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Goal: Verifying Code Rules
● Code Rules

○ In one execution, a file must be closed after be opened.
○ In one execution, allocated memory must be freed once.
○ …

● Violation of code rules leads to …
○ Crashes
○ Resource leaks
○ Vulnerabilities
○ ...



Verifying Code Rules: Approaches
● Static Analysis 

○ Data/control dependency analysis, etc
○ High coverage but high false positive rate
○ Hard to capture runtime effects

● Symbolic Execution
○ Execute programs on symbolic inputs
○ Low scalability but low false positive rate
○ Efficient on constraint solving



Background: Symbolic Execution

1 void f() {
2     int a = input();
3     b = a * 2;
4     if (b == 12) {
5         fail();
6     } else {
7         ok();
8     }
9 }

// input = symbolic(x)
// a = x
// b = 2 * x
// if (2 * x == 12)

Q: When the program will fail?
A: x == 6

If “fail” is a violation of 
code rules...



Challenge: Symbolic Execution
● Limitation: path explosion

○ Conventional symbolic execution explores all feasible paths.
○ The number of paths grows exponentially as the program size increases.

● Problems
○ Some paths may be stuck.
○ The symbolic execution may be slow on large programs.



Insight: Redundant Paths
● It is sufficient to explore a small portion of paths.

○ Only paths with specific events (e.g., open file) are valuable to explore
○ Only instructions with dependencies on events are valuable

● Solution: pruning invaluable paths
○ Path slicing



Background: Path Slicing
● One type of program slicing
● Given a control flow path, determine which edges are relevant with 

reaching a specific target.

1 void f() {
2     int a = input();
3     b = a * 2;
4     if (b == 12) {
5         fail();
6     } else {
7         ok();
8     }
9 }

2

3

4

5 7

9

Target: “fail” in Line 5

CFG

A slice to fail():
    Line 2, 3, 4, 5



WOODPECKER Overview

Symbolic Execution

LLVM IR

Path Slicing

Rule Checker
Executed instr events

An execution path

Minimize symbolic states

Violations!



Rule Checker
● Identify events

○ Events are instructions of interests for code rules
■ E.g., open() & close() for File-open-close rule

● Detect violations
○ A violation is a specific ordered sequence of events

■ E.g. open() -> No close()
■ E.g. open() -> close() -> close()



WOODPECKER’s Search Algorithm
● Traverse different execution paths

○ Traverse CFG, for each instructions
■ Check violation of Rules
■ Check the end of path

○ If it is an violation
■ Report the violation

○ If it is the end of a path
■ Start slicing and pruning
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Slice and Prune
● Path slicing

○ Backward searching the path.
○ Find data/control dependencies among instructions.
○ Extract in-slice instructions.

● Path Pruning
○ Remove symbolic states which are not in the slice.

● Definition: In-slice Instruction
○ An event is dependent on the instruction.
○ (Branch Instr) Off-path branch contains other events.
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Evaluation

● Path verification efficiency. Comparison with KLEE.

● Rule violation detection.

● Cost of pruning.
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● search efficiency: the percentage of relevant paths explored over all paths ever forked.
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Evaluation

Programs 
run against

Percentage of Relevant 
Path Explored Among All



Limitation

Overhead of pruning and alias analysis



Related Work

● Static Analysis
○ Check rules on (potentially infeasible) program paths.
○ Can aggressively trade off soundness for low false positive.

● Symbolic execution
○ Error detections, tests generation, buggy execution reproduce, path verification etc.
○ Complementary to previous symbolic execution.
○ Leverage power search heuristics in existing systems.

● Program Slicing
○ Dynamic - Static
○ Path slicing



Strengths & Weakness
● Strengths

○ Designed a light-weight symbolic execution schema for verifying code rules by leveraging 
path slicing.

○ Outperforms KLEE in efficiency.

● Weakness
○ Absent heuristics

■ The choice of search mechanisms (i.e., DFS/BFS)
○ Not supporting simultaneous multi-rules checking

■ WoodPecker should be extended to supported checking multiple rules to avoid 
redundant work.


