
Making Caches Work for 
Graph Analytics

Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman 
Amarasinghe, Matei Zaharia

Fudong Fan, Chris Hoang, Sach Vaidya



Problem Statement
● Graphs can be much larger than cache

○ Working set does not fit into last level cache (LLC)
○ Ex. Twitter Graph: 41 million vertices, 1.5 billion edges has rank and degree arrays of 

about 656 MB >> 30-55 MB LLC of current CPUs

● Access patterns are irregular
○ 60-80% of cycles stalled on memory accesses
○ Random access to DRAM 6-8x more expensive than random access to LLC



Motivation
Current graph frameworks

1. Lack of optimizations for cache utilization
a. Random accesses to a large working set makes entire cache subsystem ineffective

2. Poor multi-core scalability
a. Existing graph optimizations don’t scale beyond 4-6 cores

3. High runtime overhead



Intuition - Frequency Based Clustering
● Many real-world graphs follow power law distribution

○ I.e., a small number of vertices have a large number of edges attached to them

● Pack popular vertices together in memory
● Spatial locality leads to improved cache line utilization
● Caveat: original ordering of vertices often exhibit some locality

○ Use a stable sort when clustering the vertices with above average out-degree



● Compressed Sparse Row (CSR) Segmentation
○ Preprocess graph to divide vertices into cache-sized 1D segments
○ Partitions edges into subgraphs based on segments

● Subgraphs are processed in parallel
○ Limit random accesses to the cache

● Intermediate updates are locally merged and stored using buffer to avoid 
random writes to DRAM

○ All DRAM accesses are sequential

● Combine updates from all buffers within L1 cache

Intuition - Compressed Sparse Row Segmentation



Background - Existing Frameworks
GraphMat, Ligra

● In-memory
● Do not optimize for caches
● GraphMat - fastest published implementation of PageRank, Collaborative 

Filtering

GridGraph

● Disk-based, optimized for memory/disk boundary
● 3x slower than in-memory frameworks



Background - PageRank
Algorithm used by Google Search to rank web pages in their search engine results

PageRank iteratively updates the rank of each vertex based on the rank and 
degree of its neighbors. (Pull-based algorithm)

The performance characteristics of PageRank can generalize to a large number of 
graph applications.



Proposed Method - CSR Segmentation
3 Steps:

1. Preprocessing
2. Parallel Segment Processing
3. Cache-Aware Merge



CSR Segmentation - Preprocessing
1. Partition vertices of graph into LLC-sized segments
2. For each segment, construct new subgraph with edges whose source vertices 

are in the segment



CSR Segmentation - Preprocessing
 Size of segment, Original Graph

Find and add this 
edge to a particular 
subgraph

Algorithm Metadata:
IdxMap - local index to global index
BlockIndices - block starts/ends for 
merge step
IntermBuf - store intermediate result 
for destination vertex



Preprocessing Example
 



CSR Segmentation - Parallel Segment Processing
1. Process each subgraph

a. Shared read-only working set

2. Parallelize across different vertices



CSR Segmentation - Parallel Segment Processing

Source Vertices Edges to destination 
vertices



Parallel Segment Processing Example
 



CSR Segmentation - Cache-Aware Merge
● Access intermediate output buffers for each segment sequentially
● Divide range of vertex IDs into cache-sized blocks
● Worker thread reads a range of Vertex IDs from intermediate buffers and 

updates dense output vector using local to global index mapping (IdxMap)



CSR Segmentation - Cache-Aware Merge
 

Iterate over subgraphs

Use idxMap to update global output



Cache-Aware Merge Example
 



Tradeoff - Segment Size
● Smaller segments will reduce latency (will fit into lower level L1,L2 caches)
● Will require more merges
● Expansion factor - how many segments, on average, contribute data to a 

vertex (number of merge operations required for each vertex)



Proposed Method - Frequency-Based Clustering
1. Reordering of physical layout of vertex data

a. Fast cache utilization

2. Out-degree clustering
a. Vertices with above average out-degree
b. Locality of original ordering



Evaluation - Setup
1. Datasets

a. Social networks
b. Web graphs
c. Netflix

2. Applications
a. PageRank, label propagation, collaborative filtering, betweenness centrality
b. Unpredictable vertex data accesses

3. Comparison
a. Hand optimized C++ implementations
b. GraphMat, Ligra, GridGraph



Evaluation - PageRank



Evaluation - Label Propagation



Evaluation - Collaborative Filtering



Evaluation - Betweenness Centrality



Evaluation - Analysis of Optimizations

CSR Segmenting

● Eliminate random DRAM access

Frequency-Based Clustering

● Take advantage of higher level caches



Evaluation - Comparisons



Evaluation - Comparisons



Strengths
1. Speedups between 3x - 5x
2. Scalability with more cores via segmenting



Weaknesses
1. Requires preprocessing 

a. CSR construction
b. Vertex clustering
c. Subgraph partitioning

2. Requires larger graphs to achieve greater speedups



Conclusion
Novel graph framework for improving cache utilization

Techniques

1. Frequency-based clustering
2. CSR segmenting + cache-aware merge

Speedups of up to 5x in comparison to status quo



Preprocessing


