
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at CGO 2017, February 4–8, Austin, TX.

Citation for the original published paper:

Tran, K-A., Carlson, T E., Koukos, K., Själander, M., Spiliopoulos, V. et al. (2017)
Clairvoyance: Look-ahead compile-time scheduling.
In: Proc. 15th International Symposium on Code Generation and Optimization (pp. 171-184).
Piscataway, NJ: IEEE Press

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316480

C
o
n
si
st

en
t *
Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se
* *

E
valuated

*
C
G
O
*

A
rt ifact *

A
E
C

Clairvoyance: Look-Ahead Compile-Time Scheduling

Kim-Anh Tran∗ Trevor E. Carlson∗ Konstantinos Koukos∗ Magnus Själander∗,†

Vasileios Spiliopoulos∗ Stefanos Kaxiras∗ Alexandra Jimborean∗

∗Uppsala University, Sweden †Norwegian University of

Science and Technology, Norway

firstname.lastname@it.uu.se firstname.lastname@idi.ntnu.no

Abstract

To enhance the performance of memory-bound applications,

hardware designs have been developed to hide memory

latency, such as the out-of-order (OoO) execution engine,

at the price of increased energy consumption. Contemporary

processor cores span a wide range of performance and

energy efficiency options: from fast and power-hungry OoO

processors to efficient, but slower in-order processors. The

more memory-bound an application is, the more aggressive

the OoO execution engine has to be to hide memory latency.

This proposal targets the middle ground, as seen in a sim-

ple OoO core, which strikes a good balance between per-

formance and energy efficiency and currently dominates the

market for mobile, hand-held devices and high-end embedded

systems. We show that these simple, more energy-efficient

OoO cores, equipped with the appropriate compile-time sup-

port, considerably boost the performance of single-threaded

execution and reach new levels of performance for memory-

bound applications.

Clairvoyance generates code that is able to hide memory la-

tency and better utilize the OoO engine, thus delivering higher

performance at lower energy. To this end, Clairvoyance over-

comes restrictions which yielded conventional compile-time

techniques impractical: (i) statically unknown dependencies,

(ii) insufficient independent instructions, and (iii) register

pressure. Thus, Clairvoyance achieves a geomean execution

time improvement of 7% for memory-bound applications

with a conservative approach and 13% with a speculative but

safe approach, on top of standard O3 optimizations, while

maintaining compute-bound applications’ high-performance.

1. Introduction

Computer architects of the past have steadily improved per-

formance at the cost of radically increased design complexity

and wasteful energy consumption [1–3]. Today, power is not

only a limiting factor for performance; given the prevalence

of mobile devices, embedded systems, and the Internet of

Things, energy efficiency becomes increasingly important for

battery lifetime [4].

Highly efficient designs are needed to provide a good

balance between performance and power utilization and the

answer lies in simple, limited out-of-order (OoO) execution

cores like those found in the HPE Moonshot m400 [5] and

the AMD A1100 Series processors [6]. Yet, the effectiveness

of moderately-aggressive OoO processors is limited when

executing memory-bound applications, as they are unable to

match the performance of the high-end devices, which use

additional hardware to hide memory latency.

This work aims to improve the performance of highly

energy-efficient, limited OoO processors, with the help of

advanced compilation techniques. The static code transforma-

tions are specially designed to hide the penalty of last-level

cache misses and to better utilize the hardware resources.

One primary cause for slowdown is last-level cache (LLC)

misses, which, with conventional compilation techniques,

result in a sub-optimal utilization of the limited OoO engine

that may stall the core for an extended period of time. Our

method identifies potentially critical memory instructions

through advanced static analysis and hoists them earlier in the

program’s execution, even across loop iteration boundaries,

to increase memory-level parallelism (MLP). We overlap

the outstanding misses with useful computation to hide their

latency and thus increase instruction-level parallelism (ILP).

There are a number of challenges that need to be met to

accomplish this goal.

1. Finding enough independent instructions: A last level

cache miss can cost hundreds of cycles [7]. Conventional

instruction schedulers operate on the basic-block level,

limiting their reach, and, therefore, the number of inde-

pendent instructions that can be scheduled in order to

hide long latencies. More sophisticated techniques (such

as software pipelining [8, 9]) schedule across basic-block

boundaries, but instruction reordering is severely restricted

in general-purpose applications when pointer aliasing and

loop-carried dependencies cannot be resolved at compile-

time. Solutions are needed that can cope with statically

unknown dependencies in order to effectively increase the

reach of the compiler while ensuring correctness.

2. Chains of dependent long latency instructions are se-

rialized: Dependence chains of long latency instructions

978-1-5090-4931-8/17 c© 2017 IEEE CGO 2017, Austin, USA

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

171

would normally serialize, as the evaluation of one long

latency instruction is required to execute another (de-

pendent) long latency instruction. This prevents parallel

accesses to memory and may stall a limited OoO core.

Novel methods are required to increase memory level

parallelism and to hide latency, which is particularly chal-

lenging in tight loops and codes with numerous (known

and unknown) dependencies.

3. Increased register pressure: Separating loads and their

uses in order to overlap outstanding loads with useful com-

putation increases register pressure. This causes additional

register spilling and increases the dynamic instruction

count. Controlling register pressure, especially in tight

loops, is crucial.

Contributions: Clairvoyance looks ahead, reschedules long

latency loads, and thus improves MLP and ILP. It goes beyond

static instruction scheduling and software pipelining tech-

niques, and optimizes general-purpose applications, which

contain large numbers of indirect memory accesses, pointers,

and complex control-flow. While previous compile-time tech-

niques are inefficient or simply inapplicable to such applica-

tions, we provide solutions to well-known problems, such as:

1. Identifying potentially delinquent loads at compile-time;

2. Overcoming scheduling limitations of statically unknown

memory dependencies;

3. Reordering chains of dependent memory operations;

4. Reordering across multiple branches and loop iterations,

without speculation or hardware support;

5. Controlling register pressure.

Clairvoyance code runs on real hardware prevalent in mo-

bile, hand-held devices and in high-end embedded systems

and delivers high-performance, thus alleviating the need for

power-hungry hardware complexity. In short, Clairvoyance

increases the performance of single-threaded execution by up

to 43% for memory bound applications (13% geomean im-

provement) on top of standard O3 optimizations, on hardware

platforms which yield a good balance between performance

and energy efficiency.

2. The Clairvoyance Compiler

This section outlines the general code transformation per-

formed by Clairvoyance while each subsection describes the

additional optimizations, which make Clairvoyance feasible

in practice. Clairvoyance builds upon techniques such as

software pipelining [9, 10], program slicing [11], and decou-

pled access-execute [12–14] and generates code that exhibits

improved memory-level parallelism (MLP) and instruction-

level parallelism (ILP). For this, Clairvoyance prioritizes the

execution of critical instructions, namely loads, and identi-

fies independent instructions that can be interleaved between

loads and their uses.

Figure 1 shows the basic Clairvoyance transformation,

which is used as a running example throughout the paper.

The transformation is divided into two steps:

Loop Unrolling To expose more instructions for reordering,

we unroll the loop by a loop unroll factor countunroll = 2n

with n = {0, 1, 2, 3, 4}. Higher unroll counts significantly

increase code size and register pressure. In our examples, we

set n = 1 for the sake of simplicity.

Access-Execute Phase Creation Clairvoyance hoists all

load instructions along with their requirements (control flow

and address computation instructions) to the beginning of the

loop. The group of hoisted instructions is referred to as the

Access phase. The respective uses of the hoisted loads and the

remaining instructions are sunk in a so-called Execute phase.

Access phases represent the program slice of the critical

loads, whereas Execute phases contain the remaining instruc-

tions (and guarding conditionals). When we unroll the loop,

we keep non-statically analyzable exit blocks. All exit blocks

(including goto blocks) in Access are redirected to Execute,

from where they will exit the loop after completing all com-

putation. The algorithm is listed in Algorithm 1 and proceeds

by unrolling the original loop and creating a copy of that

loop (the Access phase, Line 3). Critical loads are identified

(FindLoads, Line 4) together with their program slices (in-

structions required to compute the target address of the load

and control instructions required to reach the load, Lines 5 -

9). Instructions which do not belong to the program slice of

the critical loads are filtered out of Access (Line 10), and in-

structions hoisted to Access are removed from Execute (Line

11). The uses of the removed instructions are replaced with

their corresponding clone from Access. Finally, Access and

Execute are combined into one loop (Line 12).

Input: Loop L, Unroll Count countunroll
Output: Clairvoyance Loop LClairvoyance

1 begin

2 Lunrolled ← Unroll(L, countunroll)

3 Laccess ← Copy(Lunrolled)

4 hoist_list← FindLoads(Laccess)

5 to_keep← ∅

6 for load in hoist_list do

7 requirements← FindRequirements(load)

8 to_keep← Union(to_keep, requirements)

9 end

10 Laccess ← RemoveUnlisted(Laccess, to_keep)

11 Lexecute ← ReplaceListed(Laccess, Lunrolled)

12 LClairvoyance ← Combine(Laccess, Lunrolled)

13 return LClairvoyance

14 end

Algorithm 1: Basic Clairvoyance algorithm. The Access

phase is built from a copy of the unrolled loop. The Execute

phase is the unrolled loop itself, while all already computed

values in Access are reused in Execute.

172

Figure 1. The basic Clairvoyance transformation. The original loop is first unrolled by countunroll which increases the number

of instructions per loop iteration. Then, for each iteration, Clairvoyance hoists all (critical) loads and sinks their uses to create a

memory-bound Access phase and a compute-bound Execute phase.

Figure 2. Selection of loads based on an indirection count

countindir. The Clairvoyance code for countindir = 0 (left)

and countindir = 1 (right).

This code transformation faces the same challenges as

typical software pipelining or global instruction scheduling:

(i) selecting the loads of interest statically; (ii) disambiguat-

ing pointers to reason about reordering memory instructions;

(iii) finding sufficient independent instructions in applica-

tions with entangled dependencies; (iv) reducing the instruc-

tion count overhead (e.g., stemming from partly duplicating

control-flow instructions); and (v) overcoming register pres-

sure caused by unrolling and separating loads from their uses.

Each of these challenges and our solutions are detailed in the

following subsections.

2.1 Identifying Critical Loads

Problem: Selecting the right loads to be hoisted is essential

in order to avoid code bloat and register pressure and to

ensure that long latency memory operations overlap with

independent instructions.

Solution: We develop a metric, called indirection count, based

on the number of memory accesses required to compute

the memory address (indirections) [14] and the number of

memory accesses required to reach the load. For example,

x[y[z[i]]] has an indirection count of two, as it requires two

loads to compute the address. The latter interpretation of

indirection count is dependent on the control flow graph

(CFG). If a load is guarded by two if-conditions that in turn

require one load each, then the indirection count for the CFG

dependencies is also two. Figure 2 shows an example of load

selection with indirection counts. A high value of indirection

indicates the difficulty of predicting and prefetching the load

in hardware, signaling an increased likelihood that the load

will incur a cache miss. For each value of this metric, a

different code version is generated (i.e., hoisting all loads

that have an indirection count less than or equal to the certain

threshold). We restrict the total number of generated versions

to a fixed value to control code size increase. Runtime version

selection (orthogonal to this proposal) can be achieved with

dedicated tools such as Protean code [15] or VMAD [16, 17].

2.2 Handling Unknown Dependencies

Problem: Hoisting load operations above preceding stores is

correct if and only if all read-after-write (RAW) dependen-

cies are respected. When aliasing information is not known

at compile-time, detecting dependencies (or guaranteeing the

lack of dependencies) is impossible, which either prevents

reordering or requires speculation and/or hardware support.

However, speculation typically introduces considerable over-

head by squashing already executed instructions and requiring

expensive recovery mechanisms.

Solution: We propose a lightweight solution for handling

statically known and unknown dependencies, which ensures

correctness and efficiency. Clairvoyance embraces safe specu-

173

Figure 3. Handling of may-aliasing loads. Loads that may

alias with any preceding store operation are not safe to hoist.

Instead, we prefetch the unsafe load.

lation, which brings the benefits of going beyond conservative

compilation, without sacrificing simplicity and lightness.

We propose a hybrid model to hide the latency of delin-

quent loads even when dependencies with preceding stores

are unknown (i.e., may-alias). Thus, loads free of dependen-

cies are hoisted to Access and the value is used in Execute,

while loads that may alias with stores are prefetched in Ac-

cess and safely loaded and used in their original position in

Execute. May-aliases, however, are an opportunity, since in

practice may-aliases rarely materialize into real aliasing at

runtime [18]. Prefetching in the case of doubt is powerful:

(1) if the prefetch does not alias with later stores, data will

have been correctly prefetched; (2) if aliasing does occur,

the prefetched data becomes overwritten and correctness is

ensured by loading the data in the original program order.

Figure 3 shows an example in which an unsafe load is turned

into a prefetch-load pair.

The proposed solution is safe. In addition to this solution,

we will analyze variations of this solution that showcase

the potential of Clairvoyance when assuming a stronger

alias analysis. These more speculative variations are allowed

to hoist whole chains of may-aliasing loads and will be

introduced during the experimental setup in Section 3.

2.3 Handling Chains of Dependent Loads

Problem: When a long latency load depends on another long

latency memory operation, Clairvoyance cannot simply hoist

both load operations into Access. If it did, the processor might

stall, simply because the second critical load represents a use

of the first long latency load. As an example, in Figure 4 we

need to load the branch predicate t1 before we can load t2
(control dependency). If t1 is not cached, an access to t1 will

stall the processor if the out-of-order engine cannot reach

ahead far enough to find independent instructions and hide

the load’s latency.

Solution: We propose to build multiple Access phases, by

splitting dependent load chains into chains of dependent

Figure 4. Splitting up dependent load chains. Clairvoyance

creates one Access phase for each set of independent loads

(and their requirements), which increases the distance be-

tween loads and their uses.

Access phases. As a consequence, loads and their uses within

access phase are separated as much as possible, enabling

more instructions to be scheduled in between. By the time

the dependent load is executed, the data of the previous load

may already be available for use.

Each phase contains only independent loads, thus increas-

ing the separation between loads and their uses. In Figure 4

we separate the loads into two Access phases. For the sake

of simplicity, this example uses countunroll = 2, hence there

are only two independent loads to collect into the first Access

phase and four into the second Access phase.

The algorithm to decide how to distribute the loads into

multiple Access phases is shown in Algorithm 2. The com-

piler first collects all target loads in remaining_loads,

while the distribution of loads per phase phase_loads is

initialized to empty-set. As long as the loads have not yet

been distributed (Line 4), a new phase is created (Line 5) and

populated with loads whose control-requirements (Line 8)

and data-requirements (Line 9) do not match any of the loads

that have not yet been distributed in a preceding Access phase

(Line 10 and 11-14). Loads distributed in the current phase

are removed from the remaining_loads only at the end

(Line 15), ensuring that no dependent loads are distributed to

the same Access phase. The newly created set of loads phase

is added to the list of phases (Line 16) and the algorithm

continues until all critical loads have been distributed. Next,

we generate each Access phase by following Algorithm 1

corresponding to a set of loads from the list phase_loads.

2.4 Overcoming Instruction Count Overhead

Problem: The control-flow-graph is partially duplicated in

Access and Execute phases, which, on one hand, enables

instruction reordering beyond basic block boundaries, but,

on the other hand, introduces overhead. As an example, the

branch using predicate t1 (left of Figure 5) is duplicated in

each Access phase, significantly increasing the overhead in

174

Input: Set of loads

Output: List of sets phase_loads

1 begin

2 remaining_loads← loads

3 phase_loads← []

4 while remaining_loads 6= ∅ do

5 phase← ∅

6 for ld in remaining_loads do

7 reqs← ∅

8 FindCFGRequirements (ld, reqs)

9 FindDataRequirements (ld, reqs)

10 is_independent← Intersection(reqs,

remaining_loads) == ∅

11 if is_independent then

12 phase← phase + ld

13 end

14 end

15 remaining_loads← remaining_loads \ phase

16 phase_loads← phase_loads + phase

17 end

18 return phase_loads

19 end
Algorithm 2: Separating loads for multiple Access phases.

the case of multi-Access phases. Branch duplication not only

complicates branch prediction but also increases instruction

overhead, thus hurting performance.

Solution: To overcome this limitation, Clairvoyance generates

an optimized version where selected branches are clustered

at the beginning of a loop. If the respective branch predicates

evaluate to true, Clairvoyance can then execute a version in

which their respective basic blocks are merged. The right of

Figure 5 shows the transformed loop, which checks t1 and t2
and if both predicates are true (i.e., both branches are taken),

execution continues with the optimized version, in which the

duplicated branch is eliminated. If t1 or t2 are false, then a

decoupled unrolled version is executed.

The branches selected for clustering affect how often the

optimized version will be executed. If we select all branches,

the probability of all of them evaluating to true shrinks.

Deciding the optimal combination of branches is a trade-

off between branch duplication and the ratio of executing

the optimized vs. the unoptimized version. As a heuristic,

we only cluster branches if they statically have a probability

above a given threshold. See Section 4 for more details.

2.5 Overcoming Register Pressure

Problem: Early execution of loads stretches registers’ live

ranges, which increases register pressure. Register pressure is

problematic for two reasons: first, spilling a value represents

an immediate use of the long latency load, which may stall

the processor (assuming that Clairvoyance targets critical

Figure 5. Early evaluation of branches enables the elimina-

tion of duplicated branches in Clairvoyance mode. Relevant

branches are evaluated at the beginning of the loop. If the

evaluated branches are taken, the optimized Clairvoyance

code with merged basic blocks is executed; otherwise, the de-

coupled unrolled code (with branch duplication) is executed.

loads, whose latency cannot be easily hidden by a limited

OoO engine); second, spill code increases the number of

instructions and stack accesses, which hurts performance.

Solution: The Clairvoyance approach for selecting the loads

to be hoisted to Access and for transforming the code natu-

rally reduces register pressure. First, the compiler identifies

potentially critical loads, which significantly reduces the num-

ber of instructions hoisted to Access phases. Second, critical

loads that entail memory dependencies are prefetched instead

of being hoisted, which further reduces the number of regis-

ters allocated in the Access phase. Third, multi-Access phases

represent consumers of prior Access phases, releasing regis-

ter pressure. Fourth, merging branches and consuming the

branch predicate early releases the allocated registers. Fur-

thermore, should register pressure become a bottleneck, one

can decide to combine prefetching and instruction reordering

(i.e., prefetch rather than hoist some of the critical loads),

thus turning long latencies into short latencies, which can be

hidden easily without increasing register pressure.

In a nutshell, each of the optimizations mentioned above,

designed to overcome the typical problems of global instruc-

tion scheduling and software pipelining, contribute to reduced

register pressure.

2.6 Heuristic to Disable Clairvoyance Transformations

Clairvoyance may cause performance degradation despite the

efforts to reduce the overhead. This is the case for loops with

long latency loads guarded by many nested if-else branches.

175

Processor APM X-Gene - AArch64 Octa-A57

Core Count 8

ROB size 128 micro-ops [19]

Issue Width 8 [19]

L1 D-Cache 32 KB / 5-6 cycles depending on access complexity

L2 Cache 256 KB / 13 cycles Latency

L3 Cache 8 MB / 90 cycles Latency

RAM 32 GB / 89 cycles + 83 ns (for random RAM page)

Table 1. Architectural specifications of the APM X-Gene.

We define a simple heuristic to decide when the overhead of

branches may outweigh the benefits, namely, if the number of

targeted loads is low in comparison to the number of branches.

To this end, we use a metric which accounts for the number

of loads to be hoisted and the number of branches required

to reach the loads: loads
branches

< 0.7, and disable Clairvoyance

transformations if the condition is met.

2.7 Parameter Selection: Unroll Count and Indirection

We rely on state-of-the art runtime version selectors to

select the best performing version. In addition, simple static

heuristics are used to simplify the configuration selection:

small loops with few loads profit from a high unroll count

to increase MLP; loops containing a high number of nested

branches should have a low unroll and indirection count to

reduce instruction count overhead; loops with large basic

blocks containing both loads and computation may profit

from a hybrid model using loads and prefetches to balance

register pressure and instruction count overhead.

2.8 Limitations

Currently, Clairvoyance relies on the LLVM loop unrolling,

which is limited to inner-most loops. To tackle outer-loops,

standard techniques such as unroll and jam are required.

Unroll and jam refers to partially unrolling one or more loops

higher in the nest than the innermost loop, and then fusing

(“jamming”) the resulting loops back together.

3. Experimental Setup

Our transformation is implemented as a separate compila-

tion pass in LLVM 3.8 [20]. We evaluate a range of C/C++

benchmarks from the SPEC CPU2006 [21] and NAS bench-

mark [22–24] suites on an APM X-Gene processor [25], see

Table 1 for the architectural specifications. The remaining

benchmarks were not included due to the difficulties in com-

pilation with LLVM or simply because they were entirely

compute-bound.

Clairvoyance targets loops in the most time-intensive func-

tions (listed in Table 2), such that the benefits are reflected in

the application’s total execution time. For SPEC, the selection

was made based on previous studies [26], while for NAS we

identified the target functions using Valgrind [27].

In Section 2.4 we introduced an optimization to merge

basic blocks if the static branch prediction indicates a proba-

Benchmark Function

401.bzip2 BZ2_compressBlock

403.gcc reg_is_remote_constant_p

429.mcf primal_bea_mpp

433.milc mult_su3_na

444.namd

calc_pair_energy_fullelect

calc_pair_energy

calc_pair_energy_merge_fullelect

calc_pair_fullelect

445.gobmk
dfa_matchpat_loop

incremental_order_moves

450.soplex entered

456.hmmer P7Viterbi

458.sjeng std_eval

462.libquantum

quantum_toffoli

quantum_sigma_x

quantum_cnot

464.h264ref SetupFastFullPelSearch

470.lbm LBM_performStreamCollide

471.omnetpp shiftup

473.astar makebound2

482.sphinx3 mgau_eval

CG conj_grad

LU buts

UA diffusion

Table 2. Modified functions.

bility above a certain threshold. For the following evaluation,

we cluster branches only if the probability is above 90%.

3.1 Evaluating LLVM, DAE and Clairvoyance

We compare our techniques to Software Decoupled Access-

Execute (DAE) [13, 14] and the LLVM standard instruction

schedulers list-ilp (prioritizes ILP), list-burr (priori-

tizes register pressure) and list-hybrid (balances ILP and

register pressure). DAE reduces the energy consumption by

creating a duplicated loop that prefetches data ahead of time,

while running at low frequency and maintaining its original

performance. We further attempt to compare Clairvoyance

against software pipelining and evaluate a target-independent,

readily available software pipelining pass [28]. The pass fails

to pipeline the targeted loops (all except of one fail) due to the

high complexity (control-flow and memory dependencies).

LLVM’s software pipeliner is not readily applicable for the

target architecture, and could thus not be evaluated in this

work. In the following, we will evaluate three techniques:

LLVM-SCHED LLVM’s best-performing scheduling tech-

nique (one of list-ilp, list-burr, and list-hybrid).

DAE Best performing DAE version.

CLAIRVOYANCE Best performing Clairvoyance version.

3.2 A Study on Speculation Levels

For Clairvoyance we evaluate a number of versions that vary

in their speculative nature. Consv is a conservative version

176

Name Description

Consv Conservative, only hoists safe loads

Spec-safe Speculative (but safe), hoists may-

aliasing load chains, but safely

reloads them in Execute

Spec Speculative (unsafe), hoists may-

aliasing load chains and reuses all

data in Execute

Multi-spec-safe Multi-access version of spec-safe

Multi-spec Multi-access version of spec

Table 3. Clairvoyance evaluated versions.

which only hoists safe loads. In case of a chain of dependent

loads, it turns the first unsafe load into a prefetch and does

not target the remaining loads. Spec-safe is a speculative but

safe version. It hoists safe loads, but unlike the consv version,

in case of a chain of dependent loads, spec-safe duplicates

unsafe loads in Access such that it is able to reach the entire

chain of dependent loads. Then it turns the last unsafe load

of each chain into a prefetch, and reloads the unsafe loads in

Execute. Spec is a speculative but unsafe version which hoists

all safe and unsafe loads and reuses them in Execute. Finally,

multi-spec-safe and multi-spec represent the multiple-access

versions of the previous two.

The exploration of different speculation levels is a study to

give an overview on Clairvoyance’s performance assuming in-

creasingly accurate pointer analysis. The conservative consv

version shows what we can safely transform at the moment,

while spec indicates a perfect alias analyzer. We expect that

state-of-the-art pointer analyses [29] approach the accuracy

of spec. Spec-safe demonstrates the effect of combining both

prefetches and loads. A better pointer analysis would enable

Clairvoyance to safely load more values, and consequently

we would have to cope with increased register pressure. To

this end, spec-safe is a version that balances between loads

and prefetches, and thus between register spills and increased

instruction count overhead.

The speculative but safe versions (spec-safe, multi-spec-

safe) may cause a segmentation fault in Access when spec-

ulatively accessing memory locations to compute the target

address of the prefetch. Since our transformation ensures that

only safely loaded values are reused in Execute, segmentation

faults that are triggered during an Access can be safely caught

and ignored, for example by overwriting the segmentation

fault handler. During code generation we can differentiate

between speculative loads (loads hoisted above may-aliasing

stores) and non-speculative loads (no-aliasing loads). If the

address of a speculative load matches the address of the seg-

mentation fault, the fault handler ignores it; otherwise, the

fault is exposed to the user. In practice, however, none of the

analyzed benchmarks caused such a fault.

Spec and multi-spec are intended as an oracle with perfect

alias-analysis. We do not implement a correction mechanism,

as it would require alternative execution paths and is beyond

Benchmark Version Unroll Indir

429.mcf consv 8 0

433.milc multi-spec-safe 2 0

450.soplex spec 2 0

462.libquantum spec 4 1

470.lbm multi-spec-safe 16 1

471.omnetpp Disabled

473.astar Disabled

CG spec 4 1

Table 4. Best performing versions for memory-bound bench-

marks [30].

the goal of this proposal. The results for spec, despite the

speculative nature, are verified at runtime as being correct.

4. Evaluation

In this section, we first compare different versions of Clair-

voyance, starting with the conservative approach and grad-

ually increasing the speculation level. Next we discuss the

performance and energy improvements of the applications

compiled with Clairvoyance.

4.1 Comparing Clairvoyance’s Speculation Levels

Figure 6 compares the normalized runtimes of all Clair-

voyance versions across all benchmarks. For the majority

of workloads, the different degrees of speculation do not

play a major role for the final performance. For hmmer and

libquantum we observe a significant difference between

the more conservative versions (consv, spec-safe, multi-spec-

safe) and the speculative ones (spec, multi-spec). Hmmer is a

compute bound benchmark whose workload fits in the cache;

therefore, there is little expected improvement. Furthermore,

the target loop consists of one main basic block that contains

a large number of loads interleaved with store instructions.

The prefetches added by the conservative versions are not

separated enough from their actual uses and thus translate

to pure instruction count overhead, especially for a compute-

bound application. Since the speculative versions only reorder

the instructions, there is no additional overhead. This also

applies to libquantum: libquantum consists of very small

and tight loops, such that any added instruction count over-

head quickly outweighs the benefits of Clairvoyance.

On the other hand, there are workloads that benefit from a

less aggressive hoisting of loads, such as lbm—which shows

best results with spec-safe and multi-spec-safe. Separating

a high number of potentially delinquent loads from their

uses can increase register pressure significantly. Since spec-

safe and its multiple access version multi-spec-safe use

a combination of reordering loads and prefetches, these

versions introduce less register pressure compared to spec.

4.2 Understanding Clairvoyance Best Versions

We categorize the benchmarks into memory-bound appli-

cations (mcf, milc, soplex, libquantum, lbm, omnetpp,

177

401.bzip2
403.gcc

429.mcf

433.milc

444.namd

445.gobmk

450.soplex

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar CG LU UA
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 R
un

tim
e

consv spec-safe spec multi-spec-safe multi-spec

Figure 6. Normalized total runtime w.r.t original execution (-O3), for all Clairvoyance versions.

astar, CG) and compute-bound applications (bzip2, gcc,

namd, gobmk, hmmer, sjeng, h264ref, LU, UA) [30]. Ta-

ble 4 lists the best performing Clairvoyance version for each

memory-bound benchmark. Typically, the best performing

versions rely on a high unroll count and a low indirection

count. The branch-merging optimization that allows for a

higher unroll count is particularly successful for mcf, as

the branch operations connecting the unrolled iterations are

merged, showing low overhead across loop iterations. As the

memory-bound applications contain a high number of long la-

tency loads which can be hoisted to the Access phase, we are

able to improve MLP while hiding the increased instruction

count overhead. Clairvoyancewas disabled for omnetpp and

astar by the heuristic that prevents generating heavy-weight

Access phases that may hurt performance.

For compute-bound benchmarks the best performing ver-

sions have a low unroll count and a low indirection count,

yielding versions that are very similar to the original. This

is expected as Clairvoyance cannot help if the entire work-

load fits in the cache. However, if applied on compute-bound

benchmarks, Clairvoyance will reorder instructions hiding

even L1 cache latency.

4.3 Runtime and Energy

Figure 7 compares the normalized runtimes when apply-

ing Clairvoyance and state-of-the-art techniques designed

to hide memory latency: DAE and the optimal LLVM in-

struction scheduler selected for each particular benchmark.

Clairvoyance-consv shows the performance achieved with the

most conservative version, while Clairvoyance-best shows

the performance achieved by the best Clairvoyance version

(which may be consv or any of the speculative versions spec-

safe, multi-spec-safe, spec, multi-spec). The baseline repre-

sents the original code compiled with -O3 using the default

LLVM instruction scheduler. Measurements were performed

by executing the benchmarks until completion. We attempted

a comparison with available software pipeliners [20, 28] are

either not available for our target machine, or cannot trans-

form our target loops. For memory-bound applications we

observe a geomean improvement of 7% with Clairvoyance-

consv and 13% with Clairvoyance-best, outperforming both

DAE and the LLVM instruction schedulers. The best per-

forming applications are mcf (both Clairvoyance versions)

and lbm (with Clairvoyance-best), which show considerable

improvements in the total benchmark runtime (43% and 31%

respectively). These are workloads with few branches and

very “condensed” long latency loads (few loads responsible

for most of the LLC misses).

DAE is competitive to Clairvoyance, but fails to leverage

the same performance for mcf. An analysis of the generated

code suggests that DAE fails to identify the correct set of

delinquent loads. Benchmarks with small and tight loops

such as libquantum suffer from the additional instruction

count overhead introduced by DAE, which duplicates target

loops in order to prefetch data in advance. A slight overhead

is observed with Clairvoyance-consv for tight loops, due to

partial instruction duplication, but this limitation would be

alleviated by a more precise pointer analysis, as indicated by

Clairvoyance-best.

We further observe that astar suffers from performance

losses when applying DAE. Astar has multiple nested if-

then-else branches, which are duplicated in Access and

thus hurt performance. In contrast, our simple heuristic

disables Clairvoyance optimization for loops with a high

number of nested branches, and therefore avoids degrading

performance. For the compute-bound applications, both the

conservative and best versions of Clairvoyance preserve the

O3 performance, on-par with the standard LLVM instruction

schedulers, except for hmmer, where Clairvoyance-consv

introduces an overhead. Again, a precise pointer analysis

could alleviate this overhead and allow Clairvoyance to hide

L1 latency, as in the case of h264ref.

Figure 8 shows per loop runtimes, normalized to the

original loop execution. Highly memory-bound benchmarks

show significant speed-ups, mcf-68%, milc-20% and lbm-

31%. Clairvoyance-consv introduces a small overhead for

libquantum, which is corrected by Clairvoyance-best (as-

suming a more precise pointer analysis). As mentioned pre-

viously, Clairvoyance was disabled for omnetpp and astar.

178

429.mcf

433.milc

450.soplex

462.libquantum
470.lbm

471.omnetpp

473.astar CG
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 R
un

tim
e

2.27

GeoMean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

401.bzip2
403.gcc

444.namd

445.gobmk

456.hmmer

458.sjeng

464.h264ref LU UA
0.0
0.2
0.4
0.6
0.8
1.0
1.2 1.40

GeoMean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

DAE LLVM-SCHED CLAIRVOYANCE-best CLAIRVOYANCE-consv

Figure 7. Normalized total runtime w.r.t original execution (-O3) for the best version of DAE, LLVM schedulers, and the

conservative and the best version of Clairvoyance, categorized into memory-bound (left) and compute-bound (right) benchmarks.

429.mcf

433.milc

450.soplex

462.libquantum
470.lbm

471.omnetpp

473.astar CG
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 R
un

tim
e

GeoMean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

CLAIRVOYANCE-best CLAIRVOYANCE-consv

Figure 8. Normalized runtime per target loop w.r.t original

loop execution (-O3) for the conservative and the best version

of Clairvoyance, for memory-bound benchmarks.

429.mcf

433.milc

450.soplex

462.libquantum
470.lbm

471.omnetpp

473.astar CG
0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 E
ne

rg
y

GeoMean
0.0
0.2
0.4
0.6
0.8
1.0
1.2

CLAIRVOYANCE-best CLAIRVOYANCE-consv

Figure 9. Normalized energy across all memory-bound

benchmarks for the conservative and the best version of Clair-

voyance.

Overall, Clairvoyance-consv improves per loop runtime by

15%, approaching the performance of Clairvoyance-best

(20%).

We collect power numbers using measurement techniques

similar to Spiliopoulos et al. [31]. Figure 9 shows the nor-

malized energy consumption for all memory-bound bench-

marks. The results align with the corresponding runtime

trends: benchmarks as mcf and lbm profit the most with an en-

ergy reduction of up to 25%. For memory-bound benchmarks,

we achieve a geomean improvement of 5%. By overlapping

outstanding loads we increase MLP, which in turn results in

shorter runtimes and thus lower total energy consumption.

5. Related Work

Hiding long latencies of memory accesses to deliver high-

performance has been a monumental task for compilers.

Early approaches relied on compile-time instruction sched-

ulers [32–36] to increase instruction level parallelism (ILP)

and hide memory latency by performing local- or global-

scheduling. Local scheduling operates within basic block

boundaries and is the most commonly adopted algorithm

in mainstream compilers. Global scheduling moves instruc-

tions across basic blocks and can operate on cyclic or acyclic

control-flow-graph. One of the most advanced forms of

static instruction schedulers is modulo scheduling [8, 9], also

known as software pipelining, which interleaves different

iterations of a loop.

Clairvoyance overcomes challenges that led static instruc-

tion schedulers to generate suboptimal code: (1) Clairvoy-

ance identifies potential long latency loads to compensate

for the lack of dynamic information; (2) Clairvoyance com-

bines prefetching with safe-reordering of accesses to address

the problem of statically unknown memory dependencies;

(3) Clairvoyance performs advanced code transformations

of the control-flow graph, yielding Clairvoyance applicable

on general-purpose applications, which were until now not

amenable to software-pipelining. We emphasize that off-the-

book-shelf software pipelining is tailored for independent

loop iterations and is readily applicable on statically analyz-

able code, but it cannot handle complex control-flow, stati-

cally unknown dependencies, etc. Furthermore, among the

main limitations of software pipelining are the prologues

and epilogues, and high register pressure, typically addressed

with hardware support.

Clairvoyance advances the state-of-the-art by demonstrat-

ing the efficiency of these code transformations on codes

that abound in indirect memory accesses, pointers, entangled

dependencies, and complex, data-dependent control-flow.

Typically, instruction scheduling and register allocation

are two opposing forces [37–39]. Previous work attempts to

179

provide register pressure sensitive instruction scheduling, in

order to balance instruction level parallelism, latency, and

spilling. Chen et al. [40] propose code reorganization to maxi-

mize ILP with a limited number of registers, by first applying

a greedy superblock scheduler and then pushing over-hoisted

instructions back. Yet, such instruction schedulers consider

simple code transformations and compromise on other opti-

mizations for reducing register pressure. Clairvoyance nat-

urally releases register pressure by precisely increasing the

live-span of certain loads only, by combining instruction re-

ordering with prefetching and by merging branches.

Hardware architectures such as Very Long Instruction

Word (VLIW) and EPIC [41, 42], identify independent instruc-

tions suitable for reordering, but require significant hardware

support such as predicated execution, speculative loads, veri-

fication of speculation, delayed exception handling, memory

disambiguation, etc. In contrast, Clairvoyance is readily appli-

cable on contemporary, commodity hardware. Clairvoyance

decouples the loop, rather than simply reordering instructions;

it generates optimized code that can reach delinquent loads,

without speculation or hardware support for predicated execu-

tion and handles memory and control dependencies purely in

software. Clairvoyance provides solutions that can re-enable

decades of research on compiler techniques for VLIW-like

and EPIC-like architectures.

Software prefetching [43] instructions, when executed

timely, may transform long latencies into short latencies.

Clairvoyance attempts to fully hide memory latency with

independent instructions (ILP) and to cluster memory oper-

ations together and increase MLP by decoupling the loop.

Software Decoupled Access-Execute (DAE) [13, 14] targets

reducing energy expenditure using DVFS, while maintain-

ing performance, whereas Clairvoyance focuses on increas-

ing performance. DAE generates Access-Execute phases that

merely prefetch data and duplicate a significant part of the

original loop (control instructions and address computation).

Clairvoyance’s contribution consists in finding the right bal-

ance between code rematerialization and instruction reorder-

ing, to achieve high degrees of ILP and MLP, without the

added register pressure. DAE uses heuristics to identify the

loads to be prefetched which take into consideration memory-

dependencies. In addition, Clairvoyance combines informa-

tion about memory- and control- dependencies, which in-

creases the accuracy and effectiveness of the long latency

loads identification.

Helper threads [44–46] attempt to hide memory latency by

warming up the cache using a prefetching thread. Clairvoy-

ance uses a single thread of execution, reuses values already

loaded in registers (between Access and Execute phases) and

resorts to prefetching only as a mechanism to safely handle

unknown loop carried dependencies.

Software-hardware co-designs such as control-flow decou-

pling (CFD) [47] prioritize the evaluation of data-dependent

branch conditions, and support a similar decoupling strat-

egy for splitting load-use chains as our multi-access phases

(however, their multi-level decoupling is done manually [48]).

Contrary to Clairvoyance, CFD requires hardware support

to ensure low-overhead communication between the decou-

pled phases. A software only version, Data-flow Decou-

pling (DFD), relies on prefetch instructions and ensures

communication between phases by means of caches, akin to

DAE [13, 14], using code duplication. As the CFD solution is

not entirely automatic and requires manual intervention, Clair-

voyance provides the missing compiler support and is readily

applicable to decouple the CFG and hoist branch-evaluation,

in lieu of long latency loads. Moreover, Clairvoyance pro-

vides software solutions to replace the hardware support for

efficient communication between the decoupled phases. CFD

makes use of decoupled producer phases for branches, simi-

lar to Clairvoyance’s multi-access phases, but low-overhead

communication is achieved with hardware support.

6. Conclusion

Improving the performance, and therefore the energy-

efficiency, of today’s power-limited, modern processors is

extremely important given the end of Dennard scaling. While

aggressive out-of-order designs achieve high performance,

they do so at a high cost.

Instead of improving performance with aggressive out-of-

order processors, limited, efficient out-of-order processors

can be used. Unfortunately, the reach of these efficient proces-

sors – as measured by the number of dynamic instructions that

they can track before becoming stalled – tends to be much

less than in aggressive cores. This limits the performance

of the more efficient out-of-order processors for memory-

intensive applications with high latency, distant independent

instructions.

In this work, we propose a new technique to improve

a processor’s performance by increasing both memory and

instruction-level-parallelism and therefore the amount of use-

ful work that is done by the core. The Clairvoyance compiler

techniques introduced by this work overcome limitations

imposed by may-alias loads, reordering dependent memory

operations across loop iterations, and controlling register

pressure. Using these techniques, we achieve performance

improvements of up to 43% (7% geomean improvement for

memory-bound applications with a conservative approach and

13% with a speculative but safe approach) on real hardware.

The use of Clairvoyance enables optimizations that move

beyond standard instruction reordering to achieve energy ef-

ficiency and overall higher performance in the presence of

long latency loads.

Acknowledgments

We would like to thank Andreas Scherman for his contribu-

tion to the branch clustering strategy. This work is supported,

in part, by the Swedish Research Council UPMARC Lin-

naeus Centre and by the Swedish VR (grant no. 2010-4741).

180

References

[1] J.-L. Baer and T.-F. Chen, “Effective hardware-based data

prefetching for high-performance processors,” Transactions on

Computers, vol. 44, no. 5, pp. 609–623, 1995.

[2] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, “Multiple-

block ahead branch predictors,” Operating Systems Review,

vol. 30, no. 5, pp. 116–127, 1996.

[3] N. Prémillieu and A. Seznec, “Efficient out-of-order execution

of guarded ISAs,” Transactions on Architecture and Code

Optimization, vol. 11, no. 4, pp. 41:1–41:21, 2014.

[4] M. Själander, M. Martonosi, and S. Kaxiras, Power-Efficient

Computer Architectures: Recent Advances. Synthesis Lectures

on Computer Architecture, 2014.

[5] H. P. Enterprise, “HPE ProLiant m400 server car-

tridge.” Online http://www8.hp.com/us/en/products/

proliant-servers/product-detail.html?oid=

7398907; accessed, 2016.

[6] AMD, “AMD Opteron A-series processors.” Online

http://www.amd.com/en-us/products/server/

opteron-a-series; accessed, 2016.

[7] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture opti-

mizations for exploiting memory-level parallelism,” in Pro-

ceedings of the Annual International Symposium Computer

Architecture, pp. 76–87, 2004.

[8] A. Aiken, A. Nicolau, and S. Novack, “Resource-constrained

software pipelining,” in Transactions on Parallel and Dis-

tributed Systems, pp. 274–290, 1995.

[9] M. Lam, “Software pipelining: An effective scheduling tech-

nique for VLIW machines,” in Proceedings of the Confer-

ence on Programming Language Design and Implementation,

pp. 318–328, 1988.

[10] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T. han Hung, and

D. I. August, “Decoupled software pipelining creates paral-

lelization opportunities,” in Proceedings of the International

Symposium on Code Generation and Optimization, pp. 121–

130, 2010.

[11] M. Weiser, “Program slicing,” in Proceedings of the Inter-

national Conference on Software Engineering, pp. 439–449,

1981.

[12] K. Koukos, D. Black-Schaffer, V. Spiliopoulos, and S. Kaxiras,

“Towards more efficient execution: A decoupled access-execute

approach,” in Proceedings of the International Conference on

Supercomputing, pp. 253–262, 2013.

[13] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer,

and S. Kaxiras, “Fix the code. don’t tweak the hardware: A

new compiler approach to voltage-frequency scaling,” in Pro-

ceedings of the International Symposium on Code Generation

and Optimization, pp. 262–272, 2014.

[14] K. Koukos, P. Ekemark, G. Zacharopoulos, V. Spiliopoulos,

S. Kaxiras, and A. Jimborean, “Multiversioned decoupled

access-execute: The key to energy-efficient compilation of

general-purpose programs,” in Proceedings of the International

Conference on Compiler Construction, pp. 121–131, 2016.

[15] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean

code: Achieving near-free online code transformations for

warehouse scale computers,” in Proceedings of the Annual

International Symposium on Microarchitecture, pp. 558–570,

2014.

[16] A. Jimborean, M. Herrmann, V. Loechner, and P. Clauss,

“VMAD: A virtual machine for advanced dynamic analysis

of programs,” in Proceedings of the International Symposium

on Performance Analysis of Systems and Software, pp. 125–

126, 2011.

[17] A. Jimborean, L. Mastrangelo, V. Loechner, and P. Clauss,

“VMAD: an advanced dynamic program analysis and instru-

mentation framework,” in Proceedings of the International

Conference on Compiler Construction, pp. 220–239, 2012.

[18] B. Hackett and A. Aiken, “How is aliasing used in systems soft-

ware?,” in Proceedings of the symposium on the Foundations

of Software Engineering, pp. 69–80, 2006.

[19] Anandtech, “ARM A53/A57/T760 investigated

- Samsung Galaxy Note 4 exynos review.” On-

line http://www.anandtech.com/show/8718/

the-samsung-galaxy-note-4-exynos-review/5;

accessed, 2016.

[20] C. Lattner and V. Adve, “LLVM: A compilation framework for

lifelong program analysis and transformation,” in Proceedings

of the International Symposium on Code Generation and

Optimization, pp. 75–88, 2004.

[21] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[22] NASA, “NAS parallel benchmarks.” Online https:

//www.nas.nasa.gov/assets/pdf/techreports/1999/

nas-99-011.pdf; accessed 07-September-2016, 1999.

[23] S. Seo, G. Jo, and J. Lee, “Performance characterization of

the NAS parallel benchmarks in opencl,” in Proceedings of

the International Symposium on Workload Characterization,

pp. 137–148, 2011.

[24] S. Seo, J. Kim, G. Jo, J. Lee, J. Nah, and J. Lee, “SNU

NPB suite.” Online http://aces.snu.ac.kr/software/

snu-npb/; accessed 07-September-2016, 2013.

[25] “APM X-Gene1 specification.” Online http://www.7-cpu.

com/cpu/X-Gene.html; accessed 07-September-2016.,

2016.

[26] “SPEC CPU2006 function profile.” Online http:

//hpc.cs.tsinghua.edu.cn/research/cluster/

SPEC2006Characterization/fprof.html; accessed,

2016.

[27] N. Nethercote and J. Seward, “Valgrind: A framework for

heavyweight dynamic binary instrumentation,” in Proceedings

of the Conference on Programming Language Design and

Implementation, (New York, NY, USA), pp. 89–100, ACM,

2007.

[28] R. Jordans and H. Corporaal, “High-level software-pipelining

in LLVM,” in Proceedings of the International Workshop on

Software and Compilers for Embedded Systems, pp. 97–100,

2015.

[29] S. Yulei, D. Peng, and X. Jingling, “Sparse flow-sensitive

pointer analysis for multithreaded programs,” in Proceedings

of the International Symposium on Code Generation and

Optimization, pp. 160–170, 2016.

181

[30] A. Jaleel, “Memory characterization of workloads using

instrumentation-driven simulation.” Online; accessed 07-

September-2016. Web Copy: http://www.jaleels.org/

ajaleel/publications/SPECanalysis.pdf, 2010.

[31] V. Spiliopoulos, A. Sembrant, and S. Kaxiras, “Power-sleuth:

A tool for investigating your program’s power behavior,” in

Proceedings of the International Symposium on Modeling,

Analysis Simulation of Computer and Telecommunication

Systems, pp. 241–250, 2012.

[32] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D.

Lichtenstein, R. P. Nix, J. S. O’donnell, and J. C. Ruttenberg,

“The Multiflow trace scheduling compiler,” The Journal of

Supercomputing, vol. 7, pp. 51–142, 1993.

[33] W. Havanki, S. Banerjia, and T. Conte, “Treegion scheduling

for wide issue processors,” in Proceedings of the International

Symposium High-Performance Computer Architecture, pp. 266–

276, 1998.

[34] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and

R. A. Bringmann, “Effective compiler support for predicated

execution using the hyperblock,” in Proceedings of the Annual

International Symposium on Microarchitecture, pp. 45–54,

1992.

[35] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J.

Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiy-

ohara, G. E. Haab, J. G. Holm, and D. M. Lavery, “The su-

perblock: An effective technique for VLIW and superscalar

compilation,” The Journal of Supercomputing, vol. 7, pp. 229–

248, 1993.

[36] C. Young and M. D. Smith, “Better global scheduling using

path profiles,” in Proceedings of the Annual International

Symposium on Microarchitecture, pp. 115–123, 1998.

[37] J. R. Goodman and W.-C. Hsu, “Code scheduling and reg-

ister allocation in large basic blocks,” in Proceedings of the

International Conference on Supercomputing, pp. 442–452,

1988.

[38] D. G. Bradlee, S. J. Eggers, and R. R. Henry, “Integrating

register allocation and instruction scheduling for RISCs,” in

Proceedings of the Architectural Support for Programming

Languages and Operating Systems, pp. 122–131, 1991.

[39] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and

W. W. Hwu, “The importance of prepass code scheduling for

superscalar and superpipelined processors,” Transactions on

Computers, vol. 44, pp. 353–370, 1995.

[40] G. Chen, Effective Instruction Scheduling with Limited Reg-

isters. PhD thesis, Harvard University Cambridge, Mas-

sachusetts, Cambridge, MA, USA, 2001.

[41] J. L. Hennessy and D. A. Patterson, Computer Architecture,

Fifth Edition: A Quantitative Approach, Appendix H: Hardware

and Software for VLIW and EPIC. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 5th ed., 2011.

[42] J. Kim, R. M. Rabbah, K. V. Palem, and W. fai Wong, “Adap-

tive compiler directed prefetching for EPIC processors,” in

Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, pp. 495–

501, 2004.

[43] M. Khan, M. A. Laurenzano, J. Mars, E. Hagersten, and

D. Black-Schaffer, “AREP: adaptive resource efficient prefetch-

ing for maximizing multicore performance,” in Proceedings

of the International Conference on Parallel Architectural and

Compilation Techniques, pp. 367–378, 2015.

[44] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Inter-core

prefetching for multicore processors using migrating helper

threads,” Computer Architecture News, pp. 393–404, 2011.

[45] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello,

A. González, and D. M. Tullsen, “Mitosis compiler: An infras-

tructure for speculative threading based on pre-computation

slices,” in Proceedings of the Conference on Programming

Language Design and Implementation, pp. 269–279, 2005.

[46] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating

and adapting precomputation threads for effcient prefetch-

ing,” in Proceedings of the International Symposium High-

Performance Computer Architecture, pp. 85–95, 2007.

[47] R. Sheikh, J. Tuck, and E. Rotenberg, “Control-flow decou-

pling: An approach for timely, non-speculative branching,”

Transactions on Computers, vol. 64, no. 8, pp. 2182–2203,

2015.

[48] R. Sheikh, Control-flow decoupling: An approach for timely,

non-speculative branching. PhD thesis, North Carolina State

University, Department of Electrical and Computer Engineer-

ing, North Carolina, USA, 2013.

182

A. Artifact Description

A.1 Abstract

This artifact contains the source code to LLVM 3.8, the

Clairvoyance passes, and the scripts to compile and run

all benchmarks presented in our paper. To get started, we

provide a Vagrantfile that will set up and install the required

software. We conducted our experiments on an APM X-

Gene Octa-A57.

A.2 Description

A.2.1 Check-List (Artifact Meta Information)

• Program: C/C++ code

• Compilation: make

• Transformations: access-execute phase generation, lower-

ing uses, branch clustering, multiple access phases

• Binary: O3, LLVM-SCHED, Clairvoyance

• Data set: NAS: C data set, SPEC CPU 2006: ref

• Run-time environment: Vagrant, Virtual Box

• Hardware: APM X-Gene AArch64 Octa-A57

• Execution: Experiments use perf

• Output: perf output

• Experiment workflow: build project, build binaries, run

binaries, compare runtime

• Publicly available?: Yes

A.2.2 How Delivered

Clone: https://github.com/ktran/clairvoyance. The

repository structure is shown in Table 5 and contains:

• a vagrant configuration file (Vagrantfile)

• a setup script (setup.sh) that will be used by vagrant

• the compiler (clairvoyance/compiler)

• the experiments directory (clairvoyance/experiments)

for building and running binaries from our paper

A.2.3 Hardware Dependencies

We evaluated on an APM X-Gene Octa-A57. Clairvoyance

is designed to improve performance of limited out-of-order

cores, therefore we recommend similar platforms for the

evaluation. For building LLVM, provide a minimum 4GB

of RAM to the virtual machine (default set up).

A.2.4 Software Dependencies

Vagrant (tested: 1.8.5) and Virtual Box (tested: 5.1.8).

A.2.5 Datasets

NAS benchmarks: ”C” data set size, SPEC CPU 2006: ref.

A.3 Installation

Currently, vagrant is set up such that it will use use 4 GB

of RAM and 2 CPUs. If you have more resources you can

change the Vagrantfile by modifying these lines:

Directory

Name

Path Description

clairvoyance clairvoyance root directory

experiments clairvoyance/

experiments

files to build and run

benchmarks

sources clairvoyance/

experiments/

swoop/sources

benchmarks sources

and scripts to build

runs clairvoyance/

experiments/

swoop/runs

scripts to run and parse

outputs

Table 5. The artifact folder structure.

Command Description

vagrant up starting up the virtual machine

vagrant halt shutting down the virtual machine

vagrant ssh ssh to your virtual machine

vagrant destroy destroys the virtual machine

Table 6. Vagrant commands.

vb.memory = 4096

vb.cpus = 2

Table 6 contains the most important vagrant commands. In

this step we will use vagrant in order to install the operating

system and the required packages for the project. In the fol-

lowing you might need sudo rights whenever using vagrant:

$ cd clairvoyance

$ (sudo) vagrant up

Warning! If vagrant up does not work, see Section A.7.

Never run vagrant init as this will overwrite the Vagrant-

file. Next, ssh into the machine and install the project. Run-

ning make will compile the project (LLVM, Clairvoyance):

$ (sudo) vagrant ssh

$ cd /var/www/clairvoyance/compiler

$ make -j 2

A.4 Experiment Workflow

For benchmark configuration changes see Section A.6.

This section only explains how to build and run the pre-

configured benchmarks.

A.4.1 Building the Binaries

Build the pre-configured binaries by running make:

$ cd /var/www/clairvoyance/experiments /\

swoop/sources

$ make -j 2

A.4.2 Running the Binaries

The run experiments script in experiments/swoop/

runs can be used to run the binaries of the provided bench-

183

https://github.com/ktran/clairvoyance

Option Description

-i [ref, train, test] Select the input (all same for NAS)

-r $r Number of times the benchmark

should be run (default 1)

-n Dry-run

Table 7. Options for the run experiments script

marks. Table 7 shows the options and their semantics. Here,

we run each configured binary once with the reference input:

$ cd /var/www/clairvoyance/experiments /\

swoop/runs

$./ run_experiments.py -i ref -r 1

This script will start the experiments, collect statistics, take

the average (if repeat > 1) and write everything to the test

directory. Each binary has a dedicated directory. The statis-

tics are in stderr.txt, the output is written to stdout.

txt, and if the output differs from the reference output, it

will also contain an error file. We have configured the scripts

such that they run the original (O3) and up to two Clairvoy-

ance versions. CG takes approximately 15 minutes, LU 50 and

UA 25 minutes per version (on our machine). This script may

thus run for 270 minutes.

A.5 Evaluation and Expected Results

For CG, UA, LU, alias analysis can disambiguate memory

accesses in the three NAS benchmarks, therefore no specu-

lation is required (versions are similar or equivalent).

A.5.1 Parsing the Output

Parse the output that was gathered in the test directory:

$ cd /var/www/clairvoyance /\

experiments/swoop/runs

$./ parse_experiments.py -d test

This will read the stderr.txt files and generate a csv file

test/results.csv which summarizes gathered statistics.

A.5.2 Plotting the Results

Run the plot_experiments.py script (in the runs direc-

tory). Pass the test/results.csv file and choose one out

of three options: (--print-best, print best speculative ver-

sions, --plot-version-comparison plot best speculative

versions, and --plot-best, compares LLVM schedulers,

DAE (not described here) and Clairvoyance.

$./ plot_experiments.py \

-i test/results.csv --plot -best \

--inputset ref

All numbers are normalized to O3 (plots require O3 runs).

A.5.3 Expected Results

We expect that Clairvoyance will reduce the total execution

time of CG (memory-bound), but that the runtimes of UA

and LU (compute-bound ormedium memory-bound) are less

affected. The memory- vs compute-bound characteristics are

target dependent, the results may vary on different hardware.

A.6 Experiment Customization

A.6.1 Compiling Existing Benchmarks

In order to compile another version of CG,UA,LU, follow

step 3 in Section A.6.2. For changing the running scripts,

look at the files jobs.py (which benchmarks to run) and

benchmarks.py (which Clairvoyance parameters to use) in

experiments/swoop/runs/.

A.6.2 Compiling Different Benchmarks

1. Add the Source Files. Copy the sources/CG directory

and rename it to your benchmark. Then, (i) replace the

source files in the new directory with your own source files,

(ii) adapt the Makefile in that directory: change the flags,

source files and set the benchmark name (should be different

from any source file name).

2. Mark the Loops. Mark the loops that should be trans-

formed using Clairvoyance with a pragma:

#pragma clang loop vectorize_width (1337)

for (int i = 0; i < N; ++i) {

// some code

}

Clairvoyance only transforms inner most loops. It is best to

select loops that have hard to predict data accesses.

3. Determine the Versions to Build. The Makefile.target

file in experiments/swoop/source/common/SWOOP/ de-

termines which versions are build. In order to change the un-

roll count and indirection count, modify the UNROLL COUNT

and INDIR COUNT variables.

4. Add Benchmark to Makefile. Add your benchmark

name to the BENCHMARKS variable in sources/Makefile.

A.6.3 Running and Evaluating New Benchmarks

All scripts are already set up for SPEC CPU 2006. For new

benchmarks it might be easier to run perf directly:

$ perf stat -r repeat -e \

cycles ,instructions benchmark

A.7 Notes

Box Could Not Be Found On OSX, you might need to run:

$ sudo rm /opt/vagrant/embedded/bin/curl

SWOOP Clairvoyance generates binaries that are called

SWOOP (SW-OoO execution).

DAE If you wish to evaluate DAE, please go to https:

//github.com/etascale/daedal.

Artifact Evaluation For submission and reviewing guide-

lines, see http://ctuning.org/ae/artifacts.html.

184

https://github.com/etascale/daedal
https://github.com/etascale/daedal
http://ctuning.org/ae/artifacts.html

	Artifact Description
	Abstract
	Description
	Check-List (Artifact Meta Information)
	How Delivered
	Hardware Dependencies
	Software Dependencies
	Datasets

	Installation
	Experiment Workflow
	Building the Binaries
	Running the Binaries

	Evaluation and Expected Results
	Parsing the Output
	Plotting the Results
	Expected Results

	Experiment Customization
	Compiling Existing Benchmarks
	Compiling Different Benchmarks
	Running and Evaluating New Benchmarks

	Notes

