
REUSABILITY IS FIRRTL GROUND:
HARDWARE CONSTRUCTION LANGUAGES,
COMPILER FRAMEWORKS,AND
TRANSFORMATIONS

KEVIN LOUGHLIN

IAN NEAL

SUMMARY: WHAT ARE WE TALKING ABOUT?

¡ Designing chip layouts for ASICs and FPGAs is hard

¡ Current programming methods have low flexibility and promote little code reuse

¡ We want to bring hardware design to where software design currently is

¡ Lots of flexibility in programming with high-level languages

¡ Lots of code reuse through common libraries

¡ An easier way to write generic code that can be retargeted to different hardware platforms

Source: asic4u.wordpress.com

WHY ARE WE
WRITING CODE
FOR HARDWARE?

¡ End of Moore's Law and Dennard Scaling

¡ Can't just make transistors smaller and increase clock speed

¡ Need to make better use of current transistor densities

¡ ASICs & FPGAs

¡ Tailor hardware to efficiently solve a specific problem

¡ Laying out gate by hand is not scalable for modern chips

¡ Like how no one wants to write assembly in binary!

LET’S TALK
(TRADITIONAL)
HARDWARE
COMPILATION!

¡ Not compilation, but synthesis

¡ Rather than C => bitcode, turn Verilog =>
layout of gates

¡ I.e., create a physical instantiation of the
circuit your code describes

¡ Synthesis can be trickier than software
compilation

¡ Many physical restraints (space, number of
resources, etc.)

¡ If your abstract circuit is not physically
possible, synthesis fails

Source: doulos.com

LET’S TALK
(TRADITIONAL)
HARDWARE
DESIGN!

¡ Circuits described at Register
Transfer Level (RTL)

¡ Register = an object that can
hold a value (state)

¡ RTL models circuits in terms of
the signals flowing between
registers, and the operations
performed on those signals

¡ Hardware Design Languages
(HDLs) express circuits at RTL
level

¡ E.g., Verilog or VHDL

¡ Scientifically-speaking, these
languages are “meh”

WHAT’S WRONG
WITH HDLS?

¡ HDLs don’t (easily) allow for good
software engineering practices

¡ Code re-use

¡ Parametrization

¡ Readability

¡ Example: adder-reduction tree (pictured)

¡ Verilog and VHDL can’t express recursive generate statements

¡ Designer must manually unroll loop and calculate indices for all
instances

¡ Different platforms require different HDL code

¡ Example: FPGAs and ASICs must use different memory
interfaces

Source: Tayab Memon

GOALS

¡ Want to enable high levels of code reuse like the software community has

¡ Reuse hardware libraries across projects

¡ Reuse hardware libraries or projects across platforms

¡ Want to enable easy development for new hardware projects

¡ These software people can go from idea to implementation in under two weeks! (The hardware people are jealous)

SOLUTION
PART1: HCLS!

¡ HCLs = Hardware Construction Languages

¡ Instead of writing out every detail of the circuit, write a
program to generate the circuit you want

¡ Essentially a way to autogenerate HDL code.

¡ These already exist (Chisel) and are used to make up for
features that HDLs lack (parameterization, recursion, etc.)

Source: twitter.com

SOLUTION
PART 2: HCFS!

¡ HCF = Hardware Compiler Framework

¡ Like LLVM, but for RTL

¡ Enables us to have a compiler backend which takes generic
RTL and emit platform-specific Verilog

¡ One key difference between HCFs and LLVM: HCFs emit
Verilog code which is given to proprietary compilers, LLVM
emits binaries which are ready to run.

Source: github.com

INTRODUCING: FIRRTL

¡ Flexible Intermediate Representation for RTL
(FIRRTL)

¡ Allows for shared transformations

¡ Platform-specific backends allow for generic
libraries to be use

¡ Emits Verilog that can be consumed by
downstream compilers and optimizers

INTERNAL
REPRESENTATION

¡ Has three internal forms of representation

¡ High, middle, low, ranging from feature rich to poor

¡ Low form maps directly to Verilog

¡ Optimizations specify which form they use, can later be
elevated or lowered

¡ Operates on an Abstract Syntax Tree (AST) of different
hardware types

¡ circuit, module, port, statement, expression, type

COMPARING HIGH, MIDDLE, AND LOW
FORMS OF FIRRTL

FIRRTL AST

APPLYING
TRANSFORMATIONS

¡ Each IR node has a map function

¡ Applies optimizations to itself and all children that match the
input-output specification

¡ Example: simplification transformations

¡ Replaces the bulk connector (connects aggregate types) with
connections to individual primitives (as Verilog doesn’t support
the bulk connector)

¡ Most transformations handle simplification, readability, or
analysis/instrumentation

¡ Downstream compilers handle aggressive logic optimizations

EVALUATION

¡ Many case studies

¡ Provides a generic optimization to increase utilization of
block RAM

¡ Reduces BRAM utilization by 3x

¡ By using FIRRTL, made switching ASIC from register design
to SRAM design trivial

¡ Saves up to 6x area

¡ Wrote a parameterized version of RocketChip

¡ 94% of the design was reused

QUESTIONS?

