
Eliminating Timing Side-Channel Leaks
using Program Repair

Meng Wu, Shengjian Guo, Patrick Schaumont, Chao Wang

Presented by: Cristina Noujaim, Diego Rojas Salvador, Jacob Hage

Overview

● What Are Side-Channel Attacks?
● Proposed Approach
● Results
● Paper Evaluation

Side Channel
Attacks

Background and Motivation

What Are Side-Channel Attacks?

● Side Channel - Anything that transmits information other than code
○ Time it takes to execute a program
○ Memory Accesses
○ Energy output
○ Sound output

● Side Channel Attacks - Obtaining secret information through side
channels

Focus - Timing Side Channels!!!

Timing
Side-Channels

Example: Instruction-Timing Side Channel

● Branching on Secret Keys

Branch on secret key!

K = SECRET KEY

Example: Instruction-Timing Side Channel

● Branching on Secret Keys

Modulo is expensive

Move is cheap

Example: Instruction-Timing Side Channel

● Branching on Secret Keys

Modulo is expensive

Move is cheap

Not taken case takes
more time than taken
case - side channel!

Example: Cache-Timing Side Channel

● Memory Lookup on Secret Keys CACHE

Example: Cache-Timing Side Channel

● Memory Lookup on Secret Keys

EVIL

EVIL

EVIL

EVIL

Attacker Fills
the Cache

CACHE

Example: Cache-Timing Side Channel

● Memory Lookup on Secret Keys

SBOX [3]

SBOX [4]

SBOX[7]

EVIL

User Runs the
Program

CACHE

Example: Cache-Timing Side Channel

● Memory Lookup on Secret Keys

SBOX [3]

SBOX [4]

SBOX[7]

EVIL

Attacker Reads
the Cache

CACHE

Example: Cache-Timing Side Channel

● Memory Lookup on Secret Keys

SBOX [3]

SBOX [4]

SBOX[7]

EVIL

Attacker Reads
the Cache

Set1, Set 3, and Set 4096 are Slow

AKA - Block 0, 1, and 2 are 3, 4, & 7!

CACHE

EVIL blocks are FAST
SBOX blocks are SLOW

Threat Model
Assume less-capable attacker:

● Observe variation of the total execution time of the victim’s program

NOT more-capable attacker:

● directly access the victim’s computer
● observe hidden states of the CPU at the micro-architectural levels

Goal

● Want to eliminate:
○ 1. Instruction-timing side channel attacks
○ 2. Cache-timing side channel attacks

SBOX [3]

EVIL

SBOX [4]

SBOX[7]

Proposed
Mitigation

SC-Eliminator
● SC-Eliminator

○ SC = “Side Channel”
○ Computer program that Detects and Mitigates both:

■ Instruction-timing side channel attacks
■ Cache-timing side channel attacks

○ Input: LLVM bit-code file
○ Output: Machine code

(p. 2)

SC-Eliminator

● Intuition: Detect & Mitigate
○ Conceptually: If the execution time of both sensitive conditional

statements and sensitive memory accesses are equalized, there will be
no instruction- or cache- timing leaks

○ Two phases:
1. Detect - Static analyses identify sensitive variables in LLVM bit-code
2. Mitigate - Eliminate the identified sensitive variables:

1. Unify Sensitive branches
2. Equalize cache accesses

(p. 2)

SC-Eliminator

● Approach: Detect & Mitigate
● Detect:

○ Static analysis - Identify, for a program and a list of secret inputs, the set
of variables whose values depend on the secret inputs.

○ Sensitivity analysis - Decide if sensitive program variables lead to timing
leaks by checking if they affect:
■ Unbalanced conditional jumps (Instruction-timing side channel)
■ Accesses of memory blocks across multiple cache lines

(Cache-timing side channel).

(p. 2)

Static & Sensitivity Analysis
● Initial set of sensitive variables labeled by user

○ Secret input == cryptographic key
○ Plaintext == public.

● Sensitivity tag - Attribute to be propagated from the secret source to other
program variables following either data- or control-dependency transitively.
○ All variables whose values depend on sensitive variables

○ Data dependency:
■ the def-use relation in {b = a & 0x80;}

○ Control-dependency:
■ if (a == 0x10) { b = 1; } else { b = 0; }

SC-Eliminator

● Approach: Detect & Mitigate
● Mitigate:

○ Unify sensitive branches - Eliminate differences in execution time caused
by unbalanced conditional jumps

○ Equalize cache accesses - Eliminate differences in the number of cache
hits/misses during the accesses of Lookup tables (LUTs).

(p. 2)

Unifying Sensitive Branches
● Execute both the taken and not-taken

basic blocks.
● Both blocks must:

○ Have unique entry and exit blocks
○ Be executed whenever either is

executed
● Optimization: CTSEL(cond, val1, val2)

○ Gets [predicated] source operand
of a store inst. in constant-time. (p. 5)

If (cond) { *addr=valT; } else { *addr=valE ; } *addr = CTSEL(cond, valT, valE);

Equalizing Cache Accesses
● Mitigate Lookup Table (LUT) accesses that depend on secret data

○ i-th bit of secret exponent is used to access the i-th index of some array.

● Solution: Ensure that every element in the table is accessed, any time that
any one element is accessed.
○ Naive; super slow!

● Optimization: MUST-HIT Analysis
○ Determine which LUT variables are already in the cache to prevent

redundant cache accesses

Results &
Evaluation

Validity to Threat Model

● Total-time-aware threat model
● Less-capable attacker
● Require *list* of known secret variables!

Unrealistic Biases!

Results
● Exec time original program:

○ varies!
● Exec time mitigated program:

○ constant!

● Reduction in:
○ Code size!
○ Execution time!

Results:

Strength & Weaknesses

+ Strong proof of concept:
+ Use LLVM to eliminate timing side-channels at instruction and cache-level.

- Very strong claims – hidden assumptions
- Does not work for real attacks:

- Meltdown/Spectre
- Similar cache attacks (Evict+Time, Prime+Probe, and Flush+Reload)

- Does not address leaks exploitable by probing the hardware
- Instruction pipelines
- Data buses.

:(

Conclusion
● Developed a method for mitigating side-channel leaks via program repair.

○ LLVM, targeting cryptographic software in C/C++
● Evaluated on a large number of real world applications:

○ Static analysis took only a few seconds
○ Transformation took less than a minute.

● Mitigated software moderate increase in code size and runtime overhead.
● Strong assumptions make their solution non-applicable to most real attacks

Questions?

