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Data-Oriented Programming (DOP) Attack

● A new form of memory exploits

● Only rely on manipulation of local variables

● Does not attack on control-flow elements
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Data-Oriented Programming (DOP) Attack

● Evaluated on 9 real-world programs

● 8 out of 9 have gadgets to simulate arbitrary computations

● 2 out of 9 are confirmed Turing-complete

● Built 3 attacks that bypass randomization defense

○ Immune to ASLR (only need relative address)

○ Immune to DEP (reuse existing code)

○ Immune to Stack Canary (does not write past stack frames)

● Open source software especially vulnerable
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Run time
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Implementation

1. Analysis Passes

(1) Gather all stack allocation

(2) Generate P-BOX table for each function

(3) Generate P-BOX for all unique P-BOX entry tables



Implementation

2. Instrumentation Passes

(1) Insert allocation and call to a random number generator function 

(2) Replace alloca instr with getelementptr instr

(3) Detect attacks that bypass stack allocation instrumentation  

Pass 2 -->

Pass 3 -->

Pass 1 -->
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Optimization

Objective: Have low performance and memory overhead

Approach:

● P-BOX size power of 2 -> reduce performance overhead

● Rearranging Stack Allocations -> reduce memory overhead

● Rounding up Allocations -> reduce memory overhead
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Experiment Setup

Platform: 

Xeon D-1541 processor, Ubuntu 16.04 Linux, 32GB of memory

Benchmarks: 

SPEC 2006 benchmarks & I/O bound real world applications, e.g., ProFTPD, 

Wireshark

Source of random numbers: 

RDRAND, AES-NI



Performance Overhead

Source of Overhead:
1. Register Pressure
2. Call Depth
3. Stack frame size



Memory Overhead



Security Analysis

Attacks considered: 

Attacks in the original paper

RIPE Suite - Control Flow Attack 

Benchmark Suite

Able to stop them all!

Stop real world attacks:

CVE-2014-2299 in Wireshark:

CVE-2006-5815 in ProFTPD

A stack-based buffer overflow 

vulnerabilities



Discussion

Strength:

1. Thorough Security Analysis: Protect Against All Known DOP attacks

2. Minimal Overhead if Using PRNG as the Source of Randomness

Weakness:

1. Large Execution Overhead if Using RDRAND

2. Limited Analysis on Source of Overhead & Efficiency of the 

Optimizations



Question?


