
HW2 – Frequent Path Loop 
Invariant Code Motion

Sunghyun Park

Sep 23, 2019



Loop Invariant Code Motion (LICM)

1

for (int i = 0; i < n; i++) {
x = y + z;
a[i] = 6 * i + x * x;

}

Their values don’t 
change within the loop



Loop Invariant Code Motion (LICM)

2

for (int i = 0; i < n; i++) {
x = y + z;
a[i] = 6 * i + x * x;

}

x = y + z;
t1 = x * x;
for (int i = 0; i < n; i++) {

a[i] = 6 * i + t1;
}

• Move operations whose source 
operands do not change within 
the loop to the loop preheader
– Execute them only 1x per 

invocation of the loop
– Be careful with memory 

operations!
– Be careful with ops not executed 

every iteration

• LICM code exists in LLVM!
– /lib/Transforms/Scalar/LICM.cpp



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

3

1

1

99



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

4

1

1

Cannot perform LICM on load, because of
the store-load dependency

99



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

5

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

99



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

6

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence 

between loads and stores

99



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

7

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence 

between loads and stores
2) Perform LICM on load

99



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

8

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence 

between loads and stores
2) Perform LICM on load
3) Perform LICM on any consumers of 

the load that become invariant

99



Your Assignment: Frequent Path LICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)
r4 = load(r1)

r7 = r4 * 3
r8 = r2 + 7

store (r3, r8)

9

1

1

Cannot perform LICM on load, because of
the store-load dependency

But… profile data says that the store rarely

happens

Frequent Path LICM:
1) Ignore infrequent dependence 

between loads and stores
2) Perform LICM on load
3) Perform LICM on any consumers of 

the load that become invariant
4) Insert fix-up code to restore correct 

execution

99



Your Assignment: Frequent Path LICM

r1 = &A
r4 = load(r1)

r7 = r4 * 3

r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)
r4 = load(r1)

r7 = r4 * 3
r8 = r2 + 7

store (r3, r8)

10

1

1

After FPLICM

r1 = &A

r4 = load(r1)
r7 = r4 * 3
r3 = r3 + r5

r2 = r2 + 1
store (r2, r1)

r8 = r2 + 7
store (r3, r8)

1

1

Before FPLICM

99 99



HW2: Frequent Path (FP) LICM

11

• Identify the FP within the loop
• Find store instructions among all infrequent BBs and their

dependent load instructions in frequent BBs
destination operand of infrequent store = source operand of frequent load

• For simplicity, don’t worry about pointer for this assignment. 

• Create a heuristic that determines to perform FP LICM or not.
• Smart heuristic should apply optimization when it’s profitable. 

• Hoist the profitable FP invariants.
• Load instruction
• Consumers of the load that become invariant* (For bonus points)

• Replicate all hoisted instructions in the infrequent path



HW2: Useful Resources

12

• run.sh
– List of commands used in HW2

– Check correctness of your pass!

• Project Template
– HW2PASS.cpp: Mostly from current LLVM LICM Implementation.

– runOnLoop(…) hoistRegion(…) hoist(…)

• Benchmarks
– 6 correctness tests + README (Required)

• Only need to hoist the dependent load instructions

• Must generate the correct output after applying your FPLICM pass

– 4 performance tests + README (Optional)
• Hoist as many instructions as possible

• Correctness first, then the performance



LLVM Code of Interest

• The following slides present code from the LLVM codebase 
that may help you with HW2.

• Disclaimers:

– Use of following API is your choice.  There are many ways 
to do this assignment.

– You are free to use any other code that exists in LLVM 8.0.1
or that you develop.

– Read the documentation/source before asking for help!

http://llvm.org/docs/ProgrammersManual.html#helpful-
hints-for-common-operations

13

http://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations


Code: Manipulating Basic Blocks

• SplitBlock(…) splits a BB at a 
specified instr, returns ptr to 
new BB that starts with the 
instr, connects the BBs with 
an unconditional branch

• SplitEdge(…) will insert a BB 
between two specified BBs

• Code found in:
– <llvm-src-

root>/include/llvm/Transforms/U

tils/BasicBlockUtils.h

– <llvm-src-

root>/lib/Transforms/Utils/Basi

cBlockUtils.cpp

// I is an Instruction*

BasicBlock *BB1 = I->getParent();

BasicBlock *BB3 = 

SplitBlock(BB1, I);

BasicBlock *BB2 = 

SplitEdge(BB1, BB3);

14



Code: Creating and Inserting 
Instructions

• Various ways to create & insert 
instructions

• Hint: Instructions have a 
clone() member function

• See specific instruction 
constructors/member 
functions in:
– <llvm-src-

root>/include/llvm/IR/Instruction
s.h

• See general instruction 
functions available to all 
instructions in:
– <llvm-src-

root>/include/llvm/IR/Instruction
.h

// 1) create load, insert at end of

//    specified basic block

LoadInst *LD = 

new LoadInst(Val, 

“loadflag”,

BB1);

// 2) create branch using Create

//    method, insert before BB1’s

//    terminating instruction

Branch::Create(BB1, BB2, flag, 

BB1->getTerminator());

// 3) create a store inst that stores

//    result of LD to some variable

//    (related to next slide)

StoreInst *ST =

new StoreInst(LD, var);

//    inserting store into code

ST->insertAfter(LD);
15



Code: Creating Variables

• Use AllocaInst to 
allocate memory space 
on the stack.

// 1) Create a variable in the

//    function Entry block

AllocaInst *Val = new AllocaInst(

I->getType(),

0,

Entry->getTerminator()

);

// 2) store to the variable

StoreInst *ST = new StoreInst(

Result,

Val,

Entry->getTerminator()

);

16



Important: Maintaining SSA Form

• Static Single Assignment form requires unique destination 
registers for each instruction

– Replicated instructions in your infrequent BB will write to 
different regs compared to the instructions in the 
preheader!

– Store results of hoisted instrs to stack variables (see prev. 
slide)

– Make sure AllocaInst’s are in function’s entry BB!

17



General Notes Regarding HW2

• Start early!

• Will be released on 9/25 (Wed)

• Make sure your optimization doesn’t break a program!

• Start with script/template.

• Try the bonus part

• Running/Debugging

– Revisit information from LLVM overview slides

• Performance Competition: Generate correct AND fast bitcode

18



Temporary GSI

• Ze Zhang (zezhang@umich.edu)

• 9/26 (Thu), 9/27(Fri), 10/1 (Tue)

• Office hours/location will be same!

19


