
Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image

Processing Pipelines, PLDI 2013
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,

Frédo Durand, Saman Amarasinghe

Presented by: Zineb Benameur El Youbi,
Sanjay Sri Vallabh Singapuram

and Hannah Potter

1

Outline

• Motivation:
• Why Halide?
• What is Halide?
• The Halide DSL

• Implementation:
• Scheduling Image Processing Pipelines
• Compiling Scheduled Pipelines
• Autotuning Pipeline Schedules

• Results

• Analysis

2

Motivation

We are surrounded by computational cameras

Image processing pipelines are everywhere!

• Capturing, analyzing , mining, rendering visual information

• Applications : Instagram, Adobe, etc.

 Demand extremely high performance to cope with high rising

resolution, frame rate, and complexity of algorithms

3

Motivation

Example : 3x3 blur

Hand optimized C++ , x11 faster

Writing fast image processing pipelines is hard
Optimization => Transform program & Data Structure

4

Halide’s answer?

Separate Algorithm from Schedule aka Execution Strategy

Algorithm : What is computed
Schedule: Where and When it’s computed

Easy for programmers to build pipelines
Simplifies algorithm code
Improves modularity

Easy for programmers to specify and explore optimizations
Fusion, tiling, parallelism, vectorization
And NOT BREAK THE ALGORITHM

Easy for the compiler to generate code

5

What is Halide?

• A Domain Specific Language (DSL)

• Write high performance code easily

• Front end embedded in C++

• Compiler targets: x86/SSE, ARM v7/NEON, CUDA, Native Client, OpenCL, and Metal

6

What is Halide?

Halide Functions Halide Schedule

Synthesized loop
nest, allocations

Vectorization &
peephole

optimization

LLVM bitcode

CUDAARMx86

7

Halide DSL

Describe image processing pipelines in a simple functional style

Pipeline stages are functions
from coordinates to value

Execution order and storage
are unspecified

8

Outline

• Motivation:
• Why Halide?
• What is Halide?
• The Halide DSL

• Implementation:
• Scheduling Image Processing Pipelines
• Compiling Scheduled Pipelines
• Autotuning Pipeline Schedules

• Results

• Analysis

9

Schedule Space

• Breadth-first

• Depth-first (loop-fusion)

• Sliding-window

11

Defining a schedule

• Domain Order: Specifies order of nested iterations
order(y, x) =>

for y in Y_MIN … Y_MAX:

for x in X_MIN … X_MAX:

• Call Schedule:
• Compute granularity: Where to compute?

• Storage granularity: How long to store?

12

Compute and Storage Granularity

Compute granularity <= Storage granularity
Can’t compute more than available storage !!

13

Domain Order

• Reorder: order(y, x) to order(x, y)

• Tiling: split(x, 8) -> order(tx, x)

• Vectorize: order(tx, y, x).vectorize(x)

• Parallelize: order(tx, y, x).parallel(tx)

• Strict order: order(tx, y, x).sequential(y)

14

Call Schedule

Sliding-window: blurx: store @ out.x0 , compute @ out.y1

par for out.y0 in 0 ... out.y.extent/4

for out.x0 in 0 ... out.x.extent/4

alloc blurx[blurx.x.extent][blurx.y.extent]

for out.y1 in 0 ... 4

// compute blurx

vec for out.x1 in 0 ... 4

// compute out(4*x0 + x1, 4*y0 + y1)

15

Code-generation

1. Representation in Halide-IR

2. Optimizations
1. Storage Folding (reduces storage granularity)

2. Sliding-Window Detection (increases storage granularity)

3. Back-end Code-gen
• Lower to LLVM-IR

• GPU Code-gen
• Loop extents must respect thread and block limitations

• Handle data movement between host and GPU

• Automating code-gen greatly improves programmer productivity!

16

Auto-tuning

• State-space explosion!
• len(states(LaplacianFilters)) > 10720

• Stochastic state-space exploration
• Start with reasonable initial state.

• Mutate schedule to see if mutation is better

• Petabricks Autotuner

• Technique applied to other domains
• ASTRA: Exploiting Predictability to Optimize Deep Learning [ASPLOS ’19]

17

Outline

• Motivation:
• Why Halide?
• What is Halide?
• The Halide DSL

• Implementation:
• Scheduling Image Processing Pipelines
• Compiling Scheduled Pipelines
• Autotuning Pipeline Schedules

• Results

• Analysis

18

Results

• Examples use variety of algorithms and communication patterns
• Pipelines have 2-99 stages

19

Results

20

Analysis

Strengths

• Reduced developer time
• Local Laplacian Filters

• 2-3 weeks for expert to hand-optimize
• 1 day to write in Halide

• Shorter & less complex programs

• Autotuning is target specific
• Take advantage of specific

architectures (e.g. CPU vs. GPU)

• Faster programs

Weaknesses/Limitations

• Limited to rectangular image
processing

• Compilation time
• 2 hours – 2 days to run autotuning

• Autotuning is target specific
• Schedules may work poorly on

different architectures

• Tuner can get stuck in local minima
• Requires restart with new random

initialization

21

