
Smokestack:Thwarting DOP Attacks with
Runtime Stack Layout Randomization

Misiker Aga, Todd Austin (University of Michigan)
CGO’19

EECS 583

Yunjie Pan, Shibo Chen, Cheng Chi, Yifan Guan

11-20-2019

SmokeStack

● Motivation & Background

● Methodology

● Implementation

● Evaluation

Data-Oriented Programming (DOP) Attack

● A new form of memory exploits

● Only rely on manipulation of local variables

● Does not attack on control-flow elements

Modeled after FTP server

Uses a stack buffer

overflow vulnerability to

control a few stack

variables

Example

Modeled after FTP server

Uses a stack buffer

overflow vulnerability to

control a few stack

variables

Example

Buffer Overflow

Affected Variables

Gadget Dispatcher

Gadgets

Data-Oriented Programming (DOP) Attack

● Evaluated on 9 real-world programs

● 8 out of 9 have gadgets to simulate arbitrary computations

● 2 out of 9 are confirmed Turing-complete

● Built 3 attacks that bypass randomization defense

○ Immune to ASLR (only need relative address)

○ Immune to DEP (reuse existing code)

○ Immune to Stack Canary (does not write past stack frames)

● Open source software especially vulnerable

Modeled after FTP server

Uses a stack buffer

overflow vulnerability to

control a few stack

variables

Example

Buffer Overflow

Affected Variables

Gadget Dispatcher

Gadgets

SmokeStack

● Motivation & Background

● Methodology

● Implementation

● Evaluation

var1

var2

var3

buf

int var1;

double var2;

int var3;

double buf[3];

var1

var2

var3

buf

align

ind var1 var2 var3 buf

0 1 2 3 4

1 1 3 2 4

……

N-1 4 5 0 1

N … … … …

P-BOX

Compile time

Run time

original code

alloca i32

alloca double

alloca i32

alloca 3 * double

stack

var1

var2

var3

buf

SmokeStack

alloca 6 *double

stack

P-BOX

random number

0

1

2

3

4

5

4 5 0 1

var 1 2 3 4(buf)

var1

var2

var3

buf

SmokeStack

● Motivation & Background

● Methodology

● Implementation

● Evaluation

Implementation

1. Analysis Passes

(1) Gather all stack allocation

(2) Generate P-BOX table for each function

(3) Generate P-BOX for all unique P-BOX entry tables

Implementation

2. Instrumentation Passes

(1) Insert allocation and call to a random number generator function

(2) Replace alloca instr with getelementptr instr

(3) Detect attacks that bypass stack allocation instrumentation

Pass 2 -->

Pass 3 -->

Pass 1 -->

Optimization

Objective: Have low performance and memory overhead

Optimization

Objective: Have low performance and memory overhead

Approach:

● P-BOX size power of 2 -> reduce performance overhead

● Rearranging Stack Allocations -> reduce memory overhead

● Rounding up Allocations -> reduce memory overhead

SmokeStack

● Motivation & Background

● Methodology

● Implementation

● Evaluation

Experiment Setup

Platform:

Xeon D-1541 processor, Ubuntu 16.04 Linux, 32GB of memory

Benchmarks:

SPEC 2006 benchmarks & I/O bound real world applications, e.g., ProFTPD,

Wireshark

Source of random numbers:

RDRAND, AES-NI

Performance Overhead

Source of Overhead:
1. Register Pressure
2. Call Depth
3. Stack frame size

Memory Overhead

Security Analysis

Attacks considered:

Attacks in the original paper

RIPE Suite - Control Flow Attack

Benchmark Suite

Able to stop them all!

Stop real world attacks:

CVE-2014-2299 in Wireshark:

CVE-2006-5815 in ProFTPD

A stack-based buffer overflow

vulnerabilities

Discussion

Strength:

1. Thorough Security Analysis: Protect Against All Known DOP attacks

2. Minimal Overhead if Using PRNG as the Source of Randomness

Weakness:

1. Large Execution Overhead if Using RDRAND

2. Limited Analysis on Source of Overhead & Efficiency of the

Optimizations

Question?

