Bitwidth Aware Global Register
Allocation

By Sriraman Tallam and Rajiv Gupta

Presented by Will Wendorf, Ben Stoler, and Bing Schaefer

Outline

e Motivation

e [mplementation

o Live Range Analysis
o Packing Variables into Registers

e Results
e Evaluation

Motivation

Consider the following code. How many registers are need?

int main() {
char a = ‘a@’, b = b’, c = c’, d = “d’;
cout << a << b << c << d << “\n”;

Motivation

Consider the following code. How many registers are need?

4 registers

int main() {
char a = ‘a@’, b = b’, c = c’, d = “d’;
cout << a << b << c << d << “\n”;

Problems with Register Underutilization

e Having a large register file causes higher power usage
o 10 - 25% more power

e Higher register pressure causes more memory spills
o Causes extra load and stores

e May require multiple cycles to access physical register content

Motivation

Registers are underutilized if we constrain each register to one variable

e Especially with 64-bit, only fully utilized by doubles or long ints
e e.g. 63/64 bits wasted for boolean variables

Ex. for (inti=0; i< 28; ++i) { cout << i << endl; }

Motivation

Registers are underutilized if we constrain each register to one variable

e Especially with 64-bit, only fully utilized by doubles or long ints
e e.g. 63/64 bits wasted for boolean variables

Ex. for (inti=0; i< 28; ++i) { cout << i << endl; }

SPEC 2000 Benchmark Suite Width Distribution

abelany |BJO |
abelany 44
abelsany IN|

asmdnm

wims

pubw

'@ 16 bits @ 32 bits 048 bits 0 64 bits)

Solution? Register Packing!

Multiple results can be stored within a single physical register!

int main() {
char a = ‘a’, b = b’, c = °c’, d = “d’;
cout << a << b << ¢ << d << “\n”;

¥

1 32-bit register:

(a) (b) (C) (d)

Outline

e |Implementation

o Live Range Analysis
o Packing Variables into Registers

2 Steps of Register Packing

1. Live Range Analysis
o Which bits are live at certain points?

2. Packing Variables into Registers
o How do we assign variables into physical registers?

Live Range Analysis

Goal: Determine which bits in which variables are live at point p.

1. Apply forward analysis to find leading and trailing zero bits
2. Apply backward analysis to find dead bits

11int A, B, C B and A only have 16 bits

2 A = 2147483647 live after statement 5 while C
3C=A has all 32 bits live.

4 A=A > 16

5B =A

Dead Bits and Live Range Width

e Dead bits: Bits that will not be used after a given point

e Live Range Width: Bits that are live at point p in a program.

o Splitinto leading, middle and trailing sections
o Usually due to bit shifts and bitwise operations

Leading Bits Middle Bits Trailing Bits

Live Range Analysis Example

int A; — 32 bits
short D, E; — 16 bits
char B, C'; -8bits
1. E = ...

2. D=FEF+1

3.D=D >> 14

4, A = (E << 4)|0.1?f
this was E’s last use.

5.use A

6.A=A>>12

T BS=

8.C = (B&0z7f) +1

9.last use of A

10. last use of B&0x80
11. last use of C

12. last use of D

Zero

Bit
Sections

. E: (0,0)

. D: (0,0)
. D: (4,0)
LA (12,0

. A:(24,0)
. B:(0,0)
. C:(0,0)

O 00NN R W —

Dead

Bit Sections

. A:B:C:D:E; be fore 1
. A:B:C:D

. A:B:C

. A:B:C:D(4,0)

. A(12,0):B:C:D(4,0):E
. A(12,0):B:C:D(4,0):E
. A(24,0):B:C:D(4,0):E
. A(24,0):C:D(4,0):E

. A(24,0):B(0,7):D(4,0):E
. A:B(0,7):D(4,0):E

10. A:B:D(4,0):E

11. A:B:C:D(4,0):E

12. A:B:C:D:E

Reliie BN B R I S e =]

Packing Variables into Registers - Example

9.lastuseof A

10. last use of B&0xz80
11. last use of C

12. last use of D

I B = ...
2. D=F+1
3. B =D 5>>4
4. A= (E << 4)|0zf
s this was E’s last use.
5.use A
6.A=A>>12
5 B = o
8.C = (B&0z7f)+ 1

RO._15 — -

2. R16..31 = Ro..15 +1
. Ri6..27 = R20..31

(98}

Roo. .31 = Ri6..27

4. Ra. 19 = Ro..15; Ro..3 = 0z f
5.use Rg. .19

6. Ro..7 = R12..19

1. R8._15 = ...

Ri6 = R15
8. Rg..15 = Rg..14a + 1
9.last use of Ro..7
10. last use of Ris
11.last use of Rg. .15
12. last use of R2o..31

. Rlg..15 = ...

. Rlie..31 = Rlg..15 + 1
. Rl16..27 = Rl20..31
R24 .19 = Rlg..15; R29..3 =0z f
use R2g. 19

R2¢g..7 = R212. 19
R2g.45 = ...

R216.23 = R2g8..14+ 1
9.last use of R20..7

10. last use of R215

11. last use of R216..23
12. last use of Rlig. 27

® N oL R W

Original code.

Code using one register.

Code using two registers.

Packing Variables into Registers - Algorithm

Shape of live ranges determine if the live ranges can be coalesced

o
e Node labeling: take maximum bitwidth of the variable in its live range
e Edge labeling: take maximum bitwidth of each node in their interfering range

16 16 MAX(A)=32

- ——— P

&

(Ba,Ab)

(16,16)

B (o

MAX(B)=32

Q

Node labelling. Edge labelling.

16 16

Packing Variables into Registers - Algorithm

Shape of live ranges determine if the live ranges can be coalesced
Node labeling: take maximum bitwidth of the variable in its live range
Edge labeling: take maximum bitwidth of each node in their interfering range

16 16 MAX(A)=32

- ——— P

&

N
(Ba,Ab)
(16,16)

<
Nt
(2

MAX(B)=32

Q

Node labelling. Edge labelling.

Packing Variables into Registers - Algorithm

e (Coalesce sets of nodes in the (20,12) (20,12)

interference graph
e Priority based - only coalesce
if colorability is not worsened
e Trial and error approach for
detecting if worsened

Outline

e Motivation

e [mplementation

o Live Range Analysis
o Packing Variables into Registers

e Results
e Evaluation

Results

Benchmark Number of Nodes Number | Live Range Widths (bits)
Function Before | After of live | Declared | Max Size
reTneaer = B ranges Size After BSA
adpcm.decoder
adpcm_coder 20 17 T £y 7
g721.update 22 15 2 32 1
g721.fmult 8 / adpcm. coder
g721.quantize 8 6 0 32 1
thres.memo 6 4 1 32 8
thres.coalesce 10 5 1 23] 3
thres.homogen 12 7 g721.update
thres.clip 7 5 7 16 16
SoftFloat.mul32To64 14 12 1 32 3
NewLife.main 8 5 4 16 5
MotionTest .main 9 7 1 16 1
Bubblesort.main 15 11 1 72§ Frult .
Histogram.main 13 11 3 J 3 6
crc.main 12 11 1 16 12
dh.encodelastquantum 8 5) 16 4

Results - Coalescing

e BU = bitwidth unaware, one
variable per register

e NC = naive coalescing, uses
declared width of variables

e OC ="“our” coalescing, using BSA
analysis

Benchmark Registers Used
Function BU | NC [OC
adpcm_decoder 15 15 13
adpcm_coder 18 18 15
g721.update 15 12 10
g721.fmult 4 3 3
g721.quantize 6 5 5
thres.memo 6 6 4
thres.coalesce 10 10 D
thres.homogen 11 11 6
thres.clip 6 6 4
SoftFloat .mul32To64 8 7 7
NewLife.main 7 7 4
MotionTest .main 6 6 3
Bubblesort .main 9 9 7
Histogram.main 7 7 6
crc.main 10 10 9
dh.encodelastquantum 7 7 4

Evaluation

e Seems promising, especially as a conservative approach
o Could be furthered using value profiling and a speculative approach

e Further optimization possible, as in Nandivada and Barik which allows for

optimal register packing in polynomial time
e Focused primarily on embedded processor ISAs which have instructions for

directly accessing bit sections

o For more general ISAs, would have to insert extra packing/unpacking masking code

https://dl.acm.org/citation.cfm?id=2509427

Conclusion

e Underutilization of registers is common

o Most variables do not use their declared bitwidth

e \We can thus have variables share a register via packing

e This can prevent spills to memory and reduce register pressure

