Verifying Systems Rules Using
Rule-Directed Symbolic Execution

Heming Cui, Gang Hu, Jingyue Wu, Junfeng Yang
(ASPLOS’13)

Qingzhao Zhang, Qinyun Wang, Haizhong Zheng, Ruizhi You

Goal: Verifying Code Rules

e Code Rules
o In one execution, a file must be closed after be opened.

o In one execution, allocated memory must be freed once.
O

e Violation of code rules leads to ...

o Crashes

o Resource leaks
o Vulnerabilities
O

Veritying Code Rules: Approaches

e Static Analysis
o Data/control dependency analysis, etc
o High coverage but high false positive rate
o Hard to capture runtime effects

e Symbolic Execution
o Execute programs on symbolic inputs
o Low scalability but low false positive rate
o Efficient on constraint solving

Background: Symbolic Execution

1 void f() { // input = symbolic(x)
2 int a = input(); // a = x

3 b =a=x*x 2; // b =2 %X

4 if (b == 12) { /] if (2 * x == 12)

5 fail();

6 } else {

7 ok();

8 b

9}

Q: When the program will fail?
A x ==

If “fail” is a violation of
code rules...

Challenge: Symbolic Execution

e Limitation: path explosion

o Conventional symbolic execution explores all feasible paths.

o The number of paths grows exponentially as the program size increases.
e Problems

o Some paths may be stuck.
o The symbolic execution may be slow on large programs.

Insight: Redundant Paths

e It is sufficient to explore a small portion of paths.
o Only paths with specific events (e.g., open file) are valuable to explore
o Only instructions with dependencies on events are valuable

e Solution: pruning invaluable paths
o Path slicing

Background: Path Slicing

e One type of program slicing
e Given a control flow path, determine which edges are relevant with
reaching a specific target.

void f() {
int a = input(); e
b =a=*2;
3 (b = 12) { (3

1

2

3

4

5 fail();

6 } else { 0

7 ok(); Target: “fail” in Line 5

g)) A slice to fail(): a e
Line 2, 3,4,5 e

WOODPECKER Overview

(LLVM IR \1
.)

An execution path
) (

[Symbolic Execution Path Slicing 1

J -
Minimize symbolic states

Executed instr (W events

Rule Checker

|

Violations!

Rule Checker

e Identify events
o Events are instructions of interests for code rules
m E.g., open() & close() for File-open-close rule
e Detect violations
o Aviolation is a specific ordered sequence of events

m E.g. open() -> No close()
m E.g. open() -> close() -> close()

WOODPECKER'’s Search Algorithm

e Traverse different execution paths
o Traverse CFG, for each instructions
m Check violation of Rules
m Check the end of path
o Ifitis an violation
m Report the violation
o Ifitis the end of a path
m Start slicing and pruning

Input program, initial
state and checker

N
L 4

v

BFS next state

branch statement?

Handle the
new state

s instruction a feasible

!

l

Handle both the
state of true and
the state of false

If checker
detects error

N

A 4

Push instuction to
the path for new
state

If new state
is end of path?

Slice and Prune

Y

Add new Stateto | |
the BFS Queue

Input program, initial
state and checker

v

WOODPECKER’s Search Algorithm

e Traverse different execution paths

s instruction a feasible
branch statement?

o Traverse CFG, for each instructions ‘ l
m Check violation of Rules p, Hendiedhe: g e
the state of fal
m Check the end of path = esaelo =

o Ifitis an violation

m Report the violation If checker
" detects error
o Ifitis the end of a path

m Start slicing and pruning N

A 4

Push instuction to
the path for new
state

If new state
is end of path?

Add new Stateto | |
the BFS Queue

Slice and Prune

WOODPECKER'’s Search Algorithm

e Traverse different execution paths
o Traverse CFG, for each instructions
m Check violation of Rules
m Check the end of path
o Ifitis an violation
m Report the violation
o Ifitis the end of a path
m Start slicing and pruning

Input program, initial
state and checker

N
L 4

v

BFS next state

s instruction a feasible

branch statement?

Handle the
new state

Y:

!

l

Handle both the
state of true and
the state of false

If checker
detects error
N
A 4

Push instuction to
the path for new
state

Y

If new state Add new Stateto | |
is end of path? N the BFS Queue

Slice and Prune

Slice and Prune

Path slicing

o Backward searching the path.
o Find data/control dependencies among instructions.
o Extract in-slice instructions.

Path Pruning

o Remove symbolic states which are not in the slice.

Definition: In-slice Instruction
o An event is dependent on the instruction.
o (Branch Instr) Off-path branch contains other events.

Slice —

Prune —

Input state, path,
events, checkers

Y

Traverse the path
in reverse order

Add the instruction
to Slice

Reach head of
the Path?

For each branch
br in Path but not
in Slice

v

Prune the states with
branch br that not
executed in Path

Reach end
of the Slice?

L—N

Y

A 4

Remove this state
since it has been
visited

Slice and Prune

Path slicing
o Backward searching the path.
o Find data/control dependencies among instructions.
o Extract in-slice instructions.

Path Pruning

(@)

Remove symbolic states which are not in the slice.

Definition: In-slice Instruction

(@)

(@)

An event is dependent on the instruction.
(Branch Instr) Off-path branch contains other events.

Slice —

Prune —

— Input state, path,
events, checkers

L 2

Traverse the path
in reverse order

A\dd the instruction
to Slice

Reach head of
the Path?

L—N

For each branch
br in Path but not
in Slice

v

Prune the states with
branch br that not
executed in Path

Reach end
of the Slice?

Y

A 4

Remove this state
since it has been
visited

Slice and Prune

Path slicing
o Backward searching the path.
o Find data/control dependencies among instructions.
o Extract in-slice instructions.

Path Pruning

(@)

Remove symbolic states which are not in the slice.

Definition: In-slice Instruction

(@)

(@)

An event is dependent on the instruction.
(Branch Instr) Off-path branch contains other events.

Slice —

Prune —

Input state, path,
events, checkers

Y

Traverse the path
in reverse order

dd the instruction
to Slice

Reach head of
the Path?

For each branch
br in Path but not
in Slice

v

Prune the states with
branch br that not
executed in Path

Reach end

L—N

of the Slice?

Y

A 4

Remove this state
since it has been
visited

Slice and Prune

Path slicing

(@)

(@)

@)

Backward searching the path.
Find data/control dependencies among instructions.
Extract in-slice instructions.

Path Pruning

(@)

Remove symbolic states which are not in the slice.

Definition: In-slice Instruction

(@)

(@)

An event is dependent on the instruction.
(Branch Instr) Off-path branch contains other events.

Slice —

Prune —

Input state, path,
events, checkers

[

Y

Traverse the path
in reverse order

Add the instruction
to Slice

Reach head of
the Path?

For each branch
br in Path but not
in Slice

v

P

rune the states with
branch br that not
executed in Path

L—N

Reach end
of the Slice?

Y

A 4

Remove this state
since it has been
visited

1 : int main(int argc, char **argv) { An example:

2 : FILE *input_desc; i .
3: fatugiod = 1; cat in GNU coreutils
4 : const char *infile = "-";

5: do { / iterate over input files and print one by one

0 if(argind < argc)

7 4 infile = argv[argind];

8 if(stremp(infile, "-")) / input is a file . .

9 : input_desc = fopen(infile, "r"); Determine 'npUt source

10: else // input is stdin

11: input_desc = stdin;

12: if(!input_desc) continue;

13: int c;

14: while((c = fgetc(input_desc)) != EOF) { i

15: if(c < 32 && ¢ = "\n’) { / non-printable char

16: putchar(’ "); . .

17: putchar(c + 64); ™ Handle non-printable char & print char
18: } else // printable char

19: putchar(c);

20: } =

21: if(infile[0] != 7 - || infile[1] != 0)

22: fclose(input_desc); /# input is a file

23: } while (++argind < argc);

24: return 0;

25: }

: int main(int argc, char **argv) {

FILE *input_desc;

int argind = 1;

const char “infile = "-";

do { // iterate over input files and print e by one
if(argind < arge)

infile = argv[argind];

Open files

OCOoO~NOOLS, WN =

An example:
cat in GNU coreutils
Open-close rule:
Opened file must be closed

Determine input source

10 else

11z input_desc = stdin;

12: if(!input_desc) continue;

13: int c;

14: while((c = fgetc(input_desc)) != EOF) { i

15: if(c < 32 && ¢ != "\n") { / non-printable char

16: putchar(’ ~*); . .

17: putchar(c + 64); ™ Handle non-printable char & print char
18: } else // printable char

19: putchar(c); L

Close files

1 : int main(int argc, char **argv) { .

2. FILE *input_desc Baseline method: KLEE
3 : int argind = 1;

4 : const char "infile = "-";

5: do { / iterate over input files and print one by one

6 : if(argind < arge)

7 & infile = argv[argind];

8 : if(stremp(infile, "-")) / input is a file

9 : input_desc = fopen(infile, "x"); Path explosion on the loop:
10: else // input is stdin

11: input_desc = stdin;

12: if(linput_desc) continue; KLEE explores 698,116 paths in 1 hour.
13: int c;

14: while((c = fgetc(input_desc)) != EOF) {

15: if(c < 32 && ¢ !'= "\n") { / non-printable char

16: putchar(’ =7);

17: putchar(c + 64);

18: } else // printable char

19: putchar(c);

20: }

21: if(infile[0] != 7 - || infile[1] != 0)

22: fclose(input_desc); /# input is a file

23: } while (++argind < argc);
24: return O;
25 }

1 : int main(int argc, char **argv) {

2 : FILE *input_desc; Apply WOODPECKER
3 : int argind = 1;

4 : const char *infile = "-";

5 : do { / iterate over input files and print one by one
62 if(argind < argc)

Y G infile = argv[argind];

8 if(stremp(infile, "-")) / input is a file

9 : input_desc = fopen(infile, "r");

10: else // input is stdin

11: input_desc = stdin;

12: if(!input_desc) continue;

13: int c;

14: while((c = fgetc(input_desc)) != EOF) {

15: if(c < 32 && ¢ != "\n’) { / non-printable char
16: putchar(” ~”);

17: putchar(c + 64);

18: } else // printable char

19: putchar(c);

20: }

21: if(infile[0] !'= 7 -7 || infile[1] != 0)

22: fclose(input_desc); / input is a file

23: } while (++argind < argc);
24: return O;
25: }

22:
23:
24.
25: }

*

e T Apply WOODPECKER

int argind = 1;

const char *infile = "-"; 1. Find a path between entry and exit with
do { // iterate over input files and print one by one search al gorithm
if(argind < argc) True '
infile = argv[argind];
if(stremp(infile, "-")) / input is a file True

input_desc = fopen(infile, "r");
else // input is stdin
input_desc = stdin;

if(!input_desc) continue; False
int c;
while((c = fgetc(input_desc)) != EOF) { True — False (Second iteration)

if(c < 32 && ¢ != "\n’) { / non-printable char F3a|se
putchar(” ~”);
putchar(c + 64);

} else // printable char

putchar(c);
}
if(infile[0] != 7 -’ || infile[1] != 0) True
fclose(input_desc); / input is a file
} while (++argind < argc); False
return 0;

1 : int main(int argc, char **argv) {
2 : FILE *input_desc; Apply WOODPECKER
3 : int argind = 1;
4 : const char “infile = "~ 1. Find a path between entry and exit.
5 : do { / iterate over input files and print one by one L.
®6: if(argind < arge) True 2. Path 5||C|ng
® 7. infile = argv[argind];
®8: if(stremp(infile, "-")) / input is a file True
®9: input_desc = fopen(infile, "r");
10: else // input is stdin
11: input_desc = stdin;
® 12 if(!input_desc) continue; False
13: int c;
14: while((c = fgetc(input_desc)) != EOF) { True — False (Second iteration)
15: if(c < 32 && ¢ != "\n’) { / non-printable char F3a|se
16: putchar(” ~ 7);
17: putchar(c + 64);
18: } else // printable char
19: putchar(c);
20: }
® 21: if(infile[0] !'= 7 -7 || infile[1] != 0) True
® 22: fclose(input_desc); /# input is a file
® 23: } while (++argind < argc); False

® 24: return 0;
25: }

©CoO~NOO A, WN =

@
—
N

20:
® 21:
® 22:
@® 23:
® 24:

25: }

. int main(int argc, char

*

*argv) {

FILE *input_desc;

int argind = 1;

const char *infile = "-";

do { // iterate over input files and print one by one

if(argind < argc) True
infile = argv[argind];
if(stremp(infile, "-")) / input is a file True

input_desc = fopen(infile, "r");
else // input is stdin
input_desc = stdin;
if(!input_desc) continue; False
int ¢;
while((c = fgetc(input_desc)) != EOF) { True — False
if(c < 32 && ¢ != "\n’) { / non-printable char Fa|se
putchar(” ~ 7);
putchar(c + 64);
} else // printable char
putchar(c);
}

if(infile[0] !'= 7 -7 || infile[1] != 0) True
fclose(input_desc); /# input is a file
} while (++argind < argc);
return 0;

Apply WOODPECKER

3. Pruning

Check the other branches of branch
instructions not in path slicing set.

1 : int main(int argc, char **argv) {
2 : FILE *input_desc; Apply WOODPECKER
3 : int argind = 1;
4 : const char *infile = "-"; 3. Pruning
" 2 do. { //‘ iterate over input files and print one by one 3. argind = 1;
: if(argind < arge) True o
®7: infile = argv[argind]; 4: infile = “-%;
® 8 : if(strcmp(infile, "~")) / input is a file True 6:true argind < argc
®9: input_desc = fopen(infile, "r"); 73 infile = argv[argind];
10: else // input is stdin 8:true strcmp(infile, “-”)
11: input_desc = stdin; 9: input_desc = fopen(infile);
@ 12: if(!input_desc) continue; False 12: if (input_desk) continue;
13: int ¢; LA ik ace (c=fgetel{input—desc))—L=EOF
14: while((c = fgetc(input_desc)) != EOF) { True — False) = '
15: if(c < 32 && ¢ != "\n’) { / non-printable char Fa|se . <
16: putchar(’ ~*); ww—put-ehan(-e-}y
17: putchar(c + 64); 4$alse—(ec=fgete(input_desc))—|=—EOF
18: } else // printable char 21:true infile[@]!=-’ || infile[1] != o
19: putchar(c); 22: fclose(input_desc);
20: } 23:false ++argind < argc
® 21: if(infile[0] !'= 7 -’ || infile[1] != 0) True 24+ poturn 85
® 22: fclose(input_desc); /# input is a file
® 23: } while (++argind < arge); Concerningevents
* gg }"e“"'“ 0; Pruned instructions

Instructions explored by WOODPECKER

Evaluation

e Path verification efficiency. Comparison with KLEE.

e Rule violation detection.

e Cost of pruning.

Evaluation

. Programs Verified Relevant Paths Verified Redundant Paths
Chicker LineasfCode Frograms Checked WOODPECKER KLEE WOODPECKER KLEE WOODPECKER KLEE
Assertion 102 57 13 3 195,268 45,763 69,795 195,178
Memory leak 399 103 32 7 1,024,676 176,475 451,836 1,657,721
Open-close 211 72 19 4 528,676 82,883 203,407 512,439
File access 344 120 40 12 1,694,393 377,181 496,651 2,141,111
Data loss 533 35 7 7 132,136 89,779 22,996 117,225
Total 1,589 387 111 33 3,575,149 772,081 1,244,685 4,623,674

Table 1: Summary of verification results.

Evaluation

N
\ 4

BFS Search for
every available
state

Is instruction a feasible

branch statement?

!

Checkers Lines of Code Progr;
Assertion 102
Memory leak 399
Open-close 211
File access 344
Data loss 533
Total 1,589

Handle the
new state

Handle both the
state of true and
the state of false

Verified Redundant Paths
KLEE | WOODPECKER KLEE
45,763 69,795 195,178
176,475 451,836 1,657,721
82,883 203,407 512,439
377,181 496,651 2,141,111
89,779 22,996 117,225
772,081 1,244,685 4,623,674

Evaluation

e search efficiency: the percentage of relevant paths explored over all paths ever forked.

Time Programs Verified Paths Verified

Limit W K W K WK
1 hour 73 7 2,776,499 532,222 52
2hours | 104 31 6,933,817 662,558 10.5
4hours | 112 39 14,437,294 847,621 17.0

Programs mem leak open-close data loss
coreutils 40 13 0
shadow 11 D 1
tar 4 0 0
sed 3 0 0
CVs 3 1 2
git 19 - 7
Total 80 23 10

Evaluation

e search efficiency: the per
Time Programs Verified
Limit | W K W-K l
1 hour 73 7 67
2hours | 104 31 73
4hours | 112 39 73

22:
23:
24:
25: }

. int main(int argc, char **argv) {

FILE *input_desc;
int argind = 1;
const char “infile = "-";
do { // iterate over input files and print one by one
if(argind < arge)
infile = argv[argind];
if(stremp(infile, "-")) / input is a file
input_desc = fopen(infile, "r");
else // input is stdin
input_desc = stdin;
if(!input_desc) continue;
int c;

while((c = fgetc(input_desc)) = EOF) {
if(c < 32 && ¢ != "\n") { / non-printable char
putchar(* “*);
putchar(c + 64);
} else // printable char
putchar(c);

}

if(infile[0] != *-* || infile[1] != 0)
fclose(input_desc); /# input is a file
} while (++argind < argc);
return 0;

em leak open-close data loss
40 13 0

11 5 1

4 0 0

3 0 0

3 1 2

19 4 7

80 23 10

Percentage of Relevant
Path Explored Among All

Evaluation

oS!
Jds|rew-}

i

ysyo
wnsggzeys
wnsygeeys
wnsgLGeys
no

abeyo
puedxaun
wnsygzgeys

oj|Ie
J01-0110qWAs-11
noawin

auo|o-)16
m? 16

po
swawdnoib
puedxa

yds

do

mdia
pmssedbyo
ajeounyy
pinobo|
9ose:
Byuoo-)1
oe}
S10(0211p
dibmau
nys
ingpis

(%) H3INOIJAOOM (%) 337

Programs
run against

Figure 8: Search efficiency with the open-close checker. WOODPECKER’s median search efficiency of the hatched bars is 59.2%, whereas KLEE’s is 15.3%.

Limitation
Overhead of pruning and alias analysis

Programs Pruning (%) Alias (%)

coreutils 0.82 0.49
shadow 1.98 0.11
tar 4.59 5.87
sed 0.69 0.50
Cvs 4.36 4.64

git 8.99 11.71

Related Work

e Static Analysis
o Check rules on (potentially infeasible) program paths.
o Can aggressively trade off soundness for low false positive.
e Symbolic execution
o Error detections, tests generation, buggy execution reproduce, path verification etc.
o Complementary to previous symbolic execution.
o Leverage power search heuristics in existing systems.
e Program Slicing
o Dynamic - Static
o Path slicing

Strengths & Weakness

e Strengths
o Designed a light-weight symbolic execution schema for verifying code rules by leveraging
path slicing.
o Outperforms KLEE in efficiency.

e \Weakness
o Absent heuristics
m The choice of search mechanisms (i.e., DFS/BFS)
o Not supporting simultaneous multi-rules checking
m \WoodPecker should be extended to supported checking multiple rules to avoid
redundant work.

