
Partial Dead Code
Elimination

Written by Jens Knoop, Oliver Rüthing & Bernhard Steffen

Presented by Yian Zhu, Tengda Tang & Chess Luo

Partial Dead Code Elimination - Quick Facts

● Machine independent

● IR level optimization

● Optimize for speed by reducing dynamic operation count

Loop Invariant Code Motion

What if...

Partially Dead Code Elimination

Partial Dead Code Elimination - Simple Case

Partial Dead Code Elimination - Real World

1. Move the instruction through all kinds of control flow to reach its “live” branch

Partial Dead Code Elimination - Real World

1. Move the instruction through all kinds of control flow to reach its “live” branch

2. Have to deal with “faint” code situation

○ Either the left hand side has no usage at all or it is killed by other

assignment before any usage (the definition of dead code)

○ Or the left hand side is only used by other faint code

Partial Dead Code Elimination - Real World

1. Move the instruction through all kinds of control flow to reach its “live” branch

2. Have to deal with “faint” code situation

3. Second order effect: eliminating partial dead code might create further

elimination opportunities.

Sinking-Eliminating effects

Sinking-Sinking effects

Elimination-Sinking effects

Elimination-elimination effects

The Algorithm

1. Dead(faint) variable analysis
2. Dead(faint) assignments elimination
3. Delayability analysis
4. Ask for assignment sinking
5. Repeat 1-4 until the program becomes invariant

Some predicates:

ASS-USED(l, x)

N-DELAYED(n, a), X-DELAYED(n, a), N-INSERT(n, a), X-INSERT(n, a)

LOCDELAYED(n, a), LOCBLOCKED(n, a)

The Algorithm

The Dead Variable Analysis:

Trivial using DU chain

The Faint Variable Analysis:
function isFaint(l)

if isDead(l)
return true

else
for u in uses of l

if lhs(l).def == l
continue

elif ASS-USED(u, l) and !isFaint(lhs(l).def)
return false

return true

The Algorithm

Delayability Analysis (forward):

N-DELAYED(n, a) = X-DELAYED(m, a)

X-DELAYED(n, a) = LOCDELAYED(n, a)

+ N-DELAYED(n, a) * ¬LOCBLOCKED(n, a)

Insertion Points:

N-INSERT(n, a) = N-DELAYED(n, a) * LOCBLOCKED(n, a)

X-INSERT(n, a) = X-DELAYED(n, a) * ¬N-DELAYED(m, a)

The Result

The Result

Discussion

● Advantages

○ Able to move statements out of loops or even across loops

○ Maintains original control structure

● Disadvantages

○ Must be applied repeatedly

○ Partial faint code elimination of order O(n^5) in the worst case

