
Optimizing Array Bound Checks
Using Flow Analysis

Rajiv Gupta, University of Pittsburgh

Presented by
Cheng Jiang, Daniel Jin, and Eric Hao

EECS 583 Advanced Compilers
University of Michigan

Agenda
● Introduction & Background
● Bound Check Optimizations

○ Local optimizations
○ Global optimizations
○ Loops optimizations

● Results & Benchmarks
● Conclusion

Introduction & Background

Array out-of-bounds errors

int arr[3] = {1, 2, 3};
for (int i = 0; i < 4; ++i) {

cout << arr[i] << endl;
}

cout << arr[7] << endl; 1
2
3
9173820
81937218

Output:

Introduction
● Bound check: a boolean expression that checks lower and upper bounds of a

subscript expression
● Compilers generate run-time checks for array bound violations

○ Overhead of checks is high

● Traditional optimizations ineffective in reducing overhead
● Production software usually doesn’t include bound checks due to

performance
○ Less reliability

● Goal: maintain security of correct execution at an acceptable run-time cost

Intuition and Approach
● Eliminate and propagate bound checks

○ Elimination analogous to constant folding and common subexpression elimination
○ Propagation is analogous to loop invariant code motion

● Ensure reliability of program is not affected
○ Errors detected before optimization still detected after optimization
○ Errors can be detected in different places

Bound Check Optimizations

Local Elimination
● Very simple local analysis to eliminate identical and subsumed checks
● Identical checks - (C = C’) if check C precedes check C’ and the variables

used in the checks between C and C’, then C’ is eliminated
● Subsumed checks with identical bounds - one of two checks eliminated based

on value of subscript expression

● Subsumed checks with identical subscript expressions - one of two checks
eliminated based on value of bounds

Global Elimination

Redundancy Modification

Notation
● Availability

○ Check C and point in program P
○ All paths leading to P, either C or a stronger check is performed
○ Forwards dataflow analysis

● Very Busy
○ Check C and point in program P
○ All paths from P, either C or a stronger check is performed
○ Backwards dataflow analysis

Modification Algorithm: Very Busy Checks

Modification Algorithm: Very Busy Checks

Modification Algorithm: Very Busy Checks

Modification Algorithm: Very Busy Checks

Modification Algorithm: Very Busy Checks

Modification Algorithm: Modifying Checks
● A check C is modified if

○ Another check C’ that is very busy at the point immediately following C and C’ subsumes C
○ Replace C with C’

Notation
● Availability

○ Check C and point in program P
○ All paths leading to P, either C or a stronger check is performed

● Very Busy
○ Check C and point in program P
○ All paths from P, either C or a stronger check is performed

Redundancy Algorithm: Available Checks

Redundancy Algorithm: Available Checks

Redundancy Algorithm: Available Checks

Redundancy Algorithm: Available Checks

Redundancy Algorithm: Available Checks

Modification Algorithm: Eliminating Checks
● A check C is eliminated if

○ Another check C’ that is available at the point immediately preceding C and C’ subsumes C or
C’ is identical to C

Loop Optimizations
Observation: propagation moves the checks to an earlier point in the code

Errors detected will be at a point different from the errors in the original code

We can propagate loop invariant bound checks out of loops!

Loop Optimizations
Observation: propagation moves the checks to an earlier point in the code

Errors detected will be at a point different from the errors in the original code

We can propagate loop invariant bound checks out of loops!

Can we do better?

Consider an Example

repeat:
 if (...):
 -- 10 <= i <= 100
 -- 1 <= j <= 10
 else:
 -- 5 <= i <= 50
 -- 1 <= j <= 10
 endif

Consider an Example

repeat:
 if (...):
 -- 10 <= i <= 100
 -- 1 <= j <= 10
 else:
 -- 5 <= i <= 50
 -- 1 <= j <= 10
 endif

Consider an Example
-- 1 <= j <= 10
repeat:
 if (...):
 -- 10 <= i <= 100

 else:
 -- 5 <= i <= 50

 endif

Consider an Example
-- 1 <= j <= 10
repeat:
 if (...):
 -- 10 <= i <= 100

 else:
 -- 5 <= i <= 50

 endif

2 bound checks
per iteration

Consider an Example
-- 1 <= j <= 10
repeat:
 if (...):
 -- 10 <= i <= 100

 else:
 -- 5 <= i <= 50

 endif

We can hoist a (combined)
weaker condition

5 10 50 100

Consider an Example
-- 5 <= i <= 100
-- 1 <= j <= 10
repeat:
 if (...):
 -- 10 <= i

 else:
 -- i <= 50

 endif

5 10 50 100

1 bound check per
iteration

The stronger conditions
must be left in the loop

Consider an Example
-- 5 <= i <= 100
-- 1 <= j <= 10
repeat:
 if (...):
 -- 10 <= i
 else:
 -- i <= 50
 endif

How to Propagate?
Recall: we want to propagate bound checks that are invariant or can be hoisted
with minor modifications

Intuitions:
● If a basic block (BB) dominates all loop exits, then its bound checks may be

hoisted
● It is also possible to hoist some other bound checks as well

Analogous to instruction hoisting

The innermost loops are processed first, the outermost loops are processed last

Propagation Algorithm
Assumption: We have identified the loop, and have computed UD chains and
dominator sets

1. Identify propagation candidates
○ Invariants
○ Increasing values (comparing to a lower bound)
○ Decreasing values (comparing to an upper bound)
○ Loops with increment / decrement of one

2. Hoist checks: from conditionally executed BB to unconditionally executed BB
3. Propagate checks out of the loop

Experimental Results

Experimental Results

Thank You!
Questions?

Extra

Modification Algorithm: backward Function

Modification Algorithm: backward Function

Modification Algorithm: backward Function

20 <= i

lb v

Modification Algorithm: backward Function

Modification Algorithm: backward Function

Redundancy Algorithm: forward Function

Redundancy Algorithm: forward Function

Redundancy Algorithm: forward Function

Redundancy Algorithm: forward Function

Algorithm to Hoist Checks Out of Loops

Propagation Out of Loops: Unknown Bounds

Propagation Out of Loops: Known Bounds

