
Practical Mitigations for Timing-Based Side-Channel
Attacks on Modern x86 Processors

Bart Coppens, Ingrid Verbauwhede,
Koen De Bosschere, Bjorn De Sutter

Presented by Lili Chen, Xinyun Jiang, Shengyi Qian, Xingyu Wang

Overview
Background

Methodology

Experiments & Results

Discussions

Side-Channel Attacks
A side-channel attack is any attack based on information gained from the

computer system, rather than weaknesses in the algorithm itself (e.g.

software bugs).

https://en.wikipedia.org/wiki/Side-channel_attack

https://en.wikipedia.org/wiki/Side-channel_attack

Timing-Based Side-Channel Attacks
(e0, e1,... are binary bits)

Timing-Based Side-Channel Attacks
(e0, e1,... are binary bits)

Control Flow

The private key!

Image Credit: Manuel Charlemagne

Can we fix it using a Compiler
back-end Approach?

Methodology
1. If-conversion -- replace branches with predicates

a. Handle exceptions (division and memory)

b. Handle function call

2. Variable-latency instructions (division) elimination

If-Conversion -- Division
if (c) {

d = x/y;
} else {

b = 10;
}

Predicate Instruction
tmp_y = y;

if (˜c) tmp_y = 1;
tmp_d = x / tmp_y;
tmp_b = 10;

if (c) d = tmp_d;
if (˜c) b = tmp_b;

If-Conversion -- Memory Op. (load)
if (a != NULL) {

b = *a;
}

Predicate Instruction
tmp_a = a;

if (˜c) tmp_a = dummy_location;
tmp_b = *tmp_a;

if (c) b = tmp_b;

Denote (a!=NULL) as c

If-Conversion -- Memory Op. (store)
if (c) {

*a = 10;
}

Predicate Instruction
tmp_a = a;

if (˜c) tmp_a = dummy_location;
*tmp_a = 10;

if (c) b = tmp_b;

If-Conversion -- Function Call
void f(int x) {

*a = x;
}

...
if (c) {

f(10);
}

void f(int x, int c) {
if (c) {

*a = x;
}

}

...
f(10, c); Then apply normal

if-conversion to the
new function f

Caution: If any call to the function is key-independent,
use original function to have less overhead.

Solution to Variable Latency Instructions
1. Add compensation code

○ Complex to determine number of cycles it takes for one certain division

2. Avoid variable latency instructions
○ Significant performance overhead workaround (Implemented in this paper)

Division elimination Division

Addition, Subtraction,
Shift, Multiplication

Significant
Overhead!

Experiments
A variety of microbenchmarks are tested:

1. f1, f2, f3, f4 are simple if-condition/nested if-condition codes
○ Tests for Efficiency (overhead)

2. Memread1, Memread2 for memory accesses test
○ Tests for Efficiency (overhead)

3. Modexp32, Modexp64 for modular exponentiation test
○ Tests for Effectiveness (leakage)

(a) Average execution time in seconds

Results: Effectiveness

 (b) Standard deviation of execution time
all zero all one regular random

1100...000000 1111...111111 11...1100...00 1011...010011

Results: Efficiency

(c) Slowdown factor and code growth factor for microbenchmarks

Paper Critics
Strengths:

1. Scope is not very restricted (no “naive” assumptions)
a. Function calls, variable latency instructions, and etc.
b. Branch prediction
c. General optimizations

Limitations:

1. Heavily rely on programmer annotation
2. Missing solutions for recursive calls
3. Simple experiments only

Questions?

