
Software Prefetching for Indirect
Memory Accesses

Sam Ainsworth and Timothy M. Jones
University of Cambridge

CGO 2017

Presented by
Nishil Talati and Tarunesh Verma

EECS 583
11/18/2019

What should we software prefetch?

l Stride accesses (A[x+N])?

What should we software prefetch?

l Stride accesses (A[x+N])?
l Covered by hardware!

What should we software prefetch?

l Stride accesses (A[x+N])?
l Covered by hardware!

l Linked data structures (A->next)?

What should we software prefetch?

l Stride accesses (A[x+N])?
l Covered by hardware!

l Linked data structures (A->next)?
l No memory-level parallelism!

What should we software prefetch?

l Stride accesses (A[x+N])?
l Covered by hardware!

l Linked data structures (A->next)?
l No memory-level parallelism!

l Indirect Memory Accesses (A[B[x+N]])?

What should we software prefetch?

l Stride accesses (A[x+N])?
l Covered by hardware!

l Linked data structures (A->next)?
l No memory-level parallelism!

l Indirect Memory Accesses (A[B[x+N]])?
l Easy to compute in software, hard to predict

in hardware, lots of look-ahead!

Example: Integer Sort (NAS)

for (i=0; i<a_size; i++) {
b[a[i]]++;

}

a
4
2
1
0
3

b
5
19
3
4
99

i

Naive Prefetching

for (i=0; i<a_size; i++) {
SWPF(b[a[i + offset]]);
b[a[i]]++;

}

Better Prefetching – Best Offset

for (i=0; i<a_size; i++) {
SWPF(b[a[i + offset]]);
SWPF(a[i + offset*2]);
b[a[i]]++;

}

Compiler-Automated Prefetch
Insertion Algorithm

start: alloc a, a_size
alloc b, b_size

loop: phi i, [#0, i.1]
gep t1, a, i
ld l2, t1
gep t3, b, t2
ld t4, t3
add t5, t4, #1
str t3, t5
add i.1, i, #1
cmp size, i.1
bne loop

l Depth-First Search for Induction
Variable

l Safety Analysis
l Scheduling

b[a[i]]++
prefetch(b[a[i+?]])
prefetch(a[i+??]])

Compiler-Automated Prefetch
Insertion Algorithm

start: alloc a, a_size
alloc b, b_size

loop: phi i, [#0, i.1]
gep t1, a, i
ld l2, t1
gep t3, b, t2
ld t4, t3
add t5, t4, #1
str t3, t5
add i.1, i, #1
cmp size, i.1
bne loop

l Depth-First Search for Induction
Variable

l Safety Analysis
l Scheduling

b[a[i]]++
if(i+? < a_size)

prefetch(b[a[i+?]])
prefetch(a[i+??]])

Compiler-Automated Prefetch
Insertion Algorithm

l Depth-First Search for Induction
Variable

l Safety Analysis
l Scheduling

b[a[i]]++
if(i+32 < a_size)

prefetch(b[a[i+32]]) (l=2)
prefetch(a[i+64]]) (l=1)

c(t − (l-1))

t

c=64, t=2

c = micro-architecture specific
constant (always 64)

t = number of loads in total sequence
l = number of loads in current prefetch

Experimental Setup

System Specifications

Haswell Intel Core i5-4570 CPU, 3.20GHz, DDR3 DRAM

Xeon Phi Intel Xeon Phi 3120P CPU, 1.10GHz, GDDR5 DRAM

A57 Nvidia TX1, ARM Cortex-A57 CPU, 1.9GHz, LPDDR4
DRAM

A53 Odroid C2, ARM Cortex-A53 CPU, 2.0GHz, DDR3 DRAM

l Implemented as an LLVM pass
l Variety of benchmarks featuring indirects, hashing and

multiple indirects, variety of data sizes
l Wide variety of core types (in-order/out-of-order) and

ISAs

“Micro-architecture Specific” Constant (c)

Hash JoinRandomAccess

Conjugate Gradient Integer Sort

Results – Intel Haswell

Results – ARM A53

Discussion

• Advantages
• No modifications required to hardware or from the

programmer
• Works for a wide range of micro-architectures
• Can capture more involved indirection patterns,

e.g., a[func(b[i])]

• Disadvantages
• Increase in number of dynamic instructions
• Difficult to capture dynamic information

• Detecting sizes of dynamic arrays
• Constant prefetch look-ahead distance

