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Abstract—Memory corruption vulnerabilities in type-unsafe
languages are often exploited to perform a control-flow hijacking
attack, in which an attacker uses vulnerabilities to corrupt
control data in the program to eventually gain control over
the execution of the program. However, widespread adoption
of control-flow attack defenses such as Control-flow Integrity
(CFI) has led attackers to exploit memory errors to corrupt non-
control data that can not be detected by these defenses. Non-
control data attacks can be used to corrupt security critical
data or leak sensitive information. Moreover, recent attacks
such as data-oriented programming (DOP) have generalized non-
control data attacks to achieve Turing-complete computation
capabilities within the programmer-specified control-flow graph,
leaving previously proposed control-flow protections unable to
stop these attacks.

In this paper, we present a stack-layout randomization scheme
that can effectively thwart DOP attacks. Our approach, called
Smokestack, provides each function invocation with a randomly
permuted ordering of the local stack organization. In addition,
we utilize true-random value sources combined with disclosure-
resistant pseudo-random number generation to ensure that an
adversary cannot anticipate a function’s invocation permutation
of automatic variables. Our evaluation on SPEC benchmarks and
various real-world applications shows that Smokestack can stop
DOP attacks with minimal overhead.

I. INTRODUCTION

Despites decades of security research, memory corruption
still poses a great threat to software systems. This is due to
the fact that most high performance applications are written
with memory unsafe languages like C and C++, which are
inherently prone to memory corruption. Memory corruption is
typically exploited to deploy control-flow attacks in which the
execution flow of a program is manipulated to execute code
sequences not anticipated by the programmer, with the ultimate
goal of circumventing system security measures.

Due to the prevalence and power of control-flow attacks,
various mitigations have been proposed, such as Control flow
integrity (CFI) [6], which enforces the runtime execution path
of a program to adhere to the statically determined Control-Flow
Graph (CFG), and Code Pointer Integrity (CPI) [25], which
provides memory safety for code pointers. These techniques
have been shown to be effective at confining programs to the
programmer-specified control flow graph. However, widespread
adoption of control-flow attack protections has led to attacks
that corrupt non-control data to perform malicious operations.
Non-control data attacks do not violate the constraints imposed

by these defenses as they do not violate control-flow of the
program, rather they reuse existing control-flow to manipulate
program data. Moreover, recent works have shown that Turing-
complete computation capabilities can be achieved without
leaving the statically determined CFG [10] or without modi-
fying code pointers [22]. Control-flow bending [10] bypasses
CFI protections by swapping target addresses of a indirect
branches with another valid address from the same branch.
Data-Oriented Programming (DOP) [22] enables an attacker to
execute sequence of instructions within the legitimate control
flow of the program by repeatedly corrupting non-control
data. In this paper, we broadly term any attack that provides
a programming capability without leaving the programmer-
specified CFG as a data-oriented programming (DOP) attack.

Address randomization defenses, e.g., address space lay-
out randomization (ASLR), can be used as a first line of
defense against DOP attacks. However, information leaks are
increasingly being utilized to bypass these defenses, including
fine-grained and runtime re-randomization based techniques
[33]. In addition, information leaks coupled with attackers’
knowledge of the program semantics can successfully bypass
state-of-the-art randomization techniques and allow an attacker
to launch a successful runtime attack.

Most DOP attacks take advantage of the deterministic nature
of the stack layout of programs to grant an attacker the ability
to control operands used by sequences of existing code to
synthesize an attack payload. Stack layout randomization could
be a powerful tool to stop DOP attacks. However, prior stack
layout randomization techniques fall short in the presence of
memory disclosure by relying on one-time static randomization
or coarse-grained random padding. Additionally, it is essential
to have a disclosure resistant source of entropy at runtime for
randomizing the stack, as it has been shown that a powerful
attacker can gain access to the memory variables used to drive
pseudo-random number generation [23].

In this paper, we evaluate the effectiveness of previously
proposed stack layout randomization techniques at stopping
real-world DOP exploits. We show that previous stack-layout
protections can be easily overcome by DOP attacks. To address
this deficiency, we present Smokestack, a runtime stack-layout
randomization technique that randomizes function stack layout
at each invocation, using a true random permutation selection
that is protected against memory disclosure attacks. Using these
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defenses, Smokestack is able to thwart proposed and real-world
DOP attacks.

Objectives and Contributions. Our objective is to develop
a runtime solution resilient to DOP attacks, i.e., attacks that
manipulate program execution but do not leave the programmer-
specified CFG. The main contributions of this paper are as
follows:

Evaluation of prior stack randomization techniques: We
evaluate the effectiveness of prior stack layout randomization
schemes at stopping data-oriented attacks. To this end, we de-
veloped a real-world DOP attack based on a recently disclosed
vulnerability [4] that is able to achieve a Turing-complete
computation capability despite the constraints imposed by
previous stack-layout randomization schemes.

Smokestack: We present a novel runtime stack layout
randomization solution, dubbed Smokestack, which is capable
of stopping data-oriented attacks. Smokestack randomizes the
stack layout of functions for every function invocation, thereby
thwarting attacker attempts to discover stack frame layouts.
Smokestack implements true-random selection of stack layout
permutations that cannot be anticipated, even by attackers with
full control over data memory.

Implementation and detailed evaluation: We implemented
Smokestack in the LLVM compiler framework. Our imple-
mentation provides a secure random permutation, at function
invocation, using an intrusion-resistant pseudo-random number
generator (based on the Intel AES-NI instruction set extensions),
which is seeded from a true random number source. We present
a comprehensive performance evaluation of Smokestack on
the SPEC 2006 benchmarks and additional DOP vulnerable
versions of real-world applications. In addition, we assessed the
effectiveness of Smokestack at stopping data-oriented attacks
using synthetic as well as real-world DOP attacks.

The remainder of the paper is organized as follows. Section
II presents background on data-oriented attacks and assesses
the strength of previous stack layout randomization techniques.
Section III presents details of our proposed runtime stack
layout randomization scheme. Sections IV details our LLVM-
based implementation. Section V presents a performance and
security evaluation of our prototype system. Finally, Section
VII concludes the paper.

II. BACKGROUND

Runtime attacks exploit memory corruption vulnerabilities
in type-unsafe languages like C and C++ to control vulnerable
programs. These vulnerabilities are commonly exploited in a
control-flow hijacking attack, where an attacker uses memory
errors to corrupt control data, such as a function pointer, return
address, or C++ virtual function table, to eventually hijack
the execution flow of the program. To mitigate this problem
a wide range of control-flow protections have been proposed.
This includes enforcement based techniques like CFI [6], CPI
[25] as well as randomization techniques like address space
layout randomization [2]. Enforcement based mitigations either
prevent corruption of control data [25] or stop indirect jumps
from leaving the programmer-specified CFG. CFI instruments

the program to enforce that all indirect branches target only
valid addresses within the enforced control-flow graph.

With wide spread adoption of powerful control-flow protec-
tions like CFI [6], the next avenue for an attacker is using a
memory error to overwrite non-control data to cause non-
control data attacks [13]. These attacks have been shown
to have detrimental effects such as the leaking of secret
keys (HeartBleed) [16]. In non-control-data attacks, a memory
corruption vulnerability is exploited to corrupt non-control data,
data that is not directly used for indirect control transfer. These
attacks do not leave the valid edges of the CFG, however,
the data used for certain sequence of instructions and how
it is utilized is controlled by the attacker. Chen et al. [13]
demonstrated that non-control-data attacks can be used to
overwrite sensitive data used for decision-making and can
cause leakage of sensitive data or cause privilege escalation by
overwriting variables used in authorization decisions. Recent
works such as control-flow bending [10] have relaxed non-
control data attacks to include attacks that hijack the execution
of the program and yet still adhere to a valid control-flow
path in the CFG of the program enforced by the CFI policy.
Moreover, Hu et al. [22] demonstrated a more generalized form
of non-control data attack, called data-oriented programming
(DOP), that achieves Turing-complete computations with rich
expressiveness by manipulating only non-control data. These
attacks work without creating any new edges in the static
control-flow graph of the program and hence are not detected
by CFI solutions.

A. Data-Oriented Programming

Data-oriented programming attacks work by corrupting non-
control data to execute sequences of instructions within the
program with attacker-controlled operands. Each sequence of
instructions whose operands are controlled by the attacker,
called a DOP gadget, performs a particular operation which
contributes towards the overall attack payload. DOP attacks
can achieve Turing completeness by chaining DOP gadgets
together through controlling a vulnerable loop, called a DOP
gadget dispatcher, that is enclosing DOP gadgets and its loop
counter is controllable by the attacker.

1 func() {
2 int *ctr, *size = 0, *step = 1;
3 char *buff[LEN]; int *req;
4 for(;ctr < MAX; ctr++){
5 get_input(buff, req); //vulnerable function
6 if(*req == 0)
7 *size += *step;
8 else if(*req == 1)
9 *size -= *step;

10 else
11 *step = *req;
12 }
13 }

Listing 1: Example DOP attack.

Hu et al. [22] demonstrated that DOP attacks can bypass
wide spread defenses like ASLR to perform malicious oper-
ations on real-world applications. Listing 1 shows a simple
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program vulnerable to DOP attacks. If there is a buffer overflow
vulnerability in the input accepting function (get_input()),
where an attacker can overflow the fixed-sized buffer buff,
it could lead to an attacker able to control local variables
size, step, ctr and req. This grants an attacker the ability
to perform addition, subtraction and copy operations on any
memory value, in any order desired by the attacker.

Robust enforcement techniques such as Softbound [27] and
DFI [11] can protect against non-control data attacks. But
their high overhead makes them unsuitable for production
systems. On the other hand, relatively light weight enforcement
techniques have been proposed to mitigate non-control data
attacks, which typically rely on protecting only sensitive data,
e.g., kernel data [12] and programmer-annotated critical data
[31]. However, these mitigations are inherently ineffective
against generalized DOP attacks.

Randomization based protections on the other hand typically
do not stop the vulnerability rather they make the vulnerability
difficult to exploit by making certain assets used for the
attack unpredictable. The degree with which they make the
vulnerability difficult to exploit depends on the amount of
entropy introduced by the protection scheme. Most proposed
randomization based defenses randomize the location of code at
varying levels of granularity including at the function level [7]
[24], basic block level [35], and instruction level [21]. These
defenses are ineffective in protecting against DOP attacks, as
they do not depend on the location of code.

B. Prior Stack Randomization Efforts

Given the strong reliance that DOP attacks have on manip-
ulating stack variables, it suggests that previously proposed
stack layout randomization efforts may provide a basis to stop
DOP attacks. Prior works in stack randomization perform one
or more of the following transformations:
Stack base address randomization. This transformation random-
izes the base address of the stack by allocating random-sized
padding on the stack at the beginning of the program to make
the absolute address of stack allocations unpredictable during
the runtime of the program [19][2][18].
Random padding at function entry. This transformation adds a
random padding at the beginning of functions to randomize
the relative alignment between stack frames. Forest et al. [18]
proposed adding a random padding before stack frames of
functions with buffer variables at compile time. They use the
size of the stack frame (greater than 16 bytes) to identify
functions containing buffer variables. For every stack frame
allocation greater than 16 bytes, it adds one of the 8 possible
paddings ( 8, 16, ..., 64 bytes) randomly.
Static stack layout randomization. This technique permutes
stack allocations in a function at compile time to randomize
the relative distances between objects in a stack frame [19].

The main weakness of prior stack layout randomization
schemes is that they focus only on protecting corruption
of code pointers in the stack, which requires knowledge
of the absolute distance between the vulnerable buffer and
code pointer of interest. However, DOP attacks only require

relative distance between the vulnerable buffer and the variable
of interest, a local variable used in a DOP gadget and a
DOP gadget dispatcher, which is sufficient for a successful
attack. Consequently to assess the effectiveness of prior stack
randomization efforts in stopping DOP attacks, we developed
a proof-of-concept DOP exploit for a recently disclosed
vulnerability in librelp logging library (CVE-2018-1000140)
[4], which was fixed in subsequent versions of librelp. In the
following section we present the details of the attack.

C. Bypassing Previous Stack Randomization Efforts

The vulnerability in librelp is caused by improper use of
snprintf(). The C library function snprintf() writes a null
terminated series of characters and values to a non-zero sized
buffered and returns the number of bytes that would be written
assuming there was sufficient space, excluding the terminating
null byte. If snprintf() is used to process untrusted input in a
loop assuming it returns the number of bytes actually written,
it might lead to a buffer overflow vulnerability. For example,
if an attacker manages to control the size of the string to be
written on the boundary of the buffer, successive iterations
of the loop will grant the attacker a non-linear overflow of
the buffer which is able to bypass protections such as stack
canaries. Listing 2 shows the vulnerable code in librelp.

relpTcpChkPeerName() checks valid Subject alternative
names (SANs) within a X.509 certificate for a peer name until
it finds a match. While doing so, it copies all SANs checked so
far to a buffer for error reporting. Our proof-of-concept attack
exploits the stack-based buffer overflow in the relpTcpChkPeer-
Name() function, shown in Listing 2, to construct a DOP gadget
dispatcher and series of DOP gadgets by repeatedly corrupting
local variables of functions up in the call hierarchy used for
controlling a loop and performing operations in the socket
initializing function —relpTcpLstnInit(). Using static analysis,
we discovered gadgets for MOV, DEREFERENCE and STORE
operations. Moreover, we were able to de-randomize statically
randomized stack layout and random stack padding by taking
advantage of the semantics of the underlying program.

To exploit the vulnerability we supply a maliciously crafted
X.509 certificate containing more than 32KB of "subject alt
names" to a GnuTLS enabled RELP logging service. By
manipulating the size of the string for "subject alt name"
on the 32KB boundary, we were able to vary the gap precisely
enough to control which part of the stack to overwrite. This
control is essential to the attack as it enables the attack to
avoid unintended corruption of adjacent stack resident data
which might lead to a crash.

Bypassing static stack layout randomizations: To bypass
static stack layout randomization schemes, an attacker can use a
memory disclosure to perform a read attack and infer the layout
of the stack by analyzing its contents. In our proof-of-concept
exploit we were able to de-randomize static permutation of
allocation within a stack frame using either information leak
and semantics of the program or brute-force attacks, as the
permutation is done at compile time and is the same for every
run of the program.
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relpTcpChkPeerName(..., gnutls_x509_crt_t cert){
...
char szAltName[1024];
char allNames[32*1024]; /* for error reporting*/
bFoundPositiveMatch = 0;
iAllNames = 0;

iAltName = 0;
while(!bFoundPositiveMatch) {

szAltNameLen = sizeof(szAltName);
gnuRet = gnutls_x509_crt_get_subject_alt_name(

cert, iAltName, szAltName,
&szAltNameLen, NULL);

if(gnuRet < 0)
break;

else if(gnuRet == GNUTLS_SAN_DNSNAME) {
...

/* stack based buffer-overflow */
iAllNames += snprintf(

allNames+iAllNames, sizeof(allNames)-
iAllNames, "DNSname: %s; ", szAltName);

relpTcpChkOnePeerName(pThis, szAltName,
&bFoundPositiveMatch);

}
++iAltName;

}
...

done:
return r;

}

Listing 2: Vulnerable function in librelp logging library.

Then we use the snprintf vulnerability in the vulnerable
function to repeatedly overwrite the local variables used for
the DOP gadgets and gadget dispatchers to perform our
DOP attack. Using this approach, we were able to bypass
compile time permutations as well as padding-based stack-
layout randomizations.

III. SMOKESTACK RUNTIME STACK LAYOUT
RANDOMIZATION

Memory errors are typically utilized for control-flow attacks
that require corrupting control data to hijack the control-flow
of the program, when the corrupted control-data is used for
control-flow transfer. Randomizing the data layout can mitigate
these attacks as they require the absolute address of the data
to corrupt. Prior works achieve this goal by adding a random-
sized padding in the beginning of the stack frame which adds
uncertainty to the address of stack resident objects. These
randomization schemes only consider control-flow attacks and
hence rely on the assumption that obfuscating the absolute
address of stack resident data is sufficient to stop runtime
attacks. Even though they are shown to mitigate control-flow
attacks, purely data-oriented attacks are not stopped by these
protections. Non-control data attacks such as DOP utilize the
relative distance between variables in order to use memory
corruption vulnerabilities to control local variables, which is
kept intact with these approaches. These attacks require a
precise control over data, such as stack resident local variables,
used as operand in DOP gadgets and loop counters used to
stitch DOP gadgets in a particular order to realize a malicious
computation. Section II-C shows that an attacker can use a

DOP attack to undermine static stack layout randomization
and random padding schemes.

A. Design Objectives

The main objective of this paper is to provide a practical
mitigation technique to stop stack-based non-control data
attacks. To achieve this goal, our solution has to meet the
following requirements:

• Provide a runtime stack randomization scheme resilient to
memory disclosure that effectively mitigates DOP attacks.
This is a key requirement as our threat model assumes
a powerful attacker who can perform active probing to
reverse engineer randomized allocations.

• Have low performance and memory overhead on both
CPU-bound and I/O-bound applications.

• Be compatible with legacy code. This requirement includes
source and binary as well as modular support to enable
gradual migration of code.

B. Threat Model

In this paper, we assume a powerful attacker who is able to
gain read/write access to all writable data memory. However,
we assume the attacker is unable to write to non-writable
data/code sections and registers used by our instrumentation
code. In all, we consider a strong adversary capable of:

• Bypassing deployed protections such as ASLR using
memory disclosure vulnerabilities in the program or
microarchitectural features such as branch prediction [17]
and get full read access to all code pages mapped in the
address space of the program.

• Exploiting memory vulnerabilities and using the semantics
of the underlying program to reverse engineer a random-
ized stack layout of a function based on a disclosed
stack frame data that allows the adversary to instantiate a
runtime attack on future calls of the same function. This
could be a program where an attacker can get a hold of
the source code or the binary to perform static analysis.

• Performing a brute-force attack with a finite number
of attempts before being detected by the system. This
assumes a service that restarts after a crash.

C. Overview of Smokestack

The primary way to perform non-control-data attacks is to
identify local stack variables or register variables spilled from
the caller that are saved on the stack at the entry of a function
and restored before it returns through static analysis of the
binary or runtime memory disclosure. Then, successive steps of
the attack exploit memory corruption vulnerabilities to control
the identified local variables to execute the attack payload
using the instructions in the vulnerable program. Thus, our
protection needs to ensure the absolute address of the variables
as well as the relative distance between them changes with
every function invocation, making the information gathered
with prior probings of the program futile. Smokestack achieves
these requirements by dynamically deciding, at the function
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Fig. 1: System Overview: Overview of our runtime stack layout randomization scheme with the components of Smokestack highlighted.

prologue, the ordering, relative distance and alignment between
all stack resident objects.

Smokestack performs allocation of stack frames with live re-
randomization while retaining all the desirable features of stack
allocation such as automatic deallocation of stack objects for all
possible control-flow paths. It achieves this by replacing each
stack allocation in a function with a slice into the total stack
frame allocation, where its index within the total allocation is
decided dynamically at the function entry based on true-random
perturbation of the local variables.

Figure 1 shows the overview of Smokestack infrastructure.
To avoid the performance overhead associated with computing a
permutation at runtime Smokestack embeds a read-only permu-
tation box, P-BOX, that contains all the possible permutations
of all unique stack frames in the program in a shared library that
gets dynamically linked with Smokestack-hardened programs.
Section III-E presents optimizations we employed to reduce
the associated performance and memory overheads. The details
of the Smokestack compilation and runtime follow.

D. Discovering Stack Allocations

In this phase, we identify the stack frame allocations
for all functions in the program. This includes for each
function gathering the type and alignment requirement of
its resident objects. We then use this meta data to generate
possible permutation of its allocations and the total allocation
considering the alignment requirements of all objects for all
possible permutations. This step requires adding padding to
fulfill the alignment requirements of allocations for every
possible permutation, which also adds extra source of entropy
to our randomization scheme.

Generating Random Permutation: In this stage, we
generate all the possible permutations of stack allocations

Algorithm 1 Permutation Generator: This algorithm generates
all the possible permutations of stack allocations within a
function

1: procedure ALIGN(ind, alignment)
2: if ind%Alloca.alignment == 0 then
3: return ind
4: else
5: return (ind / alignment + 1) * alignment

6: procedure PERMUTE(F )
7: P_Table← ∅
8: N ← Count(F.Alloctions)
9: for pindex in 0 to N ! do

10: temp← pindex
11: ind← 0
12: Alloca←F.Allocations
13: Indexes[N ] = {0}
14: for aindex in 0 to N do
15: currfact ← (N − aindex)!
16: e← temp/currfact
17: temp← temp% currfact
18: ind← ALIGN(ind,Alloca[e].alignment)
19: Indexes[e]← ind
20: ind← ind+ sizeof(Alloca[e])
21: Alloca.pop(e)

22: P_Table.append(Indexes)
23: return P_Table

for each function in the program. To do this, we represent each
stack allocation as an index from the start of the stack frame,
allocation size and alignment requirement. We then generate all
possible permutations, in lexical order, for all the allocations
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foo:
STORE_ID  
tot = alloca(TotalSize)
index = get_indexes()
local_1 = tot.GEP(index[1])
local_2 = tot.GEP(index[2])
…

CHECK_ID
R:

ret  

ctr > MAX

ctr++
True rand. 
generator

enc(rand||ctr)
Index
P-BOX

STORE(foo_ID Ꚛ rand_ID.) 

READ(stored_ID)
if equal (foo_ID , stored_ID Ꚛ rand_ID) 

jmp R
else   

report_violation

reseed

ctr = 0

rand

Y

N

Fig. 2: Function call and return in a Smokestack: This figure shows
an overview of the stack layout randomization steps involved in
Smokestack function calls and returns, for the AES based random
number generation schemes.

within the function. Algorithm 1 shows the pseudo-code of our
permutation engine. The permutation engine takes all the stack
allocation in a function as an input. Each iteration of the outer
loop of PERMUTE procedure generates the pthindex lexical order
permutation of all the allocations within the stack frame of the
function. After computing all the iterations, we will have a
table, where the ith row in the table is a set of indexes for the
ith lexical order permutation of allocations in the function. We
then permute the rows in a table to avoid the lexical correlation
between any two consecutive rows in a table. Finally, we store
the permutation table of the function, which holds the indexes
of each allocation for every possible order of allocations, in
the P-BOX. A P-BOX is shared among all functions with the
same stack format. In section III-E, we show how we reduce
the associated memory overhead by sharing permutation tables
between different functions. Tables in the P-BOX are indexed
by a random number generated at function invocation, to get
the indexes of the local variables from the base of the stack
frame for that particular permutation.

1) Runtime Allocation of Randomly Permuted Stack Frames:
This phase instruments the program in order to randomize the
stack layout of each function call by randomizing the order and
alignment of all of local variables. This is achieved by having
a single stack frame allocation with a size equal to the total
allocation and replacing all stack variable allocations in the
stack frame with a slice in to the total stack frame allocation
of the function. Fig 2 shows the instrumentation introduced by
Smokestack. Upon a function invocation, a random permutation
of the local variables is chosen using a random number to index
the table associated with the function in the P-BOX to get
a row of indexes. Then, allocations in the stack frame are
assigned to their respective slices within the total allocation
based on their respective index in the randomly chosen row of
indexes. This is represented by LLVM’s GetElementPtr (GEP)
in the figure. This will ensure that the absolute address and
the relative distance to a stack resident object, which can be

used in a DOP gadget, is unpredictable for each invocation of
a function.

Random Number Generation: We considered various
random number generation schemes at the beginning of each
function to choose a random permutation of local variables.
We considered any form of pseudo-random number generation
where the algorithm’s state is in memory as unsafe, since a
powerful attacker assumed by our threat model could certainly
read and manipulate the state of a memory-based pseudo-
random generator.

• Generating a true random number at the entry of each
function. For this scheme, we considered the crypto-
graphic random number generator on UNIX-like sys-
tems(i.e., /dev/random) and rdrand, the on-chip
hardware random number generator on Intel processors.
As /dev/random stalls when the system’s internal
entropy pool is exhausted, we tested only rdrand on
our prototype implementation.

• Generating a cryptographically secure pseudo-random
number. For this scheme, we use AES counter mode
encryption to generate a secure random number. We
use a true random number generator to generate an
encryption key and a nonce that are updated when a
counter reaches a certain maximum value to guarantee
the randomness. This is done by using a universal call
counter to count the number of function calls before
generating a new random number. At the entry point of
a function we generate a pseudo random number using
AES counter mode encryption using the last generated
random number as an initial value and the call counter
as a counter. We used the Intel’s AES-NI extensions
[20] to accelerate our random number generation. On
our prototype implementation, we tested the approach by
varying the number of rounds of the AES encryption to
see the trade-off between security and performance.

Our instrumentation defers randomization of allocations
whose size cannot be determined at compile to runtime by
adding a random sized padding on top of the static total
allocation. Variable length arrays (VLA), which are supported
in the C99 standard, are one such example. We randomize
the layout of stack frames with VLAs at runtime by adding
a random sized dummy alloca before each VLA in a stack
frame. This guarantees that both the absolute address of the
VLA and its relative distance from other stack resident objects
is randomized.

2) Protecting Smokestack Defenses: The final pass adds
checks to detect attacks that bypass our instrumentations, for
example, by using control-flow attacks to jump in to the middle
of a function. To achieve this, the instrumentation phase adds a
unique load-time identifier for each function which is XOR’ed
with a random key at the prologue of the function. And, at the
epilogue it is XOR’ed with the same random key and checked
against the function identifier. These checks, together with the
stack runtime stack layout randomization, can be a second line
of defense for control-flow attacks.
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E. Smokestack Performance and Memory Optimizations

To reduce the performance overhead and the memory
footprint of our instrumentations, we applied the following
optimizations to Smokestack:

• P-BOX size of power of 2. This optimization rounds up
the size of P-BOX from n! to the nearest power of 2. This
is achieved by wrapping around indexes n! to the nearest
power-of-2. This optimization allows the replacement of a
modulo operation in our instrumentation with a left shift
operation. This has a significant impact in reducing the
performance overhead of the instrumentation added to
get random permutation indexes at the prologue of the
program.

• Rearranging Stack Allocations This optimization rear-
ranges stack allocations of functions to ensure that
all tables in the P-BOX are associated with a unique
combination of allocations. And, functions with the same
combination of allocations use the same P-BOX entry
table. For example, function f1 with local variables
int, double can share a P-BOX table entry with
function f2 with local variables double, int. This
optimization reduces the memory footprint of the P-BOX
and doesn’t have any negative impact on correctness of
the program as the actual order of the variables in the
resulting binary is determined by subsequent phases of
the compilation.

• Rounding up Allocations. This optimization reduces
the memory usage of P-BOXs by sharing a table for
functions having stack frames that differ only by one
primitive allocation. For example, functions f1(double,
double, int) and f2(double, double) share a
P-BOX table at the expense of extra padding in the stack
frame of f2.This optimization takes advantage of the fact
that the least significant indexes within a permutation entry
of a smaller table is same as the permutation of a bigger
size in lexical order of permutation. This optimization also
improves performance for frequently called functions.

IV. IMPLEMENTATION

We implemented Smokestack on top of the LLVM 3.9
compilation framework [26], modifying the LLVM libraries
and the compiler-rt runtime. Our analysis and instrumentation
passes operate on LLVM intermediate representation (IR),
which is generated from source files using the LLVM clang
front-end.

A. Analysis Passes

We implemented P-BOX generation in several LLVM passes.
The first function pass gathers all stack allocation for all
functions that have an on-stack memory object. Then, a module
pass uses the meta-data generated by the function pass to
generate a P-BOX table for each function, considering the
alignment requirements and the optimization discussed in
Section III-E. The final analysis pass generates the P-BOX
for all the unique P-BOX entry tables.

Alignment requirements. For primitive types, the alignment
requirement can be found as part of the IR instruction.
For aggregate and user defined types, we have to consider
both element alignment requirements and aggregate alignment
requirements. An element could be a primitive type whose
alignment requirement can be found easily or an aggregate type,
which makes the process recursive. The alignment requirements
of aggregate types, on the other hand, depends on the alignment
requirement of the largest element in the aggregate type.

B. Instrumentation Passes

The instrumentation pass inserts an allocation with the size
of the total allocation at the beginning of the function and
inserts a call to a random number generator inline library
function for all functions that have one or more than automatic
variables. Then, it replaces all the alloca instructions in the
function with getelementptr instructions whose indexes
are decided by the set of indexes selected from the P-BOX
entry table of the function using the generated random number.
The final instrumentation pass inserts checks to detect attacks
that bypass the stack allocation instrumentation. P-BOX tables
are implemented as a read-only data in a runtime library and
linked to the program, to enable a cache friendly approach.

V. EVALUATION

This section presents the detailed performance and security
evaluation of Smokestack. We ran our experiments on an Intel
Xeon D-1541 processor running Ubuntu 16.04 Linux with
32GB of memory.

A. Performance Evaluation

We evaluated the performance overhead of Smokestack
using SPEC 2006 benchmarks and other I/O bound real-
world applications, e.g., ProFTPD, Wireshark. The baseline
was compiled with Clang with the default SPEC settings (-
O2). The Smokestack hardened version was compiled the
same way, except for the additional instrumentation passes
and replacing the default stack smashing protection with our
function identifier instrumentation, which has better security
guarantees. We ran four experiments, which varied how random
number generation was implemented. pseudo utilizes a memory-
based pseudo-random number generator. This experiment is
only included as a performance baseline, as it is considered
completely unsafe by our threat model (since the attacker can
anticipate the state of the generator at any time). The AES-1
and AES-10 experiments use the Intel AES-NI instructions to
encrypt a true-random seed, with the former experiment only
running one AES round and the latter running 10 rounds which
conforms to the AES standard [30]. Finally, RDRAND uses
the Intel RDRAND instruction to get a true-random number
for use by the stack layout permutation code.

Figure 3 shows the performance overhead of Smokestack
for the SPEC 2006 benchmarks and I/O bound applications.
Our measurements show that the performance is dependent on
the way we generate a random number. For unsafe pseudo-
random number generation, the normalized performance varies
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from a speedup of 2.6% to a slowdown of 7.2%, averaging
to 0.9% slowdown over the SPEC2006 benchmarks. Using a
cryptographically secure pseudo random generation (AES-128
10 rounds), the overhead spans from 0.6% up to 29%, and
averaging 10.3%. To assess the overhead vs. security trade-off,
we also examined the performance of a less secure pseudo-
random number generation (AES-128 1 round), which has an
average slowdown of 3.3%. For RDRAND-based true-random
number generation, there was greater slowdown due to the
bandwidth limitations of the true random number generator.
This experiment experienced an overall average slowdown of
nearly 22%.

To examine the source of performance gain on some
benchmarks, we ran the Oprofile [5] tool with our SPEC
2006 experiments which clearly showed the variation on the
RESOURCE_STALLS parameter depending on the benchmarks.
Our analysis shows that the speedups are due to instruction
scheduling and register pressure caused by the Smokestack
instrumentations. On some benchmarks, Smokestack increases
register pressure and consumes load delay slots during the
CPU scheduling. The register pressure improved performance
on benchmarks where registers are underutilized, and degrades
performance if registers were already fully utilized. Our
evaluation also shows that, call depth has moderate impact on
the overall performance with maximum depth value of 394 (for
perlbench). The stackframe size, however, showed a significant
impact on performance. This is reflected in the relatively large
performance hits reported on certain benchmarks, for example
445.gobmk has a maximum stack frame size of 85 KB.

On I/O bound applications we used for our performance
evaluation, ProFTPD and Wireshark, Smokestack incurs negli-
gible overhead, with the worst case performance overhead of
6%.

B. Memory Overhead

We evaluated the memory overhead of Smokestack by
measuring the maximum resident set size (ru_maxrss) while
running SPEC 2006 benchmarks. Figure 4 shows the results of
these experiments. It’s interesting to note that benchmarks with
higher memory overhead, like perlbench and h264ref, have
relatively lesser performance overheads. This is due to the
fact that the source of the memory overhead is the addition of
the index P_BOX in the read-only data section which doesn’t
strongly impact the I-cache miss rate.

C. Security Analysis

In this section we assess effectiveness of smokestack in
protecting against DOP attacks. To this end, we first analyze
the security vs. throughput of the sources of randomness
we used for our prototype implementation, we then evaluate
Smokestack’s effectiveness in protecting DOP attacks in both
synthetic benchmarks and real-world applications.

Source of randomness: We performed tests to examine the
rate at which we can generate random numbers. Table I shows
the rate at which we can generate random numbers, using
random generation schemes with varying security guarantees,

TABLE I: SOURCE OF RANDOMNESS: SHOWS THE RATE AT WHICH
RANDOM VALUES CAN BE GENERATED BY THE RANDOM GENERA-
TOR SCHEMES WE TESTED FOR OUR PROTOTYPE IMPLEMENTATION.

source Security Rate (cycles/Invocation)
pseudo None 3.4
AES-1 Low 19.2
AES-10 High 92.8
RDRAND High 265.6

back-to-back on our test machine. While pseudo is fastest, it
also offers no protection against a powerful attacker assumed by
our threat model. RDRAND, in contrast, provides true random
values for each invocation, but comes with a great delay. The
AES based pseudo random number generators, on the other
hand, provide a convenient trade-off between security and
performance, with overall quite good performance.

Penetration testing with synthetic benchmarks: We devel-
oped two types of DOP attacks that exploit buffer overflow
vulnerabilities to control local variables used as DOP gadgets
and a loop counter used as gadget dispatchers. The first set of
attacks use a stack based buffer overflow vulnerability to corrupt
variables in the stack to perform the attack. And, the second
set of attacks overflow a buffer in the data segment or heap to
overwrite local variables in the stack. We also considered two
types of overflows, direct and indirect (overflows a buffer until
a pointer is corrupted, and then use an assignment through the
corrupted pointer to overwrite the target pointer) —an approach
followed by the RIPE [36] control-flow attack benchmark suite.

Smokestack is able to prevent all the attacks by breaking the
DOP gadgets and gadget dispatchers. All of the direct overflow
attacks based on any buffer were stopped. Also, any indirect
overflow attacks based on buffers in the data segment or heap
corrupted unintended locations in the stack. All of the indirect
overflows attacks failed on the first step, as they overwrote a
different address than the intended pointer used to write to the
target pointer.

Real Vulnerabilities: In our final set of security analyses,
we tested Smokestack’s ability to protect against attacks that
exploit real vulnerabilities including our own proof-of-concept
DOP attack on librelp logging library. The following reported
DOP attacks were considered for our analysis:

The Wireshark network protocol analyzer prior to
version 1.8 had a stack-based buffer overflow vulner-
ability (CVE-2014-2299 [3]) in mpeg reading function
cf_read_frame_r(). This vulnerable function is called from
packet_list_dissect_and_cache _record () to copy user spec-
ified mpeg frame data to a fixed sized buffer pd. Hu et’al.
[22] exploited this vulnerability by sending a maliciously
crafted trace file that contains a frame larger than the buffer
size (0xffff). Their DOP exploit overflows the buffer to
overwrite variables col, cinfo, and parameter packet_list in
the same function, i.e. packet_list_dissect_and_cache_record
(), and the loop condition cell_list in its caller function,
gtk_tree_view_column_cell_set _cell_data(), with malicious
input. col, cinfo and packet_list are used as DOP gadget
operands and packet_list used for stitching together gadgets in
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Fig. 3: Percentage performance overhead of Smokestack: This figure shows the percentage runtime overhead of Smokestack on SPEC2006
benchmarks and other I/O bound applications. The experiments varied the way random numbers are generated. RDARAND shows the use of
rdrand, the on-chip random number generator on Intel processors. The others show use of cryptographically secure pseudo-random number
generation schemes, AES-128 counter mode with 10 rounds (AES-10) and a less secure variant with 1 round (AES-1). Finally, pseudo
shows the overhead of using an insecure memory-based pseudo-random number generator.

Fig. 4: Percentage memory overhead of Smokestack: This figure shows
the percentage increase in maximum resident set size of Smokestack
on SPEC2006 benchmarks.

the subsequent calls to the function packet_list_change_record()
which contains all the DOP gadgets. We run this attack on
a Smokestack-hardened version of the vulnerable Wireshark
program. Smokestack stopped this attack by detecting the
violations when the overflow corrupted unintended data like
Smokestack function identifier as Smokestack changes the
index of pd in the stack frame for every call of the function
packet_list_dissect_and_cache _record ().

ProFTPD has a stack-based buffer overflow vulnerability
(CVE-2006-5815) due to the use of sstrncpy(dst,src,negative
argument) in the sreplace() function [1]. Hu et al. has
demonstrated DOP attacks1 that extract private keys bypassing
ASLR, simulate remotely controlled network bot and alter
memory permissions exploiting this vulnerability.

Extracting private keys bypassing ASLR: ProFTPD stores
its OpenSSL private key in a buffer which has a chain of
8 pointers pointing to it, with only the base pointer not
randomized. A successful attack to extract the private key
requires using memory disclosure to de-randomize these 7
global pointers. Hu et al. used a DOP attack composed of
24 DOP gadget chains (which requires corrupting operands
of virtual operations consisting MOV, ADD and LOAD for
24 iterations) to successfully extract the OpenSSL private
key bypassing the underlying ASLR. This attack was also
demonstrated to bypass TASR [8], which does fine-grained
re-randomization of code on every output system call.
The other two DOP attacks on ProtFTPD use sreplace() to
corrupt relocation metadata in the link_map structure. This is
then used by dlopen(), which is invoked in ProFTPD’s PAM
module to dynamically load libraries, to process the corrupted
relocation metadata. The two end-to-end exploits used this to
simulates a bot that repeatedly responds to network commands

1https://huhong-nus.github.io/advanced-DOP/
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and alter memory permissions to bypass defenses including
w∧x, .rodata and CFI defenses.

All these attacks repeatedly use a memory corruption
vulnerability in sreplace() to chain together virtual instructions
used in the DOP attack by repeatedly overwriting a loop counter,
which is used as a DOP gadget dispatcher. We were able to
detect all the attacks on the Smokestack-hardened version of
the affected version of ProFTPD. Smokestack was able to
stop this attack by randomizing the relative distance of the
overflowed buffer with the loop counter used to stitch the DOP
gadgets together and the operands used in the DOP gadgets,
hence breaking the gadgets as well as the gadget chain.

VI. RELATED WORK

Memory corruption attacks are the leading threat to system
security. Several mitigation techniques have been proposed to
protect against this threat. These protections can generally
be categorized in to two major classes. The first class is
enforcement-based protections that perform explicit checks
based on predefined policies. These techniques vary from
protections which guarantee full memory safety such as
Softbound [27] + CETS [28] to protections that target particular
type of exploit such as CFI [6], that protects against control
flow hijacking exploits.

The other class is randomization-based protections, where
critical assets used by an attacker for a runtime attack are
randomized after they are acquired and before they are used in
an exploit. Randomization-based solutions are more practical
as they incur relatively lower overhead than enforcement-based
solutions. Address space layout randomization (ASLR) [2] is
a typical example, which is a widely deployed randomization-
based techniques. It randomizes the base of sections of a
program such as code, stack, heap and shared libraries in its
address space at load time of the program. However, ASLR has
been shown to be ineffective in the presence a single memory
leak [34] or brute-force attacks [32]. Successive improvements
to randomization-based techniques were proposed to increase
entropy by decreasing the granularity of the randomization
of the code section to function level [24], basic-block level
[35], and instruction level [21]. However, subsequent works
[33][15] have shown that compile-time and load-time fine-
grained randomizations can be bypassed by runtime attacks
that dynamically generate their payloads. Recently, periodic re-
randomization [37] has been shown to be effective in stopping
these attacks. But it has only been validated for code pointer
protection as it protects against control-flow attacks that are
resilient to static randomizations.

With the ultimate goal of taking control of the program,
control-flow hijacking is usually the easiest and the primary
way of exploiting memory corruption vulnerabilities. To address
these attacks, a wave of mitigation techniques has been
proposed. The leading approach being control flow integrity
(CFI) [6], which is based on constructing the program’s CFG
prior to its execution and validating at runtime whether the
execution path follows a valid edge in the CFG. With the
advent of low overhead CFI techniques to protect corruption of

control data, non-control data attacks has received significant
attention by attackers.

Several works have been proposed to mitigate attacks based
on non-control-data including enforcement, randomization and
language-based approaches.
Data-Flow Integrity (DFI) [11] statically performs reaching
definition analysis of instructions. DFI then instruments read
access instructions to ensure that the last instruction that wrote
to the location is within the reaching definition set of the
instruction. Even though DFI is capable of mitigating DOP
attacks, a complete DFI protection incurs a very high overhead
(50 - 100% on SPEC 2000 benchmarks).
PointGuard [14] proposed encrypting all pointers when they
are stored in memory and decrypting them just before they are
loaded into registers. However, it uses a single key to XOR
all pointers, hence a single leak of a known encrypted pointer
from memory can be used to recover the key. Data Space
Randomization (DSR) [9] tries to solve the shortcomings of
PointGuard by using a different key for all variables. However,
even that has been shown to be ineffective in face of memory
leaks [34].
Giuffrida et al.[19] presented an ASLR technique that performs
live re-randomization of program modules periodically. Unfor-
tunately, their re-randomization technique induces significant
runtime overhead when the re-randomization period is small. In
addition, their proposed technique is tailored to microkernels,
relying on hardware-isolation and runtime error recovery.
Moreover, their stack randomization a static randomization
and randomized padding which is not effective in protecting
against DOP attacks.
YARRA [31] provides a C language extension for validating
sensitive pointers pointing to critical data, such as secret keys,
in the program as annotated by the programmer. It does this by
using page protection to lock its protected data when running
unsafe procedures. YARRA offers a security guarantee for non-
control data attacks against only the annotated data. However, it
incurs a significant overhead for protecting the whole program
(e.g., 6x overhead on gzip).

HardScope [29] ensures an intra-program memory compart-
mentalization by enforcing compile-time discovered variable
scope constraints at run-time. HardScope instruments memory
accesses at compile-time to check that the memory address
requested is within the allowed memory areas. HardScope was
demonstrated by extending the RISC-V instruction set with
six new instructions. Its hardware support gives Hardscope
low overheads. Even though Hardscope reduces the number of
available DOP gadgets, it is still susceptible to DOP attacks
that share access to the same global data structures or have a
data flow reaching a global data structure.

VII. CONCLUSION

With widespread adoption of control-flow hijacking attack
mitigations, non-control data attacks are becoming an in-
creasingly popular source of attacks against systems. While
randomization techniques in the code section of a program
are gaining popularity due their efficiency, they are ineffective
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in stopping DOP attacks. We also found previously proposed
stack layout randomization efforts are not robust enough to stop
DOP attacks. Smokestack gains additional power at stopping
DOP attacks by randomizing stack frames for functions each
time they are called. In addition, we leverage true-random
stack layout permutation that is resistant to memory disclosure
attacks, forcing the attacker to reverse engineer a function frame
and deliver a payload in the same invocation. Our proof-of-
concept implementation in the LLVM framework demonstrates
that the approach can effectively stop DOP attacks with only
minimal slowdown in program execution.
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