
Bitwidth Aware Global Register 
Allocation

By Sriraman Tallam and Rajiv Gupta

Presented by Will Wendorf, Ben Stoler, and Bing Schaefer



Outline

● Motivation
● Implementation

○ Live Range Analysis
○ Packing Variables into Registers

● Results
● Evaluation



Motivation
Consider the following code. How many registers are need?

int main() {
char a = ‘a’, b = ‘b’, c = ‘c’, d = ‘d’;
cout << a << b << c << d << “\n”;

}



Motivation
Consider the following code. How many registers are need?

int main() {
char a = ‘a’, b = ‘b’, c = ‘c’, d = ‘d’;
cout << a << b << c << d << “\n”;

}

4 registers



Problems with Register Underutilization
● Having a large register file causes higher power usage

○ 10 - 25% more power

● Higher register pressure causes more memory spills
○ Causes extra load and stores

● May require multiple cycles to access physical register content



Motivation

Registers are underutilized if we constrain each register to one variable

● Especially with 64-bit, only fully utilized by doubles or long ints
● e.g. 63/64 bits wasted for boolean variables

Ex. for (int i = 0; i < 28; ++i) { cout << i << endl; }

0 ... 0 1 1 1 0 0



Motivation

Registers are underutilized if we constrain each register to one variable

● Especially with 64-bit, only fully utilized by doubles or long ints
● e.g. 63/64 bits wasted for boolean variables

Ex. for (int i = 0; i < 28; ++i) { cout << i << endl; }

0 ... 0 1 1 1 0 0



SPEC 2000 Benchmark Suite Width Distribution



Solution? Register Packing!
Multiple results can be stored within a single physical register!

int main() {
char a = ‘a’, b = ‘b’, c = ‘c’, d = ‘d’;
cout << a << b << c << d << “\n”;

}

1 32-bit register:

‘a’ ‘b’ ‘c’ ‘d’



Outline

● Motivation
● Implementation

○ Live Range Analysis
○ Packing Variables into Registers

● Results
● Evaluation



2 Steps of Register Packing
1. Live Range Analysis

○ Which bits are live at certain points?

2. Packing Variables into Registers
○ How do we assign variables into physical registers?



Live Range Analysis
Goal: Determine which bits in which variables are live at point p.

1. Apply forward analysis to find leading and trailing zero bits
2. Apply backward analysis to find dead bits

1 int A, B, C

2 A = 2147483647

3 C = A

4 A = A >> 16

5 B = A

B and A only have 16 bits 
live after statement 5 while C 
has all 32 bits live. 



Dead Bits and Live Range Width
● Dead bits: Bits that will not be used after a given point
● Live Range Width: Bits that are live at point p in a program.

○ Split into leading, middle and trailing sections
○ Usually due to bit shifts and bitwise operations

Dead Live Dead

Leading Bits Middle Bits Trailing Bits



Live Range Analysis Example



Packing Variables into Registers - Example



Packing Variables into Registers - Algorithm
● Shape of live ranges determine if the live ranges can be coalesced
● Node labeling: take maximum bitwidth of the variable in its live range
● Edge labeling: take maximum bitwidth of each node in their interfering range



Packing Variables into Registers - Algorithm
● Shape of live ranges determine if the live ranges can be coalesced
● Node labeling: take maximum bitwidth of the variable in its live range
● Edge labeling: take maximum bitwidth of each node in their interfering range



Packing Variables into Registers - Algorithm
● Coalesce sets of nodes in the 

interference graph
● Priority based - only coalesce 

if colorability is not worsened
● Trial and error approach for 

detecting if worsened



Outline

● Motivation
● Implementation

○ Live Range Analysis
○ Packing Variables into Registers

● Results
● Evaluation



Results



Results - Coalescing
● BU = bitwidth unaware, one 

variable per register
● NC = naive coalescing, uses 

declared width of variables
● OC = “our” coalescing, using BSA 

analysis



Evaluation
● Seems promising, especially as a conservative approach

○ Could be furthered using value profiling and a speculative approach

● Further optimization possible, as in Nandivada and Barik which allows for 

optimal register packing in polynomial time

● Focused primarily on embedded processor ISAs which have instructions for 

directly accessing bit sections
○ For more general ISAs, would have to insert extra packing/unpacking masking code

https://dl.acm.org/citation.cfm?id=2509427


Conclusion
● Underutilization of registers is common

○ Most variables do not use their declared bitwidth

● We can thus have variables share a register via packing

● This can prevent spills to memory and reduce register pressure


