
Support of Probabilistic Pointer Analysis
in the SSA Form

Ming-Yu Hung, Peng-Sheng Chen, Member, IEEE, Yuan-Shin Hwang,

Roy Dz-Ching Ju, Senior Member, IEEE, and Jenq-Kuen Lee

Abstract—Probabilistic pointer analysis (PPA) is a compile-time analysis method that estimates the probability that a points-to

relationship will hold at a particular program point. The results are useful for optimizing and parallelizing compilers, which need to

quantitatively assess the profitability of transformations when performing aggressive optimizations and parallelization. This paper

presents a PPA technique using the static single assignment (SSA) form. When computing the probabilistic points-to relationships of a

specific pointer, a pointer relation graph (PRG) is first built to represent all of the possible points-to relationships of the pointer. The

PRG is transformed by a sequence of reduction operations into a compact graph, from which the probabilistic points-to relationships of

the pointer can be determined. In addition, PPA is further extended to interprocedural cases by considering function related

statements. We have implemented our proposed scheme including static and profiling versions in the Open64 compiler, and performed

experiments to obtain the accuracy and scalability. The static version estimates branch probabilities by assuming that every conditional

is equally likely to be true or false, and that every loop executes 10 times before terminating. The profiling version measures branch

probabilities dynamically from past program executions using a default workload provided with the benchmark. The average errors for

selected benchmarks were 3.80 percent in the profiling version and 9.13 percent in the static version. Finally, SPEC CPU2006 is used

to evaluate the scalability, and the result indicates that our scheme is sufficiently efficient in practical use. The average analysis time

was 35.59 seconds for an average of 98,696 lines of code.

Index Terms—Compiler, pointer analysis, control flow graph (CFG), static single assignment (SSA) form

Ç

1 INTRODUCTION

POINTER analysis is a compiler analysis technique that
statically estimates the possible runtime values of a

pointer. Because of the dynamic association property of
pointers in programs, it is difficult for compilers to know
where pointers may point to in general. The absence of such
knowledge makes conservative assumptions about pointer
information, which can impede aggressive optimizations.
Considerable efforts on this topic have led to the develop-
ment of many intra and interprocedural pointer analysis
algorithms [1], [2], [3], [4], [5], [6], [7]. The computational cost
of gathering pointer information is also an important
consideration. Hind and Pioli [8], [9] summarized that the
complexity of existing methods was from almost linear [2] to
doubly exponential [10]. The efficiency was also reported by
measuring the analysis time and memory consumption of the
pointer analyzers and their clients. In order to reduce the cost

of pointer analysis, a static single assignment (SSA)-based
approach is proposed in this paper. The built-in explicit use-
definition (use-def) chains in SSA help the analyzer to track
related locations or addresses at a lower cost.

The pointer information gathered by the traditional
points-to analysis techniques [1], [2], [3], [4], [5] can be
categorized into two classes: definitely-points-to relationships
and possibly-points-to relationships. Such information may
not be precise enough to direct certain optimization, since
the information does not describe how likely that possibly-
points-to relationships hold, and hence quantitative descrip-
tions are needed for modern compiler optimizations.
Probabilistic pointer analysis (PPA) techniques have been
proposed to quantify points-to relationships [11]. PPA can
facilitate the compiler to determine whether it is beneficial to
perform certain optimizations, such as speculative multi-
threading execution [12], data speculation [7], data prefetch-
ing [13], and transactional memory [14], as these
optimizations will show a profit when specific points-to
relationships hold with high or low probabilities. PPA is
useful for speculative multithreading execution for threads
with pointer-induced data dependencies. PPA provides the
essential information for a compiler to estimate the like-
lihood of dependencies so that it can maximize the number
of threads for parallel execution, but minimize the chance of
dependence violations between threads. Therefore, it can
help a compiler to achieve speedups by executing spec-
ulative threads when the possibilities of conflicts are low,
and can avoid slowdown by turning off thread speculation
if the possibilities are high. In a distributed environment,
PPA can also be applied to manage data distributions. Each
points-to location has probabilities assigned to it by pointers,
so the reuse and use frequencies of locations can be deduced

2366 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

. M.-Y. Hung and J.-K. Lee are with the Department of Computer Science,
National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road,
Hsinchu 30013, Taiwan.
E-mail: myhung@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw.

. P.-S. Chen is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
E-mail: pschen@cs.ccu.edu.tw.

. Y.-S. Hwang is with the Department of Computer Science and Information
Engineering, National Taiwan University of Science and Technology, 43
Keelung Road, Section 4, Taipei 106, Taiwan.
E-mail: shin@csie.ntust.edu.tw.

. R.D.-C. Ju is with Advanced Micro Devices, Inc., 1 AMD Place, MS 25,
PO Box 3453, Sunnyvale, CA 94088. E-mail: roy.ju@amd.com.

Manuscript received 4 Aug. 2011; revised 2 Dec. 2011; accepted 12 Feb. 2012;
published online 17 Feb. 2012.
Recommended for acceptance by M. Kandemir.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-08-0514.
Digital Object Identifier no. 10.1109/TPDS.2012.73.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



from PPA information. This information can be used by the
optimizer to arrange a better memory layout for a pointer
program that bridges the latency gap between internal and
external memory [15].

PPA was pioneered to report quantitative points-to
relationships by providing a set of transfer functions of
data flow analysis for the usage of each pointer [6], [7], [11].
Assume that the probability for each points-to pair is
required when collecting data flow information. When this
data flow analysis converges, the equations containing the
unknown probability for each points-to pair must be solved
to obtain probabilistic information. However, the normally
large amount of unknown relationships collected by a data
flow analysis makes the compiler analysis of previous PPA
techniques impractical for large programs. The complexity
of data-flow PPA is OðVdfNdfÞ þOðE3

dfÞ where Vdf is the
number of nodes in CFG, Ndf is the maximum number of
points-to relationship, and Edf is the number variables in
the equation [6]. Da Silva and Steffan [16] also proposed a
method of probabilistic pointer analysis based on sparse
transformation matrices. In their algorithm the pointer
information was modeled as a points-to matrix, and
transformation matrices recorded the influences of points
within a statement or a set of statements. Without the use-
def chains of SSA, this method must collect information
about all of the pointers even when information is only
needed for one or few of them. In this paper, we present a
PPA scheme based on the SSA form. PPA using the SSA
form quantifies each points-to relationship as a probability.
A possibly-points-to relationship is represented by a prob-
ability between 0 and 100 percent. This SSA-based
approach significantly reduces the complexity of PPA to
OðNÞ þOðV EÞ where N is the number of identifications
(IDs) in SSA, V is the number of related pointers, and E is
the number of use-def chains connecting V by utilizing the
explicit information about use-def chains in the SSA form.

Since PPA analyses pointers, it must be extended to have
the ability to deal with indirect operators. This was achieved
in the present study by proposing a set of algorithms that
compute the probabilistic points-to relationships of a
specific pointer. The algorithms use the memory SSA
information to connect related pointers as a graph and to
use the edge weights from the execution frequencies of the
CFG to associate the probabilities with points-to relation-
ships. In addition PPA is further extended to interprocedur-
al cases by adding function calls in the program
representation. Here, we also present running examples to
illustrate our proposed algorithms.

To our best knowledge, this is the first study to devise a
scheme for probabilistic pointer analysis based on the SSA
form. We have implemented it in the global optimization
(WOPT) phase of the Open64 compiler, and have developed
two versions for obtaining edge frequencies: static assign-
ment and profiling feedback, respectively. Our experimen-
tal results show that the probability distributions of points-
to relationships are almost all in extreme high or low
regions, and the compiler can confidently make decisions
about whether or not to perform aggressive pointer-
induced optimizations for the pointers in these regions.
The average errors were measured using pointer related
benchmarks, Olden and CHJL [6]; these were 3.80 percent in

the profiling version and 9.13 percent in the static version
by comparing with actual runtime executions. SPEC
CPU2006 benchmark [17] is further used to evaluate the
scalability of PPA, and the result also demonstrates that our
scheme is sufficiently efficient for practical use. The average
analysis time was 35.59 seconds for the benchmark with an
average of 98,696 lines of code.

This paper makes the following contributions:

1. Points-to relationships are presented by quantitative
probability instead of qualitative information, may
or must.

2. Compared with previous work, proposed algo-
rithms improve the analysis speed and complexity.

3. Olden and CHJL are used to evaluate the accuracy
and SPEC CPU2006 benchmarks are used for
scalability evaluation of PPA in the SSA form.

The remainder of this paper is organized as follows:
Section 2 defines the problem and terminologies. Section 3
presents our proposed PPA algorithm and also the running
examples to illustrate our proposed algorithms. The experi-
mental results are described in Section 4. Finally, Section 5
lists related work, and conclusions are drawn in Section 6.

2 PROBLEM SPECIFICATIONS AND TERMINOLOGIES

The goal of SSA-based probabilistic pointer analysis is to
compute the probabilities of points-to relationships for a
pointer, p, at a program point, s.

2.1 Problem Specifications

For each points-to relationship, assume that p points to a
location, v, denoted as a tuple hp; vi. The probability function,
Pðs; hp; viÞ, computes the probability that pointer p points
to v at s according to the following equation:

Pðs; hp; viÞ ¼def
Nðs; hp; viÞ
Nðs;?Þ if Nðs;?Þ 6¼ 0

0 otherwise;

8<
:

where Nðs;?Þ is the number of times that s has executed,
and Nðs; hp; viÞ denotes the number of times the points-to
relationship hp; vi holds at s [18].

The probability function can be overloaded to compute
the probabilities for the set of points-to relationships, if the set
is represented by a vector. Specifically, ifV is the set of points-
to relationships at s, the probability function for V at swill be

Pðs; V Þ ¼def fPðs; hp; viÞ j hp; vi 2 V g:

Such an overloaded probability function returns a vector,
the ith element of which contains the result of the
probability function for the ith points-to relationship in V .

Because we are only concerned about pointers, assuming
that p is the analysis target, the possible statements in a
program are listed in Table 1. Points-to Location points to one
or more locations, and the prefix, “affine-”, means the array
index or offset is composed of fðxÞ ¼ axþ b. Pointers Aliased
is an alias between pointers with an affine offset or it aliases
with a function pointer. If multilevel pointers are consid-
ered, one-level-higher pointer points to one-level-lower
point is a kind of Pointers Aliased, because the dereferencing

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2367



one-level-higher pointer is aliased with one-level-lower
pointer (�r and p are aliased). Updated by Function indicates
that the foo function returns a pointer to p, and Pointer
Parameter means that pointer p in a callee function aliases
with other pointers at caller sites, and the last two
statements, Indirect Store and Indirect Load access the
pointers indirectly, when dereferencing a pointer by � or
! . However, indirect accesses make the SSA form more
complicated, because the SSA constructor cannot determine
the define site only from the symbolic information. This
problem is discussed in Section 2.2.

Location naming is defined as (base, offset). The base
denotes the base address of a location, and offset is the
distance from the base address in bytes. For example, the
location naming of an integer-type array, A½3�, is repre-
sented as (&A½0�; 12). The offset part can also be an affine
function that represents a dynamic access. For example,
(&A½0�; ð2iþ 3Þ � 4) is the location naming of A½2iþ 3�. If
the storage locations are created by functions, the base part
of its naming is the function name with a line number in the
source code. Take the following code segment, for example.
Pointer p points to the location which is named mallocS2,
and q points to the location, mallocS3.

foo(int *p, int *q) { //S1

p = malloc(sizeof (int)); //S2

q malloc(sizeof (int)); //S3

}

2.2 Static Single Assignment Form

In compiler design, the SSA form [19], [20] is an
intermediate representation (IR) in which every variable is
assigned exactly once. Existing variables in the original IR
are split into multiple versions, and new variables are
typically indicated by the original name with a subscript, so
that each definition gets its own version. As a result, use-def
chains are explicitly tracked in the SSA form. Many efficient
optimizations have been developed based on SSA, such as
dead code elimination [21], constant propagation [22], and
live range computation [23].

In order to maintain single assignments at the confluence
points in a control flow graph (CFG), SSA introduces the �-
function, which is represented as a pseudoassignment and it
takes the form Vk ¼ �ðVm; Vn; . . . ; ViÞ. Vk denotes the new
version ofV , while the operands on the right-hand side (RHS)
denote the old versions that are live until a confluence point.
When constructing the SSA form, usually �-placement is
performed first, followed by variable renaming. �s must be

inserted in the dominance frontiers of the nodes containing
defitions in the CFG, and then variables are numbered
according to their order in the dominator tree. Cytron et al.
[24] proposed an algorithm and presented experimental
results to show that the construction time of SSA usually
increases linearly with the size of the original program.

Fig. 1 shows an example and its SSA form. This CFG has
three dominance frontiers: the beginning and end of the while
loop, and the end of the if-then-else structure. Therefore,
variables with multiple definitions from incoming edges are
placed in � at these three points. Let the pointer analyzer
target the dereferencing pointer, p, at line 14 in the original

2368 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

TABLE 1
Program Normalization in C Style

p and q are one-level pointers, r is a two-level pointer, v is a scalar
variable, and A is an array of scalars.

Fig. 1. Examples of SSA and of SSA with � and �.



code; it is named as p5 under the SSA representation at line
20. The explicit definition site of p5 can be found directly at
line 15. � is used to determine the related pointers, p1 and p4,
from its operands. Later, p1 points to the location of y1, while
p4 is another � at line 12. Because p1 has already found the
Points-to Location that is the address of y1, it is terminated. On
the loop back edge, p4 is defined based on its � operands, p2

and p3. Similarly, following the built-in use-def chains in
SSA, p3 aliases with q2 at line 9. Another branch is a � at line 5.
When a series of traces are applied following the use-def
chains, the analyzer will eventually find p5 pointing to
the locations of y1 and z1. The above simple example shows
the benefit of the explicit use-def chain. The detail of the
algorithm is given in Section 3.

2.3 Memory SSA

Maintaining the explicit use-def chain is not straightfor-
ward when indirect memory operations are considered.
Because a definition is made by an aliasing pointer of a
scalar variable, the SSA constructor cannot exactly deter-
mine the single definition site from symbolic checking
only. This paper solves this problem based on the method
proposed by Chow et al. [25], which is an efficient method
to model indirect accesses in SSA. The main concept is to
introduce two annotations, MayUse:� and MayDef:�, which
describe the behavior of indirect access operators. For
example, if a pointer p may alias with a scalar, a.
“aiþ1 ¼ �ðaiÞ” is associated after an indirect store statement
such as �p ¼ � � � This means that the indirect store may
define ai as a new version, aiþ1, in the SSA form. While,
“�ðaiÞ” is associated before an indirect load statement such
as ::: ¼ �p, meaning that indirect load statement may use
the aliased variable, ai. The versions of the variables in �
and � are renamed simultaneously in the variable
numbering phase of SSA construction. In order to maintain
the explicit use-def chains of the example shown in SSA
with � and � of Fig. 1, “y2 ¼ �ðy1Þ” and “z2 ¼ �ðz1Þ” must
be associated after line 18; “�ðy2Þ” and “�ðz2Þ” must be
associated before line 20. Because p aliases with u and v, u
and v may be defined and used at these two places. This
model treats scalar variables and pointers identically using
three annotations: �, �, and �, where � records the related
variables through the incoming edges of the CFG, �
records the related variables that are assigned by indirect
memory operations, and � represents the liveness of the
variables. If there are multilevel pointers, SSA construction
is applied multiple times and the candidates are computed
from scalar variables to the pointers with more levels. � in
this model can protect the one-level-lower pointers or
scalar variables from being potentially defined by the
pointers that are one level higher. Assuming that the
definition site of y2 is queried at line 19, then the only
definition site that can be found is the � annotation at line
18, “y2 ¼ �ðy1Þ.” This � annotation guides the analyzer not
only to track the operand, y1, in the �, but also the
statement, �p5 ¼ � � � , that is associated with this � at line
18. The example, SSA with multilevel pointer, in Fig. 1 shows
that the program contains a two-level pointer, r1. Because
r1 points to p5 at line 19, the � annotation, “p6 ¼ �ðp5Þ,” is
associated with the statement, �r1 ¼ � � � , at line 20. When
the analysis involves p6, this annotation can guide the

analyzer to analyze not only the operand, p5, but also the
associated statement, �r1 ¼ � � � . Similarly, the statement,
� � r1 ¼ � � � , at line 21 can potentially define y2 and z2, so
“y3 ¼ �ðy2Þ” and “z3 ¼ �ðz2Þ” are associated with this
statement. Because SSA is constructed in the order of low
level to high level, the constructor can know what kinds of
� annotations must be associated with the indirect defining
statement at Line 21. Multilevel pointer is usually
considered for precision [26], while the limitation of single
level pointer is usually made for speed [27].

3 PROBABILISTIC POINTER ANALYSIS

3.1 Main Algorithm

Before the algorithm is introduced, the notation used in the
algorithm is presented in Table 2. The main algorithm of
PPA in SSA is listed in Algorithm 1. The analysis candidate
pointer, u0, is passed to the Backtrace function. Meanwhile,
the analysis program is based on CFG and SSA, and they
are the global data which can be accessed and modified by
Backtrace and ReduceGraph functions. In this function u0

propagates through the related pointers until all of the
related pointers and locations are found, and a PRG is
produced by continuously updating the global PRG: G
stored in PPA. The PRG is a directed weighted cyclic graph:
G ¼ ðV ;EÞ. The root node of the PRG is an analysis target,
u0, the leaf nodes are the points-to locations, and the other
nodes in V ðGÞ are the related pointers. EðGÞ connects the
related pointers or locations between V ðGÞ. The weights of
EðGÞ correspond to the probabilities of aliasing and points-
to relationships. However, since the PRG is not a compact
representation of pointer information, the ReduceGraph
function returns a directed weighted cyclic graph with a
compact shape: G0 ¼ ðV 0; E0Þ, where G0 is reduced from G
by merging the nodes, Vp ¼ V ðGÞ � fui j outdegreeðuiÞ ¼
0 _ indegreeðuiÞ ¼ 0g, and eliminating the corresponding
edges that connect the merged nodes. It means all of the
nodes in G except an analysis target and points-to locations
are eliminated. Finally, G0 � G. Detail of the Backtrace and
ReduceGraph functions is presented in Sections 3.2 and
3.3, respectively.

3.2 Backtrace Algorithm

The Backtrace function is listed in Algorithm 2, and it calls the
BacktraceChi, BacktracePhi, BacktraceCallee, BacktraceCaller,
and BacktraceMu functions listed in Algorithms 3, 4, 5, 6,
and 7, respectively. Because of the benefit of the SSA form
with �, �, and �, not only can explicit definition sites be

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2369

TABLE 2
Notation of the PPA Algorithm



found in linear time from � and �, but indirect uses also can

be obtained from �. The analysis complexity is lower when

using the use-def chains in SSA than in an iterative data flow

analysis. SSA-based points-to analysis only updates pointer

information at �, �, and definition sites. However an

iterative data-flow analysis always updates pointer informa-

tion at every point of a program. Take the program in Fig. 1,

for example, the data-flow analyzer spends three iterations

for every statement in order to make the pointer information

of p at line 12 converge. During the phase of collecting the

pointer information of p, there are also four symbolic

probabilities assumed, and then the data-flow analyzer

needs to solve the polynomial equation to obtain the values

of these four symbolic probabilities. As a result, PPA

information is resolved [6].

The main concept of the Backtrace function is maintaining

pointer relationships by updating a global PRG: G when

encountering �, �, and the statements in definition sites.

During back-tracing, � and � lead to points-to relationships

with probabilities lower than 100 percent since these two

annotations contain multiple definition sites. The first

situation is encountering a � associated with a statement.

This means that the indirect store statement may update the

pointer on the RHS of the � annotation, so not only this

indirect store statement but also the pointer on the RHS of the

� annotation needs to be considered. The BacktraceChi

function is used to address the situation where the prob-

ability of the dereferencing pointer in the indirect store

statement is calculated first; this is calledmayDefProbability,

which is assigned to the weight of the corresponding edge in

the PRG. Meanwhile, the probability of aliasing to the

variable on the RHS of� is 1:0�mayDefProbability, because

it is not defined by the indirect store statement. Irrespective of

whether or not the potential defining statement will take

effect, two parts of semantics should be maintained by

propagating Backtrace functions, so umd and u� are passed to

the Backtrace function. The second situation is encountering a

�-function, which means the definition site may come from

multiple different versions. The different execution frequen-

cies mean that the definition probabilities vary between the �

operands. The BacktracePhi function is called to analyze all

possible definition sites, and the weights of edges are the

execution frequencies in the CFG.

Besides � and �, the Backtrace function also deals with
pointer update statements. This function uses different
strategies for each kind of assignment listed in Table 1. The
first case, Points-to Location, listed at line 9, is already pointing
to a location, and therefore the analysis is terminated for this
branch of back-tracing after the base and offset of a location
naming are stored. The following case, Pointer aliased, listed
at line 16, is simply aliasing to another pointer; therefore,
more back-traces should be performed until locations are
found. The offset part needs to be maintained before
propagating Backtrace functions. Then, Updated by Function
and Pointer Parameter cases are dealt with by the Back-
traceCallee and BacktraceCaller functions listed at line 23 and

2370 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012



26, respectively. These two algorithms describe how to deal
with the pointers aliased across procedures with the aid of a
call graph, and this extends the analysis to an interprocedur-
al one. When the pointer is Updated by Function, the return
statement of the callee is traced in order to identify the
related pointer. Meanwhile, the pointer is passed as Pointer
Parameter, the explicit definition sites as parameters of callers
are found, and the analysis pointer is transformed as the
pointers at the caller site. In the final case, Indirect Load, the
pointer is updated by an indirect load at line 29, so all
possible may-use variables in � annotations are traced. In
Backtrace, the only situation in Table 1 not encountered is
Indirect Store, because it is considered according to the
attached � annotation rather than the statement itself.

3.2.1 Example of Backtrace Algorithm

The related data structures of PPA are shown in Fig. 2 for an
analysis target, p5. Fig. 2a is the SSA representation of the
source code shown in Fig. 1a; meanwhile, the numbers
labeled on the nodes denote the IDs of basic blocks (BBs), and
the numbers on the dotted lines are the back-trace orders. For
sparse occurrences of related pointers, the built-in use-def
chains in SSA make the back-trace step effective. PPA does
not need to visit all nodes of the CFG, and the back-trace step
follows the dotted lines. The execution frequencies are
statically assigned or given by profiling, and are assigned to
each edge of the CFG, and hence each back-trace step can

retrieve the edge frequency. A PRG is produced after all
related nodes are visited by the Backtrace function, as shown
in Fig. 2b. Each node in the PRG is assigned a unique number
by globally numbering each version of a variable in SSA. The
weights of the edges in the PRG indicate the probabilities of
aliasing or points-to relationships between connected nodes.
However, the PPA information is difficult to determine from
the PRG, so the PRG must be reduced as shown in Fig. 2c,
which shows that the probabilities of p5 pointing to the
addresses of y1 and z1 are 75 and 25 percent, respectively.

In this example, we assume that the probabilities of a
branch-taken and a branch-not-taken are both 50 percent,
and that the probability of leaving a loop is 10 percent. For
p5 as the analysis target, the detail of generating a PRG is as
follows: p5 is first passed to the Backtrace function. Because
the definition site type of p5 is a � at BB 7 in Fig. 2a, all the
operands, p1 and p4, in the � are propagated to the Backtrace

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2371



function. Meanwhile, in Fig. 2b, node p5 connecting p1 and
p4 is maintained. According to the CFG, p1 and p4 at BB 1
and BB 6 are diverged by an if while condition, so the weights
of (p5, p1) and (p5, p4) are statically assigned 50 percent both
in the PRG. Next, the definition site type of p1 is Points-to
Location at BB 1, so the analyzer terminates this branch and
p1 points to the address of y1 with 100 percent. On the other
hand, the definition site of p4 is a � at BB 6. Similarly, all of
the operands, p2 and p3, are passed to the Backtrace function.
According to the CFG, these two nodes are diverged by an
if; therefore the weights of (p4, p2) and (p4, p3) are statically
assigned 50 percent both in the PRG. p2 is defined by a � at
BB 2, while p3 encounters Pointers Aliased at BB 5. Because
the definition site statement of p3 indicates that p3 aliases q2,
q2 is passed to the Backtrace function. Until now, the live
branches are p2 and q2. For p2, both of the operands, p1 and
p4, have been visited, so no propagating back-traces are
needed. According to the CFG, these two nodes are
diverged by a while loop; therefore the weights of (p2, p1)
and (p2, p4) are statically assigned 10 and 90 percent,
respectively, in the PRG. For q2, the type of the definition
site is a � whose operands are q1 and q4, and none of its
operands has been visited. For q1, it encounters Points-to
Locations at BB 1. q1 points to the location of z1 with
100 percent, and its trace branch is terminated. For q4, the
definition site is back to BB 6, and this involves q2 and q3.
Furthermore, q2 has been visited while q3 is aliased with p2.
Finally, p2 has been visited and there are no more live back-
trace branches. Therefore, the Backtrace function success-
fully generates a PRG as shown in Fig. 2b.

3.3 ReduceGraph Algorithm

After the related pointer information is collected using the
Backtrace algorithm, a graph reduction method is adopted to
summarize the PPA information. The method for reducing

the graph is listed in Algorithm 8. The goal of the ReduceGraph

function is to make the points-to information more compact

by producing a reduced graph. Only an analysis node, u0,

and the nodes which indicate points-to locations will remain,

because all nodes in Vp are eliminated.

First, the reducer checks if there are any self-cycle edges in

PRG, which are caused by �-functions in loop structures of

SSA. If there is a cycle, line 5 in the ReduceGraph algorithm

adjusts the self-cycle weight, wðuy; uyÞ, proportionally. The

derivation of proportioning wðuy; uyÞ is in (1). The exponent

part in (1) indicates that the program exits this loop at a given

iteration. Assume that irrespective of how many iterations

are executed, the program will eventually exit the loop,

where n!1. Moreover, because

X
V¼Vz[uy

wðuy; V Þ ¼ 1 ^ wðuy; uyÞ < 1;

under this assumption, the result

wðuy; uzÞX
Vz

wðuy; VzÞ

is derived. An example of the reduction process is shown in

Fig. 3a. The wðuy; uyÞ values are distributed into the edges

that are connected to the other nodes. When the proportion-

ing equation is applied, the PRG is simplified as a root

2372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 2. Example: from SSA to PPA information.



connecting a sequence of aliased nodes, some of which point
to location nodes.

If there are no self-cycles in G, lines 9 to 18 of Algorithm 8
indicate how to eliminate nodes and edges, while also adding
new edges and calculating their ownweights. An example of
this process is shown in Fig. 3b, where ui is eliminated. Before
ui is eliminated, ðuk; ujÞ and ðu0; ujÞ are added to E. The
weights of these edges must also be calculated. The weight of
ðuk; ujÞ is obtained by multiplying the two respectiveweights
of the edges that connect ðuk; uiÞ and ðui; ujÞ. wðuk; ujÞmeans
the probability that uk aliases ui and also that ui aliases or
points to uj. ui and the edges associated with ui can be
eliminated after theweights of new edges have been updated.

wðuy; uzÞ ¼ wðuy; uzÞ þ wðuy; uzÞwðuy; uyÞ
þ � � �wðuy; uzÞ þ wðuy; uyÞn�1

¼ wðuy; uzÞð1� wðuy; uyÞ
nÞ

1� wðuy; uyÞ
kn!1^ wðuy; uyÞ < 1k

¼ wðuy; uzÞ
1� wðuy; uyÞ

¼ wðuy; uzÞX
Vz

wðuy; VzÞ
:

ð1Þ

The PRG can always be reduced, because when there are
no self-cycles, the ReduceGraph algorithm eliminates a node,
ui 2 Vp, in each iteration until there no more such nodes
remain in the PRG. Also no new nodes are created during
the reduction process. ui in the algorithm can be eliminated
except when it exists as a self-cycle, so self-cycles in a PRG
are checked first. A node with a self-cycle means it contains
loop information, and therefore (1) is proposed for elim-
inating a node without losing loop information.

3.3.1 Example of ReduceGraph Algorithm

The reduction processes for the source code in Fig. 2a are
shown in Fig. 4. The weights indicate the probabilities in
percentage while the nodes are named by unique variables
in the SSA form. First, Fig. 4a is generated by the Backtrace
algorithm. The processing between two subfigures is

highlighted. For example, Figs. 4a and 4b remove node p1

and the edges associated with it, because there are no self-
cycle edges in the PRG. Furthermore, edges (p2, &y1) and
(p5, &y1) are created, and their weights are maintained. The
detail of this process is implemented at lines 9 to 18 of
Algorithm 8. The processing between Figs. 4c and 4d
eliminates a self-cycle edge (p2, p2), and the probability,
45 percent, is divided into the edges of two adjacent nodes,
nodes &y1 and p3, as shown from lines 4 to 6 of Algorithm 8.
The reduced PRG obtained after a series of node reductions
and self-cycle edge eliminations is shown in Fig. 4l. This
reduced graph shows that a pointer variable named p5 in
the SSA form points to two locations, &y1 and &z1, with the
probabilities of 75 and 25 percent, respectively.

3.4 Complexity

3.4.1 Backtrace Algorithm

Back-trace steps are stopped only when the visited node has
been traced or is determined a location, so there are no
duplicate nodes in a PRG produced by the Backtrace
algorithm. This implies that there are fewer back-trace
steps than the number of variable IDs in an SSA form. With

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2373

Fig. 3. A visual example of the ReduceGraph function.

Fig. 4. Example of the processes involved in reducing a PRG.



the aid of SSA representation, each back-trace step can be
completed in Oð1Þ. Assuming that N is the number of IDs in
SSA, the complexity of the Backtrace algorithm is OðNÞ.

3.4.2 ReduceGraph Algorithm

In the ReduceGraph algorithm, a node ui can be eliminated at
each iteration until an empty Vp, and there are no duplicate
nodes in the obtained PRG. Assuming that V is the number of
nodes Vp in a PRG, then the number of eliminating iterations
is V . Assuming that E is the number of edges in a PRG and
the complexity of each iteration is OðEÞ. Consequently, the
complexity of the ReduceGraph algorithm is OðV EÞ.

3.5 Interprocedural Analysis

Interprocedural analysis [28] was performed based on the
Formal Bound Sets (FBS) problem [29]. The FBS problem
gives a set of pairs (A, B) for each function Q, where A is a
formal parameter of function P that calls another function Q
directly or indirectly, and B is a formal parameter of Q such
that B is bound to A along some call chain starting at P. First,
a call graph is built in which each function is uniquely
represented by a node and each call site by an edge. An
initial flow function is applied to each edge in call graph, and
later, ", is applied to handle more general flow functions.
Two rules E1 and E2 are applied to the FBS to find the
closure of recursive function calls, and correspond to
function composition. Finally, the flow function can gather
the parameter bundle between each pair of parameters.

Algorithms 5 and 6 were developed so that this PPA
framework could implement interprocedural pointer analy-
sis. The BacktraceCallee function gathers the related pointer
information in the callee when the analysis pointer is updated
by a function. The return value of the callee is considered, and
the Backtrace function is propagated if the traced variable has
not yet been a points-to location. Meanwhile, the Back-
traceCaller function gathers the related pointer information in
callers when the analysis pointer is at the callee site. All
corresponding parameters of callers are involved in this
situation, and the weights of connected edges depend on the
calling frequencies. Similarly, if the corresponding parameter
is not a location, the Backtrace function is propagated. The �
annotation also plays an important role when performing
interprocedural analysis, because � records the may-define
information for pointers and keeps track of side-effect pointer
information of functions.

3.6 Interprocedural Example

An example of interprocedural PPA is shown in Fig. 5. The
main function in Fig. 5a is similar to the foo function in the
example shown in Fig. 1c, but line 18 is replaced by a new
statement, r6 ¼ foo2ðr5; s5Þ. Also, the foo2 function in Fig. 5a
is similar to the foo function in Fig. 1c, the main difference is
that lines 2 and 3 of foo are removed. These minor
modifications do not affect the shape of the PRG, so the
produced PRG in the previous example can be reused to
demonstrate interprocedural PPA.

If the analysis target is r6 in the main function, the
interprocedural PRG is constructed by the Backtrace algo-
rithm listed in Algorithm 2. Because “r6 ¼ foo2ðr5; s5Þ” is
inserted at line 18, r6 in the main function aliases with m5 in
the foo function, and nodes r6 and m5 have a 100 percent

relationship according to the BacktraceCallee algorithm listed

in Algorithm 5 shown in Fig. 5b. The shape of the PRG in the

foo2 functions is similar to foo’s shown in Fig. 2b, except that

nodes m1 and n1 are aliased with r5 and s5, respectively,

instead of pointing to &y1 and &z1. The relationship across

procedures is maintained by the BacktraceCaller algorithm

listed in Algorithm 6. Finally, the back-trace steps starting

from r5 and s5 in themain function are similar to Fig. 2, so the

interprocedural PRG is constructed as shown in Fig. 5b.
After the Backtrace function constructs the PRG, the

ReduceGraph function is called to reduce it. Because the
shapes of the sub-PRGs in the main and foo2 functions
are similar to foo’s, the detail of the reduction processes is
the same as that in Fig. 4. The PRG shown in Fig. 5b can
be transformed into Fig. 6a using the steps listed in Fig. 4.
Algorithm 8 then eliminates in the order of nodes m5, m1,
and n1, producing a PRG with the shape as shown in
Fig. 6b. Additional reduction steps are applied, and the

2374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 5. Example of interprocedural PPA, transforming the source into a
PRG.



interprocedural PPA information is produced as shown in
Fig. 6c, which indicates that r6 in the main function points
to the addresses of w1 and x1 with the probabilities of 62.5
and 37.5 percent, respectively.

4 EXPERIMENTAL RESULTS

4.1 SSA-Based PPA Framework

A block diagram of our PPA framework is presented in Fig. 7.
The input programs are written in the C language. The
programs are analyzed during the global optimization
(WOPT) phase of Open64, which is a state-of-the-art
compiler for Fortran, C, and C++, and its IR is named
WHIRL. Different high- and low-level optimization modules
interact with each other via WHIRL, and five levels of
WHIRL are created. For example, the WOPT phase of
Open64 deals with Mid-WHIRL, and it contains the essential
information for the CFG and SSA with � and �. PPA is
developed at the level of Mid-WHIRL for obtaining essential
information. PPA is implemented using the SSA object in
COMP UNIT class and is called by the Pre Optimizer
function. The results are stored in Opt main:cxx. When PPA
is implemented in the COMP UNIT class, PPA can directly
obtain the class members, the CFG and SSA. The edges of the
CFG are assigned with one of two kinds of execution
frequencies: one from static assignment and the other from
edge profiling. Static assignment means that different types
of edges are given different probabilities; for instance, out-
going edges without any branches are always assigned a
probability of 100 percent, and branches that are taken or not
have probabilities of 50 percent each, and the probability of
leaving a loop is 10 percent. The execution frequencies from
edge profiling are obtained by the instrumentation module
of Open64 with the default inputs of benchmarks. After
obtaining the basic information, WHIRL, SSA, and CFG are
collected, and the algorithms proposed in Section 3 are
implemented in order to obtain the PPA results, including
Backtrace and ReduceGraph functions. The output of the
Backtrace function is a PRG, which is the input to the
ReduceGraph function. The output of the ReduceGraph func-
tion is a reduced PRG, which is the PPA results. PPA was
implemented in the C front end of Open64-4.2.0 running on a
machine with a 3-GHz, 64-bit x86 processor and 6 GB of
RAM, and the OS kernel was Linux 2.6.29. Open64 analysis
modules interact via the same IR, which allows PPA to
possibly use the results of the other analysis modules that are
done before PPA. Similarly, the results of PPA also can be fed
back into WHIRL, and the compiler can pass PPA results to
other analysis or optimization phases.

4.2 PPA Accuracy and Scalability

With the environment described in Section 4.1, PPA
provides two sets of experimental results: 1) the quantifica-
tion of possibly-points-to relationships into probability dis-
tributions and a comparison of the precision during
runtime, and 2) the analysis size and speed.

4.2.1 Accuracy

The accuracy evaluation was performed using pointer
related benchmarks, Olden and CHJL. Olden is written in
C and employs dynamically allocated data structures. The
structures are usually organized into lists or trees. Olden is
a popular benchmark for these types of studies [30], [31].
CHJL includes kernel routines from several benchmarks
such as GCC, McGill, Netlib, and SPEC92. Because CHJL
was used to evaluate data-flow PPA [6] before, it is chosen
in this paper to do a direct comparison.

Table 3 lists program sizes, analysis targets, and PRG
sizes of the programs in the CHJL benchmark. The analysis
targets are pointer dereferences, and dereferencing a
pointer means that the implicit data being pointed to are
used in a load or store operation. Analyzing the points-to
relationships of dereferenced pointers can help compiler to
do aggressive optimizations, which utilize the knowledge of
the probabilities of the data being used. This is why
dereferenced pointers were assigned to be the analysis
targets in this experiment. The results show that the mean
number of dereferenced pointers was 73.9 of the benchmark
with an average of 659 lines of code. The graph size is the
number of edges in the PRG, which is produced by back-
tracing SSA. Due to the sparsity of SSA, the mean size of the
PRG was only 6.8. Finally, the execution time which is spent
by static and profiling versions was a mean of 0.26 seconds
for the benchmark with an average of 659 lines of code. The
estimated time includes constructing and reducing all of the
PRGs. This represents a significant speed improvement
over previous methods [6], [7], [11]. The analysis time was
proportional to the number of targets and the size of the
PRG instead of the program size. However, there were
slight disproportions between the benchmarks, which were
caused by the reproduced self-cycles during the processes
of reducing a PRG. For example, the health benchmark
consumes more time because it produces self-cycles more
often when nodes are eliminated. Moreover, health has the
densest usage of pointers, because there are usually two or
even three dereferences in a statement.

The average probabilities for all points-to relationships as
estimated by the PPA in SSA form include the static and
profiling distributions, and the actual pointer relationships at
runtime are shown in Fig. 8a. For most of the benchmarks, the
high or low probabilities account for most of the points-to
relationships, and these points-to relationships with high or

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2375

Fig. 6. Processes of reducing the interprocedural PRG.

Fig. 7. SSA-based PPA framework.



low probabilities are the most important information for
compiler optimizations. Knowledge of the extreme low and
high values can guide a compiler to make better decisions
regarding whether or not to apply aggressive optimizations.
The largest differences between the static and profiling
distributions are in the buckets of 0-10 percent and 50-60
percent. This is because the execution frequency of an edge in
the CFG is assigned only according to the edge type in the
static version, and for an if structure it is always given an
equal probability, 50 percent, under each edge. However, for
the profiling version, the execution frequency of an edge is
according to edge profiling. Thus, in the static version there

are no edges with exactly 0 percent points-to relationships in
this experiment, and it obtains more cases in 50-60 percent.

Table 3 and Fig. 8b indicate that PPA with edge profiling is
more accurate than PPA with static assignments of edge
frequencies, when comparing with runtime results. The
average error and standard deviation were calculated as
follows:

Avg:Error ¼

Xn
i¼1

jPestimatedðiÞ � PruntimeðiÞj

n
;

and

Std: Deviation ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðPestimatedðiÞ � PruntimeðiÞÞ2

n
;

vuuut

where PestimatedðiÞ and PruntimeðiÞ are the estimated and
runtime profiled probabilities of the ith points-to relation-
ship. The static and profiling average errors were 9.13 and
3.80 percent, and the standard deviations were 15.05 and
7.76 percent, respectively.

All of the dereferenced pointers in bisort, tsp, voronoi,
power, 20000801-2, FFT, and clinpack were from a single
corresponding definition site, so their distributions had a
probability of 100 percent.

4.2.2 Scalability

Since the PPA in SSA form has an advantage over the data-
flow PPA on speed, we choose SPEC CPU2006 for the
scalability evaluation. Because the considered statements
listed in Table 1 are in a C style, Table 4 shows that PPA
analyzes the integer benchmarks which are written in the C
language in SPEC CPU2006. The average evaluated program
size is 98,696 lines, the average number of analysis targets is
2,378.4, the average size of the PRG is 12.67, and the analysis
time is 35.59 seconds on average. The result shows that the

2376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

TABLE 3
Program Size, Execution Time, and Precision

Fig. 8. Distribution and precision of points-to relationships.



analysis time is proportional to the number of analysis targets
andthe size of the PRG instead of programsize. The number of
analysis targets is dependent on the density of dereferenced
pointers in a program, and the size of each PRG is limited by
the factoring ability of SSA form, which lets the analyzer
consider only the related information instead of whole
program. The result also indicates that our scheme is
sufficiently efficient for practical use. Compare 403.gcc and
464.h264ref, both of which have similar average PRG sizes:
13.98 and 10.64. Due to the large variation of the PRG size in
403.gcc, the analysis time is 291.4 seconds (464.h264ref is 2.1
seconds). This is not proportional to the numbers of analysis
targets: 10,334 and 2,891. PPA spent 93 percent of the analysis
time to deal with top 10 large PRGs, becauseof a huge tree data
structure which implements Abstract Syntax Tree (AST) and
Register Transfer Language (RTL) in 403.gcc. When an analysis
target is involved in AST or RTL, the generated PRG is much
bigger in 403.gcc, and the average size of these ten PRGs was
1,412.21, which is much larger than the average size.
However, PPA spends less analysis time on small PRGs,
because of the variation of the PRG sizes in 464.h264ref.
Similarly, 400.perlbench spends less analysis time, because the
average size top 10 large PRGs is 692.32. The result was
consistent with the graph reduction complexity, OðVEÞ, in
Section 3.4.

5 RELATED WORK

Previous papers on pointer analysis have proposed either
aliases or points-to relationships [1], [2], [3], [4], [5], which
categorized aliases or points-to information into definitely-
points-to and possibly-points-to relationships instead of
considering quantitative information, such as our proposed
study. From the precision aspect, pointer analysis has been
divided into intra- or interprocedural and flow-sensitive or -
insensitive approaches. The flow-sensitive approach [1], [2],
[3] considers the order of statements in a program, and the
interprocedural approach [4], [5], [6], [7] considers the usage
of pointers across functions. For more precise interproce-
dural information, pointer analysis also can be applied to
the state-of-the-art interprocedural analysis algorithms [32],
[33]. The present study applies flow-sensitive and inter-
procedural techniques simultaneously.

The previous work that is most closely related to the
present study is that of Chen et al. [6], [7], [11]. They provided
a set of transfer functions of data flow analysis for the usage

of each pointer. When the data flow information was
converged, polynomial equations were solved to obtain
probabilistic information. However, the amount of informa-
tion collected by data flow analysis usually increases
exponentially, which makes solving polynomial equations
inefficient. Furthermore, an optimization-directed analysis
did not consider the behaviors of all of the pointers. This led
to PPA in SSA due to its sparse representation being
proposed to address these issues. PPA in SSA can speed up
the analysis time, because of improving the order of
complexity. The complexity of Backtrace and ReduceGraph in
this paper is OðNÞ þOðV EÞ, respectively, which were
discussed in Section 3.4 while the complexity of formulating
and solving the equations in the data-flow PPA is
OðVdfNdfÞ þOðE3

dfÞ where Vdf is the number of nodes in
CFG,Ndf is the maximum number of points-to relationships,
and Edf is the number variables in the equations [6].
Comparing the complexity of PPA in SSA with data-flow
PPA, because OðV EÞ is equivalent to OðVdfNdfÞ, and OðNÞ
has less complexity than OðE3

dfÞ, data-flow PPA is more
complex than PPA in SSA. Da Silva and Steffan [16] proposed
a method of pointer analysis based on sparse transformation
matrices. In their algorithm the pointer information was
modeled as a points-to matrix, and transformation matrices
recorded the influences of pointers within a statement or a set
of statements. The information was recorded in transforma-
tion matrices, and the points-to matrix could be adjusted
between statements or BBs. Nevertheless, without the use-
def chains of SSA, this method must collect information for
all of the pointers even when information is only needed for
one of them. Hardekopf and Lin [34] also applied SSA to
pointer analysis; however, there was no probabilistic pointer
information reported. In their algorithm, only the top-level
pointers could get the benefit of SSA, and the others were
subject to data flow analysis which had higher complexity.

6 CONCLUSION

This paper has presented an SSA-based probabilistic pointer
analysis technique. The goal of this analysis technique is to
compute the probabilities of points-to relationships for the
pointers in the SSA form, and to reduce the analysis time of
PPA. PPA algorithms were developed to accomplish the
ability of quantifying possibly-points-to relationships, and the
experimental results have shown the distributions and
precisions of their occurrences. The analysis also uses
explicit use-def chains in the SSA form, and the experi-
mental results have shown that the analysis scheme was
sufficiently efficient for practical use. Future studies should
first investigate the applications of PPA and increase the
precision of certain specific data structures, since precision
should be considered under targeted optimizations. For
example, the precision of array accesses through pointers is
more important for cache prefetching, while speculative
execution more concerns about the precision of pointers
between loops. Second, it is now practical to investigate
more optimization problems with PPA, since PPA informa-
tion can be gathered quickly based on SSA. Finally, the
precision of pointer analysis may vary between coarse- and
fine-grained naming of memory locations. How to achieve
precise pointer analysis with fine-grained memory naming
is another issue for future studies.

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2377

TABLE 4
The Scalability: Program Size, Analysis Size,

and Execution Time



REFERENCES

[1] M. Shapiro and S. Horwitz, “Fast and Accurate Flow-Insensitive
Points-to Analysis,” Proc. 24th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL ’97), pp. 1-14, 1997.

[2] B. Steensgaard, “Points-to Analysis in Almost Linear Time,” Proc.
23rd ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages (POPL ’96), pp. 32-41, 1996.

[3] J.-D. Choi, M. Burke, and P. Carini, “Efficient Flow-Sensitive
Interprocedural Computation of Pointer-Induced Aliases and Side
Effects,” Proc. 20th ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages (POPL ’93), pp. 232-245, 1993.

[4] A. Deutsch, “Interprocedural May-Alias Analysis for Pointers:
Beyond K-Limiting,” Proc. ACM SIGPLAN 1994 Conf. Programming
Language Design and Implementation (PLDI ’94), pp. 230-241, 1994.

[5] M. Emami, R. Ghiya, and L.J. Hendren, “Context-Sensitive
Interprocedural Points-to Analysis in the Presence of Function
Pointers,” Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI ’94), pp. 242-256, 1994.

[6] P.-S. Chen, Y.-S. Hwang, R.D.-C. Ju, and J.K. Lee, “Interprocedural
Probabilistic Pointer Analysis,” IEEE Trans. Parallel Distributed
Systems, vol. 15, no. 10, pp. 893-907, Oct. 2004.

[7] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R.D.-C. Ju, and J.K. Lee,
“Compiler Support for Speculative Multithreading Architecture
with Probabilistic Points-to Analysis,” Proc. Ninth ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming (PPoPP ’03),
pp. 25-36, 2003.

[8] M. Hind, “Pointer Analysis: Haven’t We Solved This Problem
Yet?” Proc. ACM SIGPLAN-SIGSOFT Workshop Program Analysis
for Software Tools and Eng. (PASTE ’01), pp. 54-61, 2001.

[9] M. Hind and A. Pioli, “Which Pointer Analysis Should I Use?”
Proc. ACM SIGSOFT Int’l Symp. Software Testing and Analysis
(ISSTA ’00), pp. 113-123, 2000.

[10] M. Sagiv, T. Reps, and R. Wilhelm, “Solving Shape-Analysis
Problems in Languages with Destructive Updating,” ACM Trans.
Programming Language Systems, vol. 20, no. 1, pp. 1-50, 1998.

[11] Y.-S. Hwang, P.-S. Chen, J.K. Lee, and R.D.-C. Ju, “Probabilistic
Points-to Analysis,” Proc. Int’l Workshop Languages and Compilers
for Parallel Computing (LCPC ’01), pp. 290-305, 2001.

[12] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry, “A Scalable
Approach to Thread-Level Speculation,” Proc. 27th Ann. Int’l
Symp. Computer Architecture, pp. 1-12, 2000.

[13] S.P. Vanderwiel and D.J. Lilja, “Data Prefetch Mechanisms,” ACM
Computing Surveys, vol. 32, pp. 174-199, June 2000.

[14] M. Herlihy and J.E.B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” Proc. 20th Ann. Int’l Symp.
Computer Architecture (ISCA ’93), pp. 289-300, 1993.

[15] X. Dong, N.P. Jouppi, and Y. Xie, “Pcramsim: System-Level
Performance, Energy, and Area Modeling for Phase-Change
Ram,” Proc. Int’l Conf. Computer-Aided Design (ICCAD ’09),
pp. 269-275, 2009.

[16] J. Da Silva and J.G. Steffan, “A Probabilistic Pointer Analysis for
Speculative Optimizations,” Proc. 12th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS-XII), pp. 416-425, 2006.

[17] J.L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SI-
GARCH Computer Architecture News, vol. 34, pp. 1-17, Sept. 2006.

[18] G. Ramalingam, “Data Flow Frequency Analysis,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation
(PLDI ’96), pp. 267-277, 1996.

[19] B. Alpern, M.N. Wegman, and F.K. Zadeck, “Detecting Equality of
Variables in Programs,” Proc. 15th ACM SIGPLAN-SIGACT Symp.
Principles of programming languages (POPL ’88), pp. 1-11, 1988.

[20] B.K. Rosen, M.N. Wegman, and F.K. Zadeck, “Global Value
Numbers and Redundant Computations,” Proc. 15th ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages
(POPL ’88), pp. 12-27, 1988.

[21] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.
Zadeck, “Efficiently Computing Static Single Assignment Form
and the Control Dependence Graph,” ACM Trans. Programming
Language Systems, vol. 13, no. 4, pp. 451-490, 1991.

[22] M.N. Wegman and F.K. Zadeck, “Constant Propagation with
Conditional Branches,” ACM Trans. Programming Language Sys-
tems, vol. 13, no. 2, pp. 181-210, 1991.

[23] M. Gerlek, M. Wolfe, and E. Stoltz, “A Reference Chain Approach
for Live Variables,” Technical Report CSE 94-029, Oregon
Graduate Inst., 1994.

[24] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.
Zadeck, “An Efficient Method of Computing Static Single
Assignment Form,” Proc. 16th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages (POPL ’89), pp. 25-35, 1989.

[25] F.C. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich, “Effective
Representation of Aliases and Indirect Memory Operations in SSA
Form,” Proc. Sixth Int’l Conf. Compiler Construction (CC ’96),
pp. 253-267. 1996,

[26] Y. Cui, L. Li, and S. Yao, “Inclusion-Based Multi-Level Pointer
Analysis,” Proc. Int’l Conf. Artificial Intelligence and Computational
Intelligence (AICI ’09), vol. 2, pp. 204-208, 2009.

[27] M. Das, “Unification-Based Pointer Analysis with Directional
Assignments,” Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI ’00), pp. 35-46, 2000.

[28] V.C. Sreedhar, G.R. Gao, and Y.-F. Lee, “A New Framework for
Elimination-Based Data Flow Analysis Using DJ Graphs,” ACM
Trans. Programming Language Systems, vol. 20, no. 2, pp. 388-435,
1998.

[29] M. Burke, “An Interval-Based Approach to Exhaustive and
Incremental Interprocedural Data-Flow Analysis,” ACM Trans.
Programming Language Systems, vol. 12, no. 3, pp. 341-395, 1990.

[30] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, “Supporting
Dynamic Data Structures on Distributed Memory Machines,”
ACM Trans. Programming Languages and Systems, vol. 17, no. 2,
pp. 233-263, Mar. 1995.

[31] M.C. Carlisle and A. Rogers, “Software Caching and Computation
Migration in Olden,” Proc. Fifth ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming (PPOPP ’95), pp. 29-38, 1995.

[32] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural
Dataflow Analysis via Graph Reachability,” Proc. 22nd ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages
(POPL ’95), pp. 49-61, 1995.

[33] I. Dillig, T. Dillig, and A. Aiken, “Sound, Complete and Scalable
Path-Sensitive Analysis,” Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI ’08), pp. 270-280, 2008.

[34] B. Hardekopf and C. Lin, “Semi-Sparse Flow-Sensitive Pointer
Analysis,” Proc. 36th Ann. ACM SIGPLAN-SIGACT Symp. Princi-
ples of Programming Languages (POPL ’09), pp. 226-238, 2009.

Ming-Yu Hung received the BS and MS
degrees in computer science from National
Tsing Hua University, Taiwan in 2002 and
2004, respectively. He is currently working
toward the PhD degree in Department of
Computer Science, National Tsing Hua Univer-
sity, Taiwan. His research interests include
program analysis, parallel programming, and
compiler optimization.

Peng-Sheng Chen received the BS degree in
computer science from National Tsing Hua
University, Taiwan, in 1995, the MS degree in
computer science and Information Engineering
from National Cheng-Kung University in 1997,
and the PhD degree in computer science from
National Tsing Hua University in 2005. He is
currently an assistant professor in the Depart-
ment of Computer Science and Information
Engineering, National Chung-Cheng University,

Taiwan. His research interests include parallel programming, optimizing
compilers, and computer architectures. He is a member of the IEEE.

Yuan-Shin Hwang received the BS and MS
degrees in electrical engineering from the Na-
tional Tsing Hua University, Hsinchu, Taiwan in
1987 and 1989, respectively, and the MS and
PhD degrees in computer science in 1994 and
1998 from the University of Maryland at College
Park. He is an associate professor in the
Department of Computer Science and Informa-
tion Engineering, National Taiwan University of
Science and Technology, Taipei, Taiwan. His

research interests include parallel and distributed computing, parallel
architectures, parallelizing compilers, and programming languages.

2378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012



Roy Dz-Ching Ju received the BS degree in
electrical engineering from National Taiwan
University in 1984 and the MS and PhD degrees
in electrical and computer engineering from the
University of Texas at Austin in 1988 and 1992,
respectively. He has been a compiler architect
and a fellow at Advanced Micro Devices since
2006. He has been driving the optimization
technology for high-performance, cross-platform
compilation for AMD multicore CPU and GPU

architectures. He is currently the compiler architect for the Fusion
System Architecture project. Prior to joining AMD, he made a brief stop
at Google, Inc., working on a distributed system and Google Desktop.
From 1999 to 2005, he was a senior researcher and the manager of
Compiler Technology group at the Programming System Lab in the
Microprocessor Technology Labs, Intel Corp. He led an effort in
innovating programming and compiler technology for multicore archi-
tectures, including a multicore network processor. He had been the
architect of an IA-64 open source research compiler (Open Research
Compiler), which provided an infrastructure for compiler and architecture
research on IA-64 to the research and open source communities. He
was with the Hewlett-Packard Company from 1994 to 1999, where he
was a project lead in designing and developing an optimizing compiler
for IA-64. He worked at IBM from 1992 to 1994 in developing a then
state-of-the-art Fortran 90 optimizing compiler. His primary research
interests include compiler optimizations, optimization for memory
hierarchy, program analysis, computer architecture, multicore systems,
and parallel processing. He currently holds 24 US patents and has
published more than 60 journal and conference papers in various areas,
including array language optimizations, compilation for instruction-level
parallelism, cache optimization, coarse-grained parallelization, etc. He
has served on the program committees of a number of conferences,
such as MICRO-33, MICRO-35, PLDI ’01, MSP ’02, CGO ’03, CGO ’04,
CGO ’05, LCTES ’05, COCV ’05, Open64 Workshop ’08 and Open64
Workshop ’09, EUC ’09 and EUC ’10, PPoPP ’11, and PACT ’11. He
was a general co-chair of CGO ’07. He is a senior member of the IEEE
and the IEEE Computer Society.

Jenq-Kuen Lee received the BS degree in
computer science from National Taiwan Univer-
sity in 1984. He received the MS and PhD
degrees in 1991 and 1992, respectively, in
computer science from Indiana University. He
is now a professor in the Department of
Computer Science at National Tsing-Hua Uni-
versity, Taiwan, where he joined the Department
in 1992. He was a key member of the team who
developed the first version of the pC++ language

and SIGMA system while at Indiana University. He was a recipient of the
most original paper award in ICPP ’97 with the paper entitled “Data
Distribution Analysis and Optimization for Pointer-Based Distributed
Programs.” His supervised PhD student received the distinguished
dissertation award as honorable mention by IICM, 1999. He received an
achievement award from MOE of Taiwan for University and Industrial
joint research, 2001. He received Google research award 2009. In
addition, he is a recipient of Taiwan MOEA economic contribution award
(Deep Plow Award), 2010. His current research interests include
optimizing compilers, computer networks, embedded multicore compi-
lers and systems, and computer architectures.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUNG ET AL.: SUPPORT OF PROBABILISTIC POINTER ANALYSIS IN THE SSA FORM 2379



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


