Hydra: Auto Parallelism

Kunle Olukotun, Lance Hammond and Mark Willey
James Chicken

Presented by: Chengyao Li, Yang Shi, Jiaxin Li, Liang Zhang

Overview

% Introduction
% Methodology
+ Implementation

+ Analysis and Evaluation

Introduction

% Motivation
> Instruction-Level Parallelism (ILP) still have limits
> Writing Thread-Level Parallelism code is difficult

> Automatically parallelize function calls!

% Related Work
> Improving the Performance of Speculatively Parallel Applications on the Hydra
CMP [K. Olukotun, 99]
> Cilk[R. Blumofe, 95] and OpenMP[L. Dagum, 98]

Methodology

+ Function Offloading

void f(float x) { void f(float x) {
float vy; float y;
y = sqrt(x); std::thread t(sqrt, x, y);
/7 /7
t.join();
std::cout << y; std::cout << y;

} }

Methodology

+ Function Offloading

Main
Thread 49 > O waiting 0
call return
Main | call return
Thread 0 sqrt () Q)
% idle sqrt() idle

SerinlCost = cost(fextra) + cost(sqrt) ParallelCost = max{cost(fextra), cost(sqrt) } + cost(spawn)

Methodology

+ Function Offloading

max{cost(caller), cost(callee) } + cost(spawn)
<
cost(caller) + cost(callee)

Implementation

Basic architecture

Analyser

contains 4 passes:

Profitability @

Fitness Analysis Pass

Function: Check which functions can be offloaded

« Depending only on their arguments instead of global state
e Nno pointer
e no global variable

Pointer check

- Instead of alias analysis, just check function arguments type

bool hasPointerArgs(const 1llvm::Function &F) {
return std::any_of(F.arg_begin(), F.arg_end (),
[l (const 1llvm::Argument &arg) {
return arg.getType () ->isPointerTy () ;

});

Fitness Analysis Pass

Global variable check

bool referencesGlobalVariables(const 1llvm::Function &F) {
return std::any_of(inst_begin(F), inst_end(F),
[J(const 1lvm::Instruction &I) {
return std::any_of(I.op_begin(), I.op_end(),
[](const 1lvm::Use &U) {
return isa<GlobalVariable>(U) ||
isa<GlobalAlias>(U);

1)

1)

) O(max){|ops(1)|fnst5(1:)|})

Icinsts(F

The complexity is actually linear, because LLVM uses Three-Address
Instructions, hence |ops(l)| is approximately constant

Profitability Analysis Pass

% Dedicated to estimating how much work is performed by the callee

> count num of instructions (naive approach, underestimate all)
> only count emitted instructions
> dealing with function calls

> dealing with loops (more precise estimate)

Profitability Analysis Pass

Final heueristic

hs(F)= Y tripCount(I)cost3(I), where
Ic€insts(F)

1 if I emits,
0 otherwise.

hs(calledFun(I))+1 if I is a non-recursive call,
costs(I) =

. t if I is in a loop with trip count provably ¢,
tripCount(I) = { 1 otherwise. P P ’ !

JoinPoints Analysis Pass

% Finding where to join with an offloaded function — ensure correctness

> prerequisite: SSA (no worry about aliases)
> basic approach: find joint points (detect dependencies)

llvm::Instruction *findJoinPoint(llvm::CalllInst *ci,
const bb_iter I,
const bb_iter E) {
auto join = std::find_if (I, E,
[&] (1lvm::Instruction &inst) {
return std::any_of (inst.value_op_begin(),
inst.value_op_end (),
[&] (Value *v) { return v == ci; });
b

return (join != E 7 &*join : nullptr);

JoinPoints Analysis Pass

+ Preferable method: At-Least-Once Joining (based on thread pool runtime)
> The spawning happens at the entry point

> * represent the usage of return value from the function of spawning thread
Key
3 To Explore

T 1 Join Here
Initialisation = Explored Expand A

Expand B Expand C

Decider Analysis Pass

« Compute the cost of caller

> “exactly once” runtimes

cost(caller) =) cost3(I).
Ierange(S,])

m hueristic:
m not general
> “at least once” runtimes

m naive approach: applying Cost3(l) to every possible instruction between the S and J.

CFG Constructed Graph

Decider Analysis Pass

PO e Pm
\ ¥
Entry,
% problems with naive approach i
> time complexity Terminator
> overestimate / \
Entriyy Entry,
< conservative alternative approach Toin
> build a DAG Terminatory
> find shortest paths from S to each J Sol \ S,
> compute the costs of all the paths as
Key

results B Zero-Cost Link

Accumulate the Results

% Existing approaches

There is the optimist’s approach:

cost(caller) = max {cost(p)}
pEpaths

The pessimist’s approach:

cost(caller) = min {cost(p)}
pEpaths

And the realist’s approach:

cost(caller) =

Y cost(p)

|paths| pEpaths

% Better approach (we are implementing)

cost(caller) =

Y P(p

pEpaths

)cost(p).

Evaluation

 For the evaluation part, the paper evaluate from the
following three aspects

> Runtime Microbenchmarks
> Performance Testing

> Scalability Tests

Runtime Microbenchmarks

The right figure shows:
Mean number of
instructions to spawn and
join with tasks on Hydra’s
supported runtimes,
compared to an increment
operation. Green bars
denote an empty thread
pool, while red bars denote
a pool at capacity. The y-
axis uses a logl0-scale.

AveragelRInstructions

10% ———

103

-3 Successful Spawn
“mm Failed Spawn

L] L L] J.IJ. J.I

Control 2 3 4 5 6 7 8 9 10 11
NumberofWorkerThreads

J.Il

Kernel

Performance Testing

Arithmetic Mean Standard Deviation
(99% confidence interval)
Serial | 5.676736s £ 0.00004244s 0.0005201s
Parallel 2.908464s £ 0.001249s 0.01530s

The above table shows the arithmetic mean of the results, as well as a 99% confidence
interval. We can see that there is no doubt that the project has resulted in a significant

average speedup.

Scalability Tests

From the graph, we can see
consistent improvements to mean
performance from four to seven
worker threads.

Beyond seven worker threads,
performance gets worse

2.5 T T T T T T T T T T T T

g
o

~
vl

Elapsed Time (normalised)
—
o

I
o

0.0 :
Serial 2 4 6 8 10 Kernel

Number of Worker Threads

Figure 4.3: Means and Standard Deviations of 50 n-body simulations (100 bodies, 200
steps) on the quad-core machine.

Strength and Weakness of Hydra

s Strength

> Hydra aims to work without any programmer input

> Hydra aims to be independent of source language

> Hydra provides an implementation of a high-quality thread pool
% Weakness of Hydra

> Hydra does not support for exceptions

> Hydra does not allow pointer arguments

Thank You for Listening!

Any Questions?

