
Clairvoyance: Look-Ahead 
Compile-Time Scheduling

Presenters: Lee Moore, Nicholas Wilson, Jiong Zhu, Do June Min

Kim-Anh Tran, Trevor E. Carlson, Konstantinos Koukos, 
Magnus Själander, Vasileios Spiliopoulos, 
Stefanos Kaxiras, Alexandra Jimborean



Memory latency in memory-bound applications

for (i=0; i<N; i++) {
t1 = load x[i]
if(t1) {

t2 = load node[i]->val
t3 = load y[i]
store t2 + t3,

 node[i]->val
}

}

- Chains of dependent 
loads and stores

- Last-level cache 
misses (LLC) can cost 
hundreds of cycles



How can we hide memory latency?
- Hardware-level Out-of-Order (OoO) Execution Engine

- Aggressive OoO Engine needs aggressive energy

Fast and power-hungry OoO Simple but energy-efficient OoO

Could compile-time scheduling help in hiding memory latency? 



How can we hide memory latency?
- Compile-time scheduling

for (i=0; i<N; i++) {
t1 = load x[i]
if(t1) {

t2 = load node[i]->val
t3 = load y[i]
store t2 + t3,

 node[i]->val
}

}

Challenges to handle:
◆ Insufficient independent 

instructions
◆ Chains of dependent 

loads
◆ Statically unknown 

dependencies
◆ Register pressure



Introducing Clairvoyance

- Goal: hide memory latency for simple OoO engine in 
compile time. 

- How to approach this goal? 



Basic Clairvoyance Algorithm

● (2) - Unroll Loop
● (3) - Initialize Access
● (4) - Identify load instructions
● (5-9) - Identify instructions 

required by load instructions
● (10-11) - Create access and 

execute phases
● (12-13) - Join access and 

execute phases



Example Transformation



Improvement to Basic Clairvoyance

● (2) - Unroll Loop
● (3) - Initialize Access
● (4) - Identify load instructions
● (5-9) - Identify instructions 

required by load instructions
● (10-11) - Create access and 

execute phases
● (12-13) - Join access and 

execute phases



Identifying Critical Loads

● “critical loads” are load 
instructions selected for the 
access phase

● Indirection Count:
○ number of loads a load 

instruction is dependent on
○ ex: x[y[z[i]]] = 2

● Load instructions with indirection 
count <= countindir are selected as 
critical loads



Improvement to Basic Clairvoyance

● (2) - Unroll Loop
● (3) - Initialize Access
● (4) - Identify load instructions
● (5-9) - Identify instructions 

required by load instructions
● (10-11) - Create access and 

execute phases
● (12-13) - Join access and 

execute phases



Handling Unknown Dependencies

● Load should be hoisted only if 
data dependency is 
respected.

● Aliases have 3 cases
a. No-Alias ⇒ Hoist!
b. Must-Alias ⇒ Don’t hoist!
c. May-Alias ⇒ Prefetch!



Improvement to Basic Clairvoyance

● (2) - Unroll Loop
● (3) - Initialize Access
● (4) - Identify load instructions
● (5-9) - Identify instructions 

required by load instructions
● (10-11) - Create access and 

execute phases
● (12-13) - Join access and 

execute phases



Handling Chains of Dependent Loads



Parameters of the Clairvoyance Pass

● Turn on Clairvoyance Optimization:
○ Heuristics: Disable if loads/branches < 0.7

● Loop Unroll Count, Indirection Count:
○ Choose by using state-of-the-art runtime version selectors



Benchmark Results
Memory-bound benchmarks

● Yield highest performance 
improvements

● Expose most opportunities for MLP

Clairvoyance-Best shows potential 
improvements using speculative heuristics, 
and given better pointer analysis.

Compute-bound benchmarks expose less 
opportunities for Clairvoyance improvements



Conclusion
+ Implementation software only
+ Effective use of software prefetching
+ Open-source, possible to replicate

- Not enough detail on register 
pressure

- Effect of indirection count parameter 
on performance of tests not clear

- Test hardware not aligned with paper 
motivation 

Idea is increasing instruction-level, 
memory-level parallelism to make better 
use of core resources.

Key technique is reordering 
dependent-loads across loop iterations, 
controlling register pressure.

Most improvement in memory-bound 
scenarios: up to 43%, 7% geomean for 
conservative, 13% geomean for 
speculative

Thoughts



Questions?


