REUSABILITY IS FIRRTL GROUND:

KEVIN LOUGHLIN HARDWARE CONSTRUCTION LANGUAGES,
AN NEAL COMPILER FRAMEWORKS,AND
TRANSFORMATIONS

SUMMARY:WHAT ARE WE TALKING ABOUT?

Design Specification

Y
Behavioral Description
= Designing chip layouts for ASICs and FPGA:s is hard o~ Y
RTL Description (HDL) |<gg—
® Current programming methods have low flexibility and promote little code reuse Y :l

Functional Verification
and Testing

Logic Synthesis/
Timing Verification

" We want to bring hardware design to where software design currently is i

Gate-Level Netlist

Y

Logical Verification

= Lots of code reuse through common libraries and Testing

Y

= An easier way to write generic code that can be retargeted to different hardware platforms Floor Planning s

Automatic
Place and Route

v

I Physical Layout
Y

| Layout Verification '7
L]

l Implementation

= Lots of flexibility in programming with high-level languages

Source: asic4u.wordpress.com

WHY ARE WE

WRITING CODE
FOR HARDWARE!?

* End of Moore's Law and Dennard Scaling
= Can't just make transistors smaller and increase clock speed

= Need to make better use of current transistor densities

= ASICs & FPGAs

= Tailor hardware to efficiently solve a specific problem

= Laying out gate by hand is not scalable for modern chips

" Like how no one wants to write assembly in binary!

= Not compilation, but synthesis

= Rather than C => bitcode, turn Verilog =>
layout of gates

" |.e., create a physical instantiation of the

LET’S TALK circuit your code describes

(TRADITIONAL)

= Synthesis can be trickier than software

HARDWARE compilation
CO M PI LATI O N ! = Many physical restraints (space, number of

resources, etc.)

= |f your abstract circuit is not physically
possible, synthesis fails

‘ Verilog

Synthesis

@

Source: doulos.com

= Circuits described at Register
Transfer Level (RTL)

= Register = an object that can up_counter
t
hold a value (state) >

enable ,

LET,S TALK = RTL models circuits in terms of i:et '
the signals flowing between);
registers, and the operations
(T RAD ITIONAL) performed on those signals 7501 out

enable, clk, reset;

HARDWARE

[7:0] out;
DESIG N' = Hardware Design Languages
: (HDLs) express circuits at RTL @ Uy
(reset)
level out <= 8'b0 ;
(enable)
= E.g,Verilog or VHDL out <= out + 1;

= Scientifically-speaking, these
languages are “meh”

WHAT'S WRONG

WITH HDLS!?

S S S S S

[Add, | [Add | | Add, | | Add0 |
HDLs don’t (easily) allow for good 3 3 3
software engineering practices
= Code re-use [_Add, |J [_Add; |
4 4
= Parametrization
= Readability Add,

¢5
Example: adder-reduction tree (pictured) SeurceTayab Memon

= Verilog and VHDL can’t express recursive generate statements

= Designer must manually unroll loop and calculate indices for all
instances

Different platforms require different HDL code

= Example: FPGAs and ASICs must use different memory
interfaces

" Want to enable high levels of code reuse like the software community has

= Reuse hardware libraries across projects

= Reuse hardware libraries or projects across platforms

" Want to enable easy development for new hardware projects

" These software people can go from idea to implementation in under two weeks! (The hardware people are jealous)

cCHISEeU

Source: twitter.com

= HCLs = Hardware Construction Languages

= |nstead of writing out every detail of the circuit, write a

SO LUTI O N program to generate the circuit you want
PA RT I . H C LS’ = Essentially a way to autogenerate HDL code.

" These already exist (Chisel) and are used to make up for
features that HDLs lack (parameterization, recursion, etc.)

SOLUTION

PART 2: HCFS!

%’?HTL

. Source: github.com
HCF = Hardware Compiler Framework

= Like LLVM, but for RTL

Enables us to have a compiler backend which takes generic
RTL and emit platform-specific Verilog

One key difference between HCFs and LLVM: HCFs emit
Verilog code which is given to proprietary compilers, LLVM
emits binaries which are ready to run.

INTRODUCING: FIRRTL

= Flexible Intermediate Representation for RTL
(FIRRTL)

hwscala || hwv |

prog.c || prog.rs

s |
G+) [Rust) ((Chisel) (Veriiog)
[+ debugging] D frontend
[:] transformation

= Allows for shared transformations

[
| + debugging]
[+ const prop |

| + const prop |
= Platform-specific backends allow for generic [+ dead code elim | [+ dead code elim] @ backend

libraries to be use \- YN y/
] |

WATT
40H

¥

hwy || hwv

prog.s || prog.s

= Emits Verilog that can be consumed by
downstream compilers and optimizers

= Has three internal forms of representation
= High, middle, low, ranging from feature rich to poor

= Low form maps directly to Verilog

I NTERNAL = Optimizations specify which form they use, can later be

elevated or lowered

REPRESENTATION

= Operates on an Abstract Syntax Tree (AST) of different
hardware types

= circuit, module, port, statement, expression, type

Il ROBE B BranchROB RenameFreelList

High FIRRTL =

Middle FIRRTL s 10.59 26.13

0.97

Low FIRRTL = 14.84 37.59

| 1.12

0.00 10.00 20.00 30.00

R P R
oDD
o oo

Mormalized Code Size

COMPARING HIGH, MIDDLE,AND LOW
FORMS OF FIRRTL

statement expression type

11 I N -

:[statement\] [i expression‘] [:[type]

circuit

=

[

— E—

[statement] _[expression]
v

type |

circuit Delay:

module Delay:

input clk: Clock

Delay input in: UInt<4>
output out: UInt<4>
reg r: UInt<4>, clk
r <= in
out <= r

FIRRTL AST

APPLYING

TRANSFORMATIONS

Each IR node has a map function

= Applies optimizations to itself and all children that match the
input-output specification

Example: simplification transformations

= Replaces the bulk connector (connects aggregate types) with
connections to individual primitives (as Verilog doesn’t support
the bulk connector)

Most transformations handle simplification, readability, or
analysis/instrumentation

" Downstream compilers handle aggressive logic optimizations

= Many case studies

= Provides a generic optimization to increase utilization of
block RAM

" Reduces BRAM utilization by 3x

EVALUATIO N = By using FIRRTL, made switching ASIC from register design

to SRAM design trivial
= Saves up to bx area
" Wrote a parameterized version of RocketChip

" 94% of the design was reused

QUESTIONS?

