
Verifying Systems Rules Using
Rule-Directed Symbolic Execution

Heming Cui, Gang Hu, Jingyue Wu, Junfeng Yang
(ASPLOS’13)

Qingzhao Zhang, Qinyun Wang, Haizhong Zheng, Ruizhi You

Goal: Verifying Code Rules
● Code Rules

○ In one execution, a file must be closed after be opened.
○ In one execution, allocated memory must be freed once.
○ …

● Violation of code rules leads to …
○ Crashes
○ Resource leaks
○ Vulnerabilities
○ ...

Verifying Code Rules: Approaches
● Static Analysis

○ Data/control dependency analysis, etc
○ High coverage but high false positive rate
○ Hard to capture runtime effects

● Symbolic Execution
○ Execute programs on symbolic inputs
○ Low scalability but low false positive rate
○ Efficient on constraint solving

Background: Symbolic Execution

1 void f() {
2 int a = input();
3 b = a * 2;
4 if (b == 12) {
5 fail();
6 } else {
7 ok();
8 }
9 }

// input = symbolic(x)
// a = x
// b = 2 * x
// if (2 * x == 12)

Q: When the program will fail?
A: x == 6

If “fail” is a violation of
code rules...

Challenge: Symbolic Execution
● Limitation: path explosion

○ Conventional symbolic execution explores all feasible paths.
○ The number of paths grows exponentially as the program size increases.

● Problems
○ Some paths may be stuck.
○ The symbolic execution may be slow on large programs.

Insight: Redundant Paths
● It is sufficient to explore a small portion of paths.

○ Only paths with specific events (e.g., open file) are valuable to explore
○ Only instructions with dependencies on events are valuable

● Solution: pruning invaluable paths
○ Path slicing

Background: Path Slicing
● One type of program slicing
● Given a control flow path, determine which edges are relevant with

reaching a specific target.

1 void f() {
2 int a = input();
3 b = a * 2;
4 if (b == 12) {
5 fail();
6 } else {
7 ok();
8 }
9 }

2

3

4

5 7

9

Target: “fail” in Line 5

CFG

A slice to fail():
 Line 2, 3, 4, 5

WOODPECKER Overview

Symbolic Execution

LLVM IR

Path Slicing

Rule Checker
Executed instr events

An execution path

Minimize symbolic states

Violations!

Rule Checker
● Identify events

○ Events are instructions of interests for code rules
■ E.g., open() & close() for File-open-close rule

● Detect violations
○ A violation is a specific ordered sequence of events

■ E.g. open() -> No close()
■ E.g. open() -> close() -> close()

WOODPECKER’s Search Algorithm
● Traverse different execution paths

○ Traverse CFG, for each instructions
■ Check violation of Rules
■ Check the end of path

○ If it is an violation
■ Report the violation

○ If it is the end of a path
■ Start slicing and pruning

WOODPECKER’s Search Algorithm
● Traverse different execution paths

○ Traverse CFG, for each instructions
■ Check violation of Rules
■ Check the end of path

○ If it is an violation
■ Report the violation

○ If it is the end of a path
■ Start slicing and pruning

WOODPECKER’s Search Algorithm
● Traverse different execution paths

○ Traverse CFG, for each instructions
■ Check violation of Rules
■ Check the end of path

○ If it is an violation
■ Report the violation

○ If it is the end of a path
■ Start slicing and pruning

Slice and Prune
● Path slicing

○ Backward searching the path.
○ Find data/control dependencies among instructions.
○ Extract in-slice instructions.

● Path Pruning
○ Remove symbolic states which are not in the slice.

● Definition: In-slice Instruction
○ An event is dependent on the instruction.
○ (Branch Instr) Off-path branch contains other events.

Slice and Prune
● Path slicing

○ Backward searching the path.
○ Find data/control dependencies among instructions.
○ Extract in-slice instructions.

● Path Pruning
○ Remove symbolic states which are not in the slice.

● Definition: In-slice Instruction
○ An event is dependent on the instruction.
○ (Branch Instr) Off-path branch contains other events.

Slice and Prune
● Path slicing

○ Backward searching the path.
○ Find data/control dependencies among instructions.
○ Extract in-slice instructions.

● Path Pruning
○ Remove symbolic states which are not in the slice.

● Definition: In-slice Instruction
○ An event is dependent on the instruction.
○ (Branch Instr) Off-path branch contains other events.

Slice and Prune
● Path slicing

○ Backward searching the path.
○ Find data/control dependencies among instructions.
○ Extract in-slice instructions.

● Path Pruning
○ Remove symbolic states which are not in the slice.

● Definition: In-slice Instruction
○ An event is dependent on the instruction.
○ (Branch Instr) Off-path branch contains other events.

Evaluation

● Path verification efficiency. Comparison with KLEE.

● Rule violation detection.

● Cost of pruning.

Evaluation

Evaluation

Evaluation

● search efficiency: the percentage of relevant paths explored over all paths ever forked.

Evaluation
● search efficiency: the percentage of relevant paths explored over all paths ever forked.

Evaluation

Programs
run against

Percentage of Relevant
Path Explored Among All

Limitation

Overhead of pruning and alias analysis

Related Work

● Static Analysis
○ Check rules on (potentially infeasible) program paths.
○ Can aggressively trade off soundness for low false positive.

● Symbolic execution
○ Error detections, tests generation, buggy execution reproduce, path verification etc.
○ Complementary to previous symbolic execution.
○ Leverage power search heuristics in existing systems.

● Program Slicing
○ Dynamic - Static
○ Path slicing

Strengths & Weakness
● Strengths

○ Designed a light-weight symbolic execution schema for verifying code rules by leveraging
path slicing.

○ Outperforms KLEE in efficiency.

● Weakness
○ Absent heuristics

■ The choice of search mechanisms (i.e., DFS/BFS)
○ Not supporting simultaneous multi-rules checking

■ WoodPecker should be extended to supported checking multiple rules to avoid
redundant work.

