
REPT: Reverse Debugging of
Failures in Deployed Software
Gefei Zuo and Jiacheng Ma

How to debug?

GDB

gcc -g whatever_you_want_to_debug.c
gdb a.out

then you execute the program step-by-step
then you fix the bug
then you submit the patch
then you go back to sleep

Key Idea

If you can replay a bug, you can (hopefully) fix it.

How to debug a deployed application
which fails once a month?

Pray, and do (one of) the followings:

● Wait for another month
● Rubber duck debugging [1]
● Record-and-replay

○ state-of-the-art
○ too expansive (usually 20% ~ 200% runtime overhead)
○ almost impossible for deployment

[1] Rubber Duck Debugging, https://en.wikipedia.org/wiki/Rubber_duck_debugging

https://en.wikipedia.org/wiki/Rubber_duck_debugging

How to save a programmer’s life?

● Help them replay (part of) the program

○ with low overhead and good accuracy

○ because if you can replay a bug, you can fix it

1 month
50k

instructions
Figure is from https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_ge.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_ge.pdf

REPT:
Reverse Execution with Processor Trace

REPT = online hardware tracing + offline binary analysis

1-5% overhead 92% accuracy

Background: Intel Processor Tracer

➔ Trace control flow of basic blocks

◆ conditional jump

◆ call and ret

if(goToUMich)

...
call *goToUndergrad()

/* code
during the
boring
undergrad */
…
return;

......

/* code in BBB during a
long and cold winter */
...
Call *EECS583();

/* code on a
fantastic beach
with sunshine in
California */

/* code for
EECS 583 */
...

......

......

Background: Intel Processor Tracer

➔ Trace control flow of basic blocks

◆ conditional jump

◆ call and ret

if(goToUMich)

...
call *goToUndergrad()

/* code
during the
boring
undergrad */
…
return;

......

/* code in BBB during a
long and cold winter */
...
Call *EECS583();

/* code on a
fantastic beach
with sunshine in
California */

/* code for
EECS 583 */
...
BOOM!

......

......

Background: Intel Processor Tracer

➔ Trace time information

◆ when does a control flow event happen?

if(goToUMich)

...
call *goToUndergrad()

/* code
during the
boring
undergrad */
…
return;

......

/* code in BBB during a
long and cold winter */
...
Call *EECS583();

/* code on a
fantastic beach
with sunshine in
California */

/* code for
EECS 583 */
...
BOOM!

......

......

cycle 12384921786

cycle 12385899079cycle 12386234234
cycle 14345235436

if(goToUMich)

...
call *goToUndergrad()

/* code
during the
boring
undergrad */
…
return;

......

/* code in BBB during a
long and cold winter */
...
Call *EECS583();

/* code on a
fantastic beach
with sunshine in
California */

/* code for
EECS 583 */
...
BOOM!

......

......

cycle 12384921786

cycle 12385899079cycle 12386234234
cycle 14345235436

Background: Intel Processor Tracer

➔ Use an overwritable ring buffer

◆ maintain a window about “important life decisions”

➔ Low runtime overhead (1-5%)

◆ depends on workloads

REPT: when there’s a crash

➔ We have:

◆ Core Dump, i.e. memory layout and registers

◆ Control flow trace from Intel PT

Figures are from https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_ge.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/osdi18_slides_ge.pdf

REPT Data Recovery

➔ Single-threaded execution reconstruction

a. Execute the program reversely

➔ Multi-threaded execution reconstruction

a. Take advantage of timestamps in PT Trace

A simple example

Coredump

Instructions

Execution States
S[x-1] --I[x]--> S[x]

Op dst src

Reversible Instructions: I2
Irreversible Instructions: I1, I3

From coredump, rax = 3
From I2, rax = 1 + ? = ?

Example with Mem Write

I4 writes to unknown address.
Ignore this mem write.

From coredump: rax = 3
From I3: rax ≈ 4 (rax += [rbx], rbx ≈ g)

I4 invalidates [g] in S3[g] in S2 can be inferred
by reversing I3

Iteration 4 is omitted here,
which can recover this [g]

Key Techniques

1. Combine reverse execution and forward execution
a. Reverse execution recovers states before reversible instructions
b. Forward execution recovers states before irreversible instructions

2. Ignore unknown memory writes
a. Use dereference level to correct missing memory writes
b. The more dereference, the less confidence

1. 14 out of 16 bugs can be fixed by REPT

2. Only 1~5% overhead is introduced

3. On average memory states can be recovered with 92% accuracy

A
cc

u
ra

cy

Recover 10K, 100K, 1M instructions from different
applications

Results Overview

What can MS do with REPT

Questions?

