
Hydra: Auto Parallelism

Kunle Olukotun, Lance Hammond and Mark Willey

James Chicken

Presented by: Chengyao Li, Yang Shi, Jiaxin Li, Liang Zhang

Overview

❖ Introduction

❖ Methodology

❖ Implementation

❖ Analysis and Evaluation

Introduction

❖ Motivation

➢ Instruction-Level Parallelism (ILP) still have limits

➢ Writing Thread-Level Parallelism code is difficult

➢ Automatically parallelize function calls!

❖ Related Work

➢ Improving the Performance of Speculatively Parallel Applications on the Hydra

CMP [K. Olukotun, 99]

➢ Cilk[R. Blumofe, 95] and OpenMP[L. Dagum, 98]

Methodology

❖ Function Offloading

Methodology

❖ Function Offloading

Methodology

❖ Function Offloading

Implementation
Basic architecture

contains 4 passes:
Fitness

JoinPointsProfitability

Decider

Analyser

Fitness Analysis Pass

Function: Check which functions can be offloaded

❖ Depending only on their arguments instead of global state

● no pointer

● no global variable

Pointer check

➔ Instead of alias analysis, just check function arguments type

Fitness Analysis Pass

Global variable check

The complexity is actually linear, because LLVM uses Three-Address

Instructions, hence |ops(I)| is approximately constant

Profitability Analysis Pass

❖ Dedicated to estimating how much work is performed by the callee

➢ count num of instructions (naive approach, underestimate all)

➢ only count emitted instructions

➢ dealing with function calls

➢ dealing with loops (more precise estimate)

Profitability Analysis Pass

Final heueristic

JoinPoints Analysis Pass

❖ Finding where to join with an offloaded function → ensure correctness

➢ prerequisite: SSA (no worry about aliases)

➢ basic approach: find joint points (detect dependencies)

JoinPoints Analysis Pass

❖ Preferable method: At-Least-Once Joining (based on thread pool runtime)

➢ The spawning happens at the entry point

➢ * represent the usage of return value from the function of spawning thread

Decider Analysis Pass

❖ Compute the cost of caller

➢ “exactly once” runtimes

■ hueristic:

■ not general

➢ “at least once” runtimes

■ naive approach: applying Cost3(I) to every possible instruction between the S and J.

Decider Analysis Pass

❖ problems with naive approach

➢ time complexity

➢ overestimate

❖ conservative alternative approach

➢ build a DAG

➢ find shortest paths from S to each J

➢ compute the costs of all the paths as

results

❖ Better approach (we are implementing)❖ Existing approaches

Accumulate the Results

Evaluation

❖ For the evaluation part, the paper evaluate from the

following three aspects

➢ Runtime Microbenchmarks

➢ Performance Testing

➢ Scalability Tests

Runtime Microbenchmarks

The right figure shows:

Mean number of

instructions to spawn and

join with tasks on Hydra’s

supported runtimes,

compared to an increment

operation. Green bars

denote an empty thread

pool, while red bars denote

a pool at capacity. The y-

axis uses a log10-scale.

The above table shows the arithmetic mean of the results, as well as a 99% confidence

interval. We can see that there is no doubt that the project has resulted in a significant

average speedup.

Performance Testing

Scalability Tests

From the graph, we can see

consistent improvements to mean

performance from four to seven

worker threads.

Beyond seven worker threads,

performance gets worse

Strength and Weakness of Hydra

❖ Strength

➢ Hydra aims to work without any programmer input

➢ Hydra aims to be independent of source language

➢ Hydra provides an implementation of a high-quality thread pool

❖ Weakness of Hydra

➢ Hydra does not support for exceptions

➢ Hydra does not allow pointer arguments

Thank You for Listening!

Any Questions?

