: Example of accumulator variable expansion.

of an induction variable is used to compute the address of
data structures, and therefore must be computed before the
data access is performed. When data access is delayed due
to dependences on induction variable computation, ILP is
typically limited. Induction variable expansion eliminates

ow, anti, and output dependences between de�nitions of
induction variables and their uses within an unrolled loop
body by creating k (k is the number of instructions which
update this induction variable in the unrolled loop body)
temporary induction variables. Each temporary induction
variable replaces one de�nition of the original induction
variable in the loop. Also, the increments of each tempo-
rary induction variable are moved to the end of the unrolled
loop body to eliminate the
ow dependences between each
de�nition of a temporary induction variable and its uses.
Each temporary induction variable is initialized to its cor-
rect value in the loop preheader.

An algorithm to perform induction variable expansion
for a loop is presented in Figure 4. Note that there are
two major distinctions between induction variables and ac-
cumulator variables. First, the value of an accumulator
variable may only be used by accumulation instructions in

induction variable expansion(loop)
f
for each variable V in loop:
Determine if V is an induction variable by checking if
the following conditions are satis�ed:
1. All instructions modifying V are increment/decrement
instructions

2. The inc/dec value is the same for all of the above
inc/dec instructions and it is invariant in the loop

3. The loop contains more than one of the above
inc/dec instructions

If V is an induction variable, do this transformation
to make the inc/dec instructions independent:
1. Let k be the number of inc/dec instructions
2. Let m be the loop invariant inc/dec value
3. Allocate k+2 new virtual registers (k+1 temporary
induction registers and one modi�ed inc/dec value z)

4. Let the k+1 temp ind registers be numbered
p = 0 to k

5. Insert initialization code for the above registers
into the loop preheader as follows:
a. Initialize register p with V's value + p * m
b. Initialize register z with k * m

6. Replace all references to V before the �rst inc/dec
instruction by references to temp ind register 0

7. Replace all references to V between the pth inc/dec
instruction and the (p+1)th inc/dec instruction by
references to temp ind register p

8. Remove all the inc/dec instructions from the loop
9. Before each branch back to the start of the loop,
increment the k+1 registers by register z's value

g

Figure 4: Algorithm for induction variable expansion.

the loop, whereas induction variables are used by at least
one other instructions in the loop. Second, the increment
of an accumulator variable may vary with each iteration of
the loop, however induction variables must be incremented
by a loop invariant amount.

An example loop to illustrate the application of induc-
tion variable expansion is shown in Figure 5a. After con-
ventional compiler optimization (Figure 5b), each loop iter-
ation requires 6 cycles to execute. With loop unrolling and
register renaming (Figure 5c), this is reduced to 2.7 cycles
per iteration. However, the increments of r2i changed by
register renaming are still
ow dependent. Induction vari-
able expansion (Figure 5d) changes the increments of the
three registers renaming created for r2i so that the de�ni-
tions are independent. This further reduces the number of
cycles to 2 per iteration. The improvement becomes more
pronounced the more the loop is unrolled. For example,
the same loop unrolled 8 times would require 1.6 cycles per
iteration after renaming but only 0.8 cycles per iteration
after induction variable expansion.

Search Variable Expansion. A single value, such as
a maximum or minimum, is often determined for matrices
or arrays. Such values will be referred to as search values.
Within an unrolled loop body, the chain of
ow depen-
dences between successive tests and updates of a search
variable often de�nes a critical path. Similar to accumu-
lator variable expansion and induction variable expansion,

Expansion

r2i = r2i + r7i

r3f = MEM(A+r2i)

r4f = MEM(B+r2i)

r5f = r3f * r4f

MEM(C+r2i) = r5f

blt (r1 r6) L1

6 cycles / 1 iteration

r1i = r1i + 1

0

0

2

5

0

5

5

Assembly IT

(b) Assembly Code

(d) After Induction

r21i = r2i

r23i = r22i + r7i

r22i = r21i + r7i

r31f = MEM(A+r21i)

r41f = MEM(B+r21i)

r51f = r31f * r41f

MEM(C+r21i) = r51f

r32f = MEM(A+r22i)

r42f = MEM(B+r22i)

r52f = r32f * r42f

MEM(C+r22i) = r52f

r33f = MEM(A+r23i)

r43f = MEM(B+r23i)

r53f = r33f * r43f

MEM(C+r23i) = r53f

r21i = r21i + r71i

r22i = r22i + r71i

r23i = r23i + r71i

blt (r1 r6) L1

r71i = r7i * 3

--

--

--

--

0

0

2

5

0

0

2

5

0

0

2

5

5

5

5

0

5

r1 = r1 + 3

6 cycles / 3 iterations

Assembly

do 10 i = 1,n

C(j) = A(j)*B(j)

j = j + K

continue10

L1:

and Renaming

(a) Original Loop

(c) After Unrolling

r31f = MEM(A+r21i)

r41f = MEM(B+r21i)

r51f = r31f * r41f

MEM(C+r21i) = r51f

r32f = MEM(A+r22i)

r42f = MEM(B+r22i)

r52f = r32f * r42f

MEM(C+r22i) = r52f

r33f = MEM(A+r23i)

r43f = MEM(B+r23i)

r53f = r33f * r43f

r22i = r21i + r7i

r23i = r22i + r7i

blt (r1 r6) L1

r21i = r23i + r7i

MEM(C+r23i) = r53f

0

0

2

5

0

1

1

3

6

1

2

2

4

7

2

0

7

8 cycles/ 3 iterations

r1 = r1 + 3

Assembly

L1:

L1:

ITIT

Figure 5: Example of induction variable expansion.

search variable expansion eliminates this chain of depen-
dences by creating k temporary search variables. Each tem-
porary search variable replaces one de�nition of the original
search variable in the loop. In this manner, each loop body
in the unrolled loop determines a value for the search vari-
able during execution. When the loop is exited, the value
of the original search variable is obtained by comparing the
values of all temporary search variables.
Operation Combining. Flow dependences between

pairs of instructions each with a compile-time constant
source operand can be eliminated with operation combin-
ing [5]. Flow dependences which can be eliminated with
operation combining often arise between address calcu-
lation instructions and memory access instructions along
with loop variable increments and loop exit branches. To
illustrate the application of operation combining, consider
the following two
ow dependent instructions:

I1: r1 = r2 op1 C1
I2: r3 = r1 op2 C2) r3 = r2 op2 (C1 op3 C2)

The instructions are combined in two steps. First the
non-constant source operand of I2 is replaced by the non-
constant source operand of I1. Therefore, r1 is replaced

r2f = MEM(r1i+8)

r1i = r1i + 4

r3f = r2f - 3.2

blt (r3f 10.0) L1

7 cycles / 1 iteration

0

1

3

6

Assembly IT

(b) Assembly Code

r2f = MEM(r1i+12)

r1i = r1i + 4

r3f = r2f - 3.2

blt (r2f 13.2) L1

5 cycles / 1 iteration

0

0

2

2

ITAssembly

(c) After Combining

i = i + 110

t = A(i+2) - 3.2

if (t.LT.10.0) goto 10

(a) Original Loop

L1:L1:

Figure 6: Example of operation combining.

by r2. If the destination and source registers for I1 are the
same, the positions of I1 and I2 are exchanged rather than
switching source operands. Second, the constant source
operands are evaluated according to the op1 and op2 opera-
tions. For this case, if both op1 and op2 are add operations,
C2 is replaced by C1 + C2.
Clearly, the combination of operations is limited to those

of the same precedence and data type (e.g., an add and
a multiply operation cannot be combined). The current
implementation allows the following operations on the left
to be combined with the operations on the right (i indicates
integer and f indicates
oating point):1

(add i, sub i)) (add i, sub i, compare i, load,
store, branch i)

(mul i)) (mul i)
(add f, sub f)) (add f, sub f, compare f,

branch f)
(mul f, div f)) (mul f, div f)

An example code segment to illustrate the e�ectiveness
of operation combining is presented in Figure 6a. Without
operation combining (Figure 6b), each iteration of the loop
requires 7 cycles to execute. However, the
ow dependence
between the �rst two instructions and the last two instruc-
tions can be eliminated with operation combining. Note
that the �rst 2 instructions must exchange positions when
operation combining is performed. After operation com-
bining, the execution time of each loop iteration is reduced
to 5 cycles.
Strength Reduction. Strength reduction is a common

technique employed by compilers to replace long latency in-
structions with one or more instructions which collectively
require less time. In many existing compilers, integer mul-
tiply by a compile-time constant is replaced by a sequence
of left shifts and adds [17]. For example, r2 = r1 � 10 can
be replaced by:

temp1 = r1 � 3
temp2 = r1 � 1
r2 = temp1 + temp2

1Note that if the evaluation of the constants during operation
combining results in an over
ow or under
ow the compiler does
not perform the transformation

r1f = rCf + rDf

r1f = r1f * rBf

r1f = r1f * rEf

r1f = r1f * rFf

rAf = r1f / rGf

0

3

6

9

12

22 cycles

Assembly IT

(b)

r1f = rCf + rDf

r2f = rBf * rEf

r3f = rFf / rGf

r1f = r1f * r2f

rAf = r1f * r3f

0

0

0

3

10

13 cycles

Assembly IT

(C) After Height
Reduction

Assembly
Code

A = B * (C + D) * E * F / G

(a) Original Source Code

Figure 7: Example of tree height reduction.

The applicability of this transformation depends on
whether the sequence of instructions generated by strength
reduction will execute in fewer cycles than the original in-
struction. The application of strength reduction is typically
limited in a scalar processor by this restriction. However,
many of the instructions generated during strength reduc-
tion are independent and can be executed concurrently on a
superscalar or VLIW processor. Therefore, there are more
opportunities to apply strength reduction for superscalar
and VLIW processors. In addition to applying strength
reduction for integer multiply, superscalar and VLIW pro-
cessors may bene�t from reduction of integer divide and
integer remainder by a compile-time constant.
Tree Height Reduction. Scalar processor compilers

typically generate code for arithmetic expressions by mini-
mizing both the total number of instructions and the total
number of temporary registers required. For superscalar
and VLIW processors, however, these methods often limit
performance by restricting parallel computation of individ-
ual components of an arithmetic expression. Tree height
reduction exposes ILP in the computation of an arithmetic
expression [10] [11]. Tree height reduction �rst constructs
an expression tree to represent the arithmetic expression.
The tree is then balanced to reduce the height. The height
represents the number of cycles to compute the expression
using a speci�c processor model.
The compiler used in this study uses a modi�ed version

of the algorithm proposed by Baer and Bovet [10] that ex-
amines intermediate code rather than source code. This
tree height reduction algorithm utilizes communicativity
and associativity to reduce the height of expressions using
-, +, *, /, (,). Note that this algorithm does not apply
distributive property. It also assumes all operations have
the same latency which is not true for the processor model
studied and therefore limits its e�ectiveness in this case.
We are currently examining more advanced techniques for
height reduction which utilize the distributive property and
allow di�erent latencies for operations.
An example arithmetic computation to illustrate the ef-

fectiveness of tree height reduction is presented in Fig-
ure 7a. With conventional code optimization techniques
(Figure 7b), the computation of the expression requires 22

cycles. With tree height reduction (Figure 7b), two mul-
tiply instructions and an add instruction can be executed
in parallel with the divide, thereby reducing the execution
time to 13 cycles.

3 Experimental Evaluation

In this section, the e�ectiveness of the compile-time trans-
formations to increase ILP for superscalar and VLIW node
processors is analyzed. The performance analysis is done
using 40 loop nests extracted from a range of supercom-
puter applications.

3.1 Methodology

The compiler transformations previously discussed have
been implemented in the IMPACT-I compiler. The
IMPACT-I compiler is a prototype optimizing compiler de-
signed to generated e�cient code for superscalar and VLIW
systems [14]. The code generation strategy used by the
compiler consists of superblock scheduling [18] and graph-
coloring-based register allocation. Superblock scheduling
is a global scheduling technique similar to trace schedul-
ing [12] [7] which reduces some of the compiler complexity
associated with inter basic block code reordering. The com-
piler also utilizes a machine description �le to generate code
for a parameterized superscalar/VLIW node processor.
For this study, the underlying processor microarchitec-

ture is assumed to have in-order execution with register in-
terlocking and deterministic instruction latencies (Table 1
in Section 2). The instruction set is a RISC assembly lan-
guage similar to the MIPS R2000 instruction set. The pro-
cessor is assumed to support non-excepting loads and
oat-
ing point instructions to enable the compiler to schedule
these instructions before previous branches which they are
control dependent on. The processor that is modeled has
an unlimited supply of registers, however the register allo-
cator attempts utilize the least number of registers required
for a given loop. Therefore, registers are reused as soon as
they become available. The e�ect of the transformations
on register utilization is analyzed in Section 3.2.
For each machine con�guration, the execution time of

each loop nest, assuming a 100% cache hit rate, is de-
rived using execution-driven simulation. In this analysis,
40 loop nests extracted from the PERFECT club bench-
mark suite [19], SPEC benchmark suite, and vector library
routines are used. Loop nests were selected from the high-
est execution frequency loop nests of each benchmark. A
description of each loop nest is presented in Table 2. The
Name column speci�es from which benchmark the loop
nest originated. The remaining information is speci�ed for
the innermost loop in the loop nest. The Size column in-
dicates the number of lines of FORTRAN source code in
the innermost loop. The Iters column shows the average
number of iterations executed in the innermost loop. The
Nest column speci�es the nesting depth of the innermost
loop. The Type column indicates whether the innermost
loop is DOALL, DOACROSS, or serial. This information

Name Sizey Iters Nest Type Conds
PERFECT
APS-1 2 64 2 doall no
APS-2 8 31 2 doall no
APS-3 2 776 1 doall no
CSS-1 6 67 1 serial yes
LWS-1 2 343 2 serial no
LWS-2 1 3087 2 serial no
MTS-1 2 423 2 serial yes
MTS-2 2 24 3 serial yes
NAS-1 22 1500 1 doall no
NAS-2 5 1520 1 doall no
NAS-3 6 6000 1 doall no
NAS-4 2 1204 1 serial no
NAS-5 71 1500 2 serial no
NAS-6 24 635 2 doacross no
SDS-1 1 25 2 serial no
SDS-2 1 32 3 serial no
SDS-3 1 25 2 serial no
SDS-4 3 25 2 doacross no
SRS-1 3 287 1 doall no
SRS-2 5 287 2 doacross no
SRS-3 1 287 2 doall no
SRS-4 9 87 3 doall no
SRS-5 21 287 2 doall no
SRS-6 1 287 2 serial no
TFS-1 11 89 2 doall no
TFS-2 7 120 2 doacross no
TFS-3 2 49 3 doall no
WSS-1 1 96 2 doall no
WSS-2 4 39 2 doacross no
SPEC
doduc-1 38 13 1 serial yes
matrix300-1 1 300 1 doall no
nasa7-1 1 256 3 doall no
nasa7-2 3 1000 3 doacross no
tomcatv-1 21 255 2 doall no
tomcatv-2 8 255 2 serial yes
VECTOR
add 1 1024 1 doall no
dotprod 1 1024 1 serial no
maxval 3 1024 1 serial yes
merge 4 1024 1 doall yes
sum 1 1024 1 serial no

y Speci�es number of lines of FORTRAN source code.

Table 2: Description of loop nests.

was derived by parallelizing each application with KAP [3].
Finally the Conds column states whether the innermost
loops contains conditional branches.

3.2 Results

The performance of varying levels of compiler transforma-
tions is compared for superscalar/VLIW node processors
with issue rates 2, 4 and 8. The issue rate is the maximum
number of instructions the processor can fetch and issue
per cycle. No limitation has been placed on the combi-
nation of instructions that can be issued in the same cy-
cle. Five levels of compiler transformations are evaluated:
conventional scalar processor optimizations (Conv); loop
unrolling (Lev1); register renaming (Lev2); operation com-
bining, strength reduction, and height reduction (Lev3);

AA
AA
AA

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA

A
A
A

AA
AA
AA

A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A

A
A
A

Speedup Range

N
um

be
r

of
 L

oo
ps

0

5

10

15

20

25

0.00-1.24 1.25-1.49 1.50-1.74 1.75-1.99 2.00-2.49 2.50-2.99 3.00+

Conv

Lev1

AALev2

AALev3

Lev4

Figure 8: Speedup distribution for an issue-2 super-
scalar/VLIW processor.

AA AA
AA
AA
AA

AA A
A

A
A
A
A

A
A
A
A
A
A

AA
AA

AA
AA

A A
A
A

A
A
AA
AA

AA
AA
AA

AA
AA
AA
AA
AA
AA

A
A

A
A

Speedup Range

N
um

be
r

of
 L

oo
ps

0

5

10

15

20

25

0.00-1.49 1.50-1.99 2.00-2.49 2.50-2.99 3.00-3.49 3.50-3.99 4.00-4.99 5.00-5.99 6.00+

Conv

Lev1

AALev2

AALev3

Lev4

Figure 9: Speedup distribution for an issue-4 super-
scalar/VLIW processor.

accumulator variable expansion, induction variable expan-
sion, and search variable expansion (Lev4). Each succes-
sive level includes all transformations from previous lev-
els. The conventional scalar transformations consist of a
complete set of classical local, global, and loop transforma-
tions, including constant propagation, copy propagation,
common subexpression elimination, constant folding, oper-
ation folding, redundant memory access elimination, dead
code removal, loop invariant code removal, loop induction
variable strength reduction, and loop induction variable
elimination [2].

The base con�guration for all speedup calculations is an
issue-1 processor with conventional compiler transforma-
tions. Note that since we are varying both compiler trans-
formation level and issue rate of a superscalar processor,
super-linear speedups may be reported. Thus, for example
an issue-4 processor may achieve greater than 4x speedup
over the base con�guration.

E�ect of Transformations on Speedup. The
speedup distributions for the loop nests achieved by vary-
ing the degree of compiler transformations for an issue-2,
issue-4, and issue-8 superscalar/VLIW processor are shown
in Figures 8, 9, and 10, respectively. The number of loops
with a particular transformation level whose speedup falls
within the given range is plotted.

For all �gures, the e�ectiveness of increasing degrees of
compiler transformations is clearly shown. With conven-

A AA
AA
AA

AA
AA

A
A

A
A

A
A
AA
AA
AA

AA
AA

AA A
A

A
A

A
A
AA
AA

AA AA
AA

A
A
A

A
A

Speedup Range

N
um

be
r

of
 L

oo
ps

0

5

10

15

20

25

30

35

0.00-1.99 2.00-2.49 2.50-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00-7.99 8.00+

Conv

Lev1

AALev2

AALev3

Lev4

Figure 10: Speedup distribution for an issue-8 super-
scalar/VLIW processor.

tional compiler optimization, few loops achieve speedup
beyond the �rst several speedup ranges. Loop unrolling re-
sults in small speedup increases, but the inability to remove
data dependences among instructions in di�erent unrolled
bodies limits the e�ectiveness of loop unrolling alone. (It
should be noted loops are unrolled a maximum of 8 times or
until a maximum loop body size is reached, whichever limit
is reached �rst.) Register renaming applied in addition to
loop unrolling results in substantial speedup increases for
all processors. For example with an issue-4 processor, 29
loops achieve 3x or greater speedup and 18 loops achieve 4x
or greater speedup. Moderate performance improvements
are observed with operation combining, strength reduc-
tion, and height reduction additionally applied. Accumula-
tor variable expansion, induction variable expansion, and
search variable expansion provide further large improve-
ments in the performance of superscalar/VLIW processors.
For example with an issue-4 processor, 36 loops achieve 3x
or larger speedup and 23 of those 4x or larger speedup.

The need for higher levels of transformations increases as
the processor issue rate increases. With the processor ca-
pable of executing more instructions concurrently, there is
more demand on the compiler to expose ILP. For an issue-
2 processor, loop unrolling and register renaming are su�-
cient compiler transformations to fully utilize the processor
resources. For an issue-4 processor and issue-8 processor,
Lev3 and Lev4 transformations provide additional ILP for
loops in which unrolling and renaming alone do not expose
su�cient ILP.

Induction variable expansion is the most often applied
transformation. Almost all unrolled loops contain depen-
dent induction variable computations which may be trans-
formed with induction variable expansion. Accumulator
variable expansion and search variable expansion are only
applied for certain types of loops. However, these transfor-
mations result in the largest speedup increases beyond un-
rolling and renaming. Tree height reduction and operation
combining are consistently applied in many loop bodies to
reduce the dependence height within an iteration. Strength
reduction is the least e�ective transformation. However,
this is primarily due to the assumed processor model. In
this study, integer multiply and divide have short latencies

A A
A
A
A
A
A

AA
AA
AA
AA
AA
AA

A
A
A

A
A
A
A
A
A
A
A
A

AA
AA
AA

A AA
AA
AA
AA
AA
AA

A
A
A
A
A
A

A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

A
A
A

A
A

Register Usage

N
um

be
r

of
 L

oo
ps

0

2

4

6

8

10

12

14

16

18

0-15 16-31 32-47 48-63 64-95 96-127 128+

Conv

Lev1

AALev2

AALev3

Lev4

Figure 11: Register usage distribution for an issue-8 super-
scalar/VLIW processor.

(3 and 10 cycles), and only the issue rate limits the num-
ber of multiply/divide instructions which can be issued in
a single cycle. With a more restricted processor model,
strength reduction is expected to be a more e�ective trans-
formation. Overall, the average speedup for an issue-4 and
issue-8 processor with Lev3 and Lev4 transformations in-
creases from 3.73 to 4.35 and 5.10 to 6.68, respectively.

E�ect of Transformations on Register File Usage.

The register �le usage distribution with each level of com-
piler transformations is shown in Figure 11 for an issue-8
superscalar/VLIW processor. Again, the number of loops
with a particular transformation level which utilizes the
speci�ed range of registers is plotted. The register usage
reported is the sum of the total integer and
oating point
registers utilized in the loop nest. The largest increase is
due to register renaming. The average number of regis-
ters used in all loops increases from 28 to 57 from Lev1
to Lev2 transformations. Lev3 and Lev4 transformations
provide only moderate increases in the average number of
registers to 65 and 71, respectively. In terms of register us-
age, Lev3 and Lev4 transformations are relatively e�cient
transformations to expose ILP. Therefore, a production su-
perscalar/VLIW compiler can make use of Lev3 and Lev4
transformations to achieve a desired level of performance
while controlling register usage. The number of registers
utilized with all transformations, however, is not unreason-
able. With Lev3 and Lev4 transformations, 37 of the 40
loops utilize fewer than 128 total integer and
oating point
registers.

E�ect on DOALL and Non-DOALLLoops. The in-
dividual speedup and register �le usage distributions of an
issue-8 superscalar/VLIW processor for the DOALL loops
are shown in Figures 12 and 13. For the DOALL loops,
loop unrolling and register renaming expose a large amount
of ILP. All iterations of a DOALL loop are independent,
therefore unrolling and renaming enable the scheduler to
almost completely overlap the execution of multiple loop
iterations. Register �le usage increases accordingly with
unrolling and renaming to account for the large number of
temporary values which are live. The tree height reduction
and induction variable expansion transformations provide
for the performance increases observed with Lev3 and Lev4

AA
AA
AA

AA
AA
AA
AA

A
A
A
A

A
A
A
A
A
A
A

A
A
A
A

A
A
A

A
A

A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

Speedup Range

N
um

be
r

of
 L

oo
ps

0

2

4

6

8

10

12

14

0.00-1.99 2.00-2.49 2.50-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00-7.99 8.00+

Conv

Lev1

ALev2

A
ALev3

Lev4

Figure 12: Speedup distribution of DOALL loops only for
an issue-8 superscalar/VLIW processor.

AA
AA

AA
AA
AA
AA
AA
AA
AA

A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA

A
A
A
A
A
A
A

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A

AA
AA
AA
AA

Register Usage

N
um

be
r

of
 L

oo
ps

0

1

2

3

4

5

6

7

0-15 16-31 32-47 48-63 64-95 96-127 128+

Conv

Lev1

AALev2

AALev3

Lev4

Figure 13: Register usage distribution of DOALL loops
only for an issue-8 superscalar/VLIW processor.

transformations. Tree height reduction reduces the depen-
dence length within a single iteration of several loops with
long chains of arithmetic calculations. Induction variable
expansion removes the dependences between address cal-
culations and memory accesses to enable a more complete
overlap of unrolled loop bodies. In general, though, trans-
formations beyond loop unrolling and register renaming are
not pro�table for DOALL loops.

The individual speedup and register �le usage distribu-
tions of an issue-8 superscalar/VLIW for the non-DOALL
loops are shown in Figures 14 and 15. The non-DOALL
loops consist of both the DOACROSS and serial loops
shown in Table 2. For these loops, loop unrolling and regis-
ter renaming can only expose limited amounts of ILP. De-
pendences within each loop iteration and recurrence depen-
dences across loop iterations restrict the amount of avail-
able ILP. Lev3 transformations provide small performance
improvements over Lev2 transformations. In many cases,
the dependences removed with Lev3 transformations are
not on the critical path of the loop, and therefore do not
impact performance a large amount. Lev4 transformations,
on the other hand, provide the largest performance im-
provements for the non-DOALL loops. For many loops,
the expansion transformations remove recurrence depen-
dences on the loops critical path. By removing these re-
currence not only is ILP increased, but the e�ectiveness

A
A
AA
AA
AA
AA
AA

AA
AA
AA

A
A

A A AA
AA

AA
AA

AA
AA

A
A
A

A
A

A
A
AA
AA

AA
AA

AA
AA

A A
A

Speedup Range

N
um

be
r

of
 L

oo
ps

0

5

10

15

20

25

0.00-1.99 2.00-2.49 2.50-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00-7.99 8.00+

Conv

Lev1

AA
AALev2

AA
AA

Lev3

Lev4

Figure 14: Speedup distribution of non-DOALL loops only
for an issue-8 superscalar/VLIW processor.

A
A

A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA

A
A
A

A
A
A
A
A
A
A
A

A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A

A
A
A

AA
AA
AA
AA
AA
AA
AA

A
A

Register Usage

N
um

be
r

of
 L

oo
ps

0

2

4

6

8

10

12

0-15 16-31 32-47 48-63 64-95 96-127 128+

Conv

Lev1

AALev2

AALev3

Lev4

Figure 15: Register usage distribution of non-DOALL loops
only for an issue-8 superscalar/VLIW processor.

of other transformations such as operation combining and
tree height reduction becomes more apparent with fewer
dependences present.
Register usage of the non-DOALL loops is less than that

of the DOALL loops due to the reduced overlap among
unrolled loop bodies. With the exception of 3 loops, all
the non-DOALL loops utilize fewer than 96 total integer
and
oating point registers with Lev4 transformations.

4 Conclusion

In this paper, it was shown that the amount of ILP avail-
able to superscalar or VLIW node processors in a high-
performance system can be limited with conventional com-
piler optimization techniques. The results show that in-
creasing execution resources in superscalar and VLIW node
processors yields little performance improvement unless
loop unrolling and register renaming are applied. These
two transformations are found to expose su�cient ILP for
DOALL loops. However, more advanced transformations
are required in order for serial and DOACCROSS loops to
fully bene�t from the increased execution resources. The
following advanced transformations were studied and found
to satisfy most of this need: accumulator variable expan-
sion, induction variable expansion, search variable expan-
sion, operation combining, strength reduction, and tree
height reduction.

With conventional optimization taken as a baseline, loop
unrolling and register renaming yields an overall average
speedup of 5.1 on an issue-8 processor. Broken down by
loop type, the DOALL loops have an average speedup of
6.8 while the serial and DOACROSS loops have an aver-
age speedup of 3.7. These speedup numbers verify that
these two transformations are su�cient for DOALL loops
but that more transformations are needed for serial and
DOACROSS loops. Applying the advanced transforma-
tions, the DOALL loops average speedup increases to 7.8
and the serial and DOACROSS speedup increases greatly
to 5.8.
A side e�ect of the ILP transformations is to increase

the register usage of loops. In this study, an average of
2.6 times more registers are required after all ILP code
transformations are applied. However, the total number of
registers required by the loops after ILP transformations
is not unreasonable. For this study, 37 of 40 loops require
fewer than 128 total registers after all transformations.

Acknowledgements

The authors would like to thank Sadun Anik and all mem-
bers of the IMPACT research group for their comments
and suggestions. Special thanks to the anonymous refer-
ees whose comments and suggestions helped to improve the
quality of this paper signi�cantly. This research has been
supported by JSEP under Contract N00014-90-J-1270, Dr.
Lee Hoevel at NCR, the AMD 29K Advanced Processor De-
velopment Division, Matsuhita Electric Industrial Corpo-
ration Ltd., Hewlett-Packard, and NASA under Contract
NASA NAG 1-613 in cooperation with ICLASS.

References

[1] J. A. Fisher and B. R. Rau, \Instruction-level parallel
processing," Science, vol. 253, pp. 1233{1241, Septem-
ber 1991.

[2] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-
ples, Techniques, and Tools. Reading, MA: Addison-
Wesley, 1986.

[3] Kuck and Associates, Inc., Champaign, IL, KAP

User's Guide, November 1988.

[4] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure,
and M. Wolfe, \Dependence graphs and compiler opti-
mizations," in Proceedings of the 8th ACM Symposium

on Principles of Programming Languages, pp. 207{
218, January 1981.

[5] T. Nakatani and K. Ebcioglu, \Combining as a compi-
lation technique for VLIW architectures," in Proceed-

ings of the 22nd International Workshop on Micropro-

gramming and Microarchitecture, pp. 43{55, Septem-
ber 1989.

[6] K. Anantha and F. Long, \Code compaction for par-
allel architectures," Software Practice and Experience,
vol. 20, pp. 537{554, June 1990.

[7] J. Ellis, Bulldog: A Compiler for VLIW Architectures.
Cambridge, MA: The MIT Press, 1985.

[8] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Pa-
pworth, and P. K. Rodman, \A VLIW architecture
for a trace scheduling compiler," in Proceedings of the

2nd InternationalConference on Architectural Support

for Programming Languages and Operating Systems,
pp. 180{192, April 1987.

[9] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle,
\The Cydra 5 departmental supercomputer," IEEE

Computer, pp. 12{35, January 1989.

[10] J. L. Baer and D. P. Bovet, \Compilation of arithmetic
expressions for parallel computations," in Proceedings

of IFIP Congress, pp. 34{46, 1968.

[11] D. J. Kuck, The Structure of Computers and Compu-

tations. New York, NY: John Wiley and Sons, 1978.

[12] J. A. Fisher, \Trace scheduling: A technique for global
microcode compaction," IEEE Transactions on Com-

puters, vol. c-30, pp. 478{490, July 1981.

[13] M. A. Schuette and J. P. Shen, \An instruction-
level performance analysis of the Multi
ow TRACE
14/300," in Proceedings of the 24th International

Workshop on Microprogramming and Microarchitec-

ture, pp. 2{11, November 1991.

[14] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J.
Warter, and W. W. Hwu, \IMPACT: An architectural
framework for multiple-instruction-issue processors,"
in Proceedings of the 18th International Symposium

on Computer Architecture, pp. 266{275, May 1991.

[15] M. S. Lam, \Software pipelining: An e�ective schedul-
ing technique for VLIW machines," in Proceedings of

the ACM SIGPLAN 1988 Conference on Program-

ming Language Design and Implementation, pp. 318{
328, June 1988.

[16] A. Aiken and A. Nicolau, \Optimal loop paralleliza-
tion," in Proceedings of the ACM SIGPLAN 1988

Conference on Programming Language Design and

Implementation, pp. 308{317, June 1988.

[17] R. M. Stallman, Using and porting GNU CC. Free
Software Foundation, Inc., 1989.

[18] W. W. Hwu and et. al , \The superblock: An e�ec-
tive structure for VLIW and superscalar compilation,"
tech. rep., Center for Reliable and High-Performance
Computing, University of Illinois, Urbana, IL, Febru-
ary 1992.

[19] M. Berry and et. al , \The PERFECT club bench-
marks: E�ective performance evaluation of supercom-
puters," Tech. Rep. CSRD-827, Center for Supercom-
puting Research and Development, University of Illi-
nois, Urbana, IL, May 1989.

