Optimizing Array Bound Checks
Using Flow Analysis

Rajiv Gupta, University of Pittsburgh

Presented by
Cheng Jiang, Daniel Jin, and Eric Hao
EECS 583 Advanced Compilers
University of Michigan

Agenda

e Introduction & Background

e Bound Check Optimizations
o Local optimizations
o Global optimizations
o Loops optimizations

e Results & Benchmarks
e Conclusion

Introduction & Background

Array out-of-bounds errors

}

int arr[3]
for (int i

{1, 2, 3};
0; 1 < 4; ++1i) {
cout << arr[i] << endl;

cout << arr[7] << endl;

Output:

1

2

3
91738260
81937218

Introduction

e Bound check: a boolean expression that checks lower and upper bounds of a
subscript expression

e Compilers generate run-time checks for array bound violations
o Overhead of checks is high

e Traditional optimizations ineffective in reducing overhead
e Production software usually doesn’t include bound checks due to

performance
o Less reliability

e Goal: maintain security of correct execution at an acceptable run-time cost

Intuition and Approach

e Eliminate and propagate bound checks
o Elimination analogous to constant folding and common subexpression elimination
o Propagation is analogous to loop invariant code motion

e Ensure reliability of program is not affected

o Errors detected before optimization still detected after optimization
o Errors can be detected in different places

Bound Check Optimizations

Local Elimination

e \ery simple local analysis to eliminate identical and subsumed checks
e [dentical checks - (C = C’) if check C precedes check C’ and the variables
used in the checks between C and C’, then C’ is eliminated

e Subsumed checks with identical bounds - one of two checks eliminated based
on value of subscript expression

MIN < f(v) and MIN <g(v) =MIN <f(v) if f(v)<g(v),
f(v) < MAX and g(v) < MAX =g(v) < MAX if f(v) <g(v).

e Subsumed checks with identical subscript expressions - one of two checks
eliminated based on value of bounds
MIN, <f and MIN, < f = maximum(MIN,, MIN,) < f,
f < MAX, and f < MAX, = f < minimum(MAX,, MAX,).

Global Elimination

Redundancy

if () then if () then

-10<i<50 - 10<i<50
else else

-20<i<100 --20<i<100
fi fi
-5<i<£200
Before Optimization After Optimization

Modification

-5<i<200 -10<i<100
if () then if () then

-10<i<50 -10<i<50
else else

--20<i<100 -20<i<100
fi fi
Before Optimization After Modification

~-10<i<100
if () then
-i<50

else
--20<i

fi
After Elimination

Notation

e Availability
o Check C and point in program P
o All paths leading to P, either C or a stronger check is performed
o Forwards dataflow analysis

e \ery Busy
o Check C and point in program P
o All paths from P, either C or a stronger check is performed
o Backwards dataflow analysis

Modification Algorithm: Very Busy Checks

C_IN[B] = C_GEN|[B1V backward(C_OUT| B], B),

C_OUTIB] = /A C_IN[S], where B isnot the terminating block,
SeSuce(B)

C_OUTI[B] = J, where B is the terminating block;

Modification Algorithm: Very Busy Checks

C_IN[B]|= C_GEN|[B]V backward(C_OUT| B], B),

C_OUT[B]|= /A C_IN[S], where B isnot the terminating block,
SeSuce(B)

C_OUTI[B] = J, where B is the terminating block;

Modification Algorithm: Very Busy Checks

C_IN[B] =|C_GEN|[BV backward(C_OUT| B], B),

C_OUTIB] = /A C_IN[S], where B isnot the terminating block,
SeSuce(B)

C_OUTI[B] = J, where B is the terminating block;

Modification Algorithm: Very Busy Checks

C_IN[B] = C_GEN|[B]V |backward(C_OUT| B], B),

C_OUTIB] = /A C_IN[S], where B isnot the terminating block,
SeSuce(B)

C_OUTI[B] = J, where B is the terminating block;

Modification Algorithm: Very Busy Checks

C_IN[B] = C_GEN|[B]V backward(C_OUT| B], B),

C_OUT[B]|= /A C_IN[S], where B isnot the terminating block,
SeSuce(B)

C_OUTI[B]|= J, where B is the terminating block;

Modification Algorithm: Modifying Checks

e A check C is modified if

o Another check C’that is very busy at the point immediately following C and C’ subsumes C

o Replace C with C’

--5<i<200
if () then
-10<i<50

else
--20<i<100

fi
Before Optimization

-10<i<100
if () then
-10<i<50

else
-20<i<100

fi
After Modification

Notation

e Availability
o Check C and point in program P
o All paths leading to P, either C or a stronger check is performed

e \ery Busy
o Check C and point in program P
o All paths from P, either C or a stronger check is performed

Redundancy Algorithm: Available Checks

C_OUTI[B] = C_.GEN[B] V forward(C_IN| B], B),

C_IN[B}]= A\ C_OUT[P], where B is not the initial block,
P& Pred(B)

C_IN[B] = &, where B is the initial block.

Redundancy Algorithm: Available Checks

C_OUTI[B]|= C_GEN|[B] V forward(C_IN| B], B),

C_IN[B} |= A C_OUT][P], where B is not the initial block,
P& Pred(B)

C_IN[B] = &, where B is the initial block.

Redundancy Algorithm: Available Checks

C_OUTI[B] =|C_GEN|B]}|V forward(C_IN| B], B),

C_IN[B} = A C_OUT][P], where B is not the initial block,
P& Pred(B)

C_IN[B] = &, where B is the initial block.

Redundancy Algorithm: Available Checks

C_OUTI[B] = C_GEN[B] V |forward(C_IN| B], B),

C_IN[B} = A C_OUT][P], where B is not the initial block,
P& Pred(B)

C_IN[B] = &, where B is the initial block.

Redundancy Algorithm: Available Checks

C_OUTI[B] = C_.GEN[B] V forward(C_IN| B], B),

C_IN|[B] A C_OUT][P], where B is not the initial block,
P& Pred(B)

C_IN[B] = &, where B is the initial block.

Modification Algorithm: Eliminating Checks

e Acheck Cis eliminated if
o Another check C’that is available at the point immediately preceding C and C’ subsumes C or
C’is identical to C

--5<i<200 --10<i<100 -~ 10<i<100
if () then if () then if () then
--10<i<50 - 10<i<50 -1<50
else else else
--20<i<100 -20<i<100 --20<i
: ; .

Before Optimization After Modification After Elimination

Loop Optimizations
Observation: propagation moves the checks to an earlier point in the code
Errors detected will be at a point different from the errors in the original code

We can propagate /loop invariant bound checks out of loops!

Loop Optimizations
Observation: propagation moves the checks to an earlier point in the code
Errors detected will be at a point different from the errors in the original code

We can propagate /loop invariant bound checks out of loops!

Can we do better?

Consider an Example

repeat:
if (...):
-- 10 <= 1 <= 100
-- 1 <=3 <= 160
else:
-- 5 <=1 <= 50
-- 1 <=3 <= 160

endif

Consider an Example

Consider an Example

Consider an Example

2 bound checks
per iteration

—

/
b

-- 18 <= 1 <= 100

-- 5 <=1 <= 50

Consider an Example

We can hoist a (combined)
weaker condition

-- 180 <= i1 <= 100
-- 5 <=1 <= 50

510 50 100

Consider an Example

The stronger conditions
must be left in the loop

1 bound check per <
iteration

S— —>

5 10 50 100

-- 5 <=1 <= 160

v -- 10 <=1
T

-- 1 <= 50

Consider an Example

-- 5 <=1 <= 100

-- 1 <=3 <= 10
repeat:
if (...):
-- 10 <=1
else
-- 1 <= 50

How to Propagate?

Recall: we want to propagate bound checks that are invariant or can be hoisted
with minor modifications

Intuitions:
e [f a basic block (BB) dominates all loop exits, then its bound checks may be

hoisted
e |tis also possible to hoist some other bound checks as well

Analogous to instruction hoisting

The innermost loops are processed first, the outermost loops are processed last

Propagation Algorithm

Assumption: We have identified the loop, and have computed UD chains and
dominator sets

1. ldentify propagation candidates
o Invariants
o Increasing values (comparing to a lower bound)
o Decreasing values (comparing to an upper bound)
o Loops with increment / decrement of one

2. Hoist checks: from conditionally executed BB to unconditionally executed BB
3. Propagate checks out of the loop

Experimental Results

Experimental Results

Table I. Effects of Bound Check Optimization

Program UNOPT LELIM + GELIM + PROP = Total deleted
BUBBLE 59,400 39,600 + 9,900 + 9,900 = 59,400 = 100%
QUICK 271,184 72,784 + 10,014 + 04,347 = 137,145 = 51%
QUEEN 13,784 2,288 + 1,748 + 1,778 = 5,814 = 42%
TOWERS 556,262 261,944 + 97,844 + 0= 359,788 = 65%
LLOOP6 20,160 8,064 + 0+ 12,096 = 20,160 = 100%
FFT 37,414 24,568 + 0+ 5,930 = 30,498 = 82%
MATMUL 1,043,200 640,000 + 256,000 + 147,200 = 1,043,200 = 100%
PERM 80,624 10,078 + 0+ 7,240 = 73,384 = 91%

UNOPT = total number of bound checks before optimization; LELIM = number of checks elimi-
nated by local elimination; GELIM = number of checks eliminated by global elimination; PROP
= number of checks eliminated by propagation.

Thank You!
Questions?

Extra

Modification Algorithm: backward Function

backward(|C_OUT[B],B|) {
S=0@
for each check C € C_ OUT[B]do
case C of
b <v:
case AFFECT(B ,v) of
unchanged: S=S {lb <v}
increment: /* the check is killed */
decrement: S=S y {lb <v]
multiply: /* the check is killed */
div>1: S=Sflb<v)
div<1: /* the check is killed */
changed: /* the check is killed */
end case

Modification Algorithm: backward Function

backward(C_OUT[B],B) {
for each check C € C_ OUT[B]do
case C of
b <v:
case AFFECT(B ,v) of
unchanged: S=S {lb <v}
increment: /* the check is killed */
decrement: S=S y {lb <v]
multiply: /* the check is killed */
div>1: S=Sflb<v)
div<1: /* the check is killed */
changed: /* the check is killed */
end case

Modification Algorithm: backward Function

backward(C_OUT[B1,B) {

S=0
for each check C € C_OUT[B] do
case C of 20 <=
Ib<v: T T
case AFFECT(B ,v) of
unchanged: S=S {lb <v} Ib v

increment: /* the check is killed */

decrement: S=Sy {lb <v]

multiply: /* the check is killed */

div>1: S=Sflb<v)

div<1: /* the check is killed */

changed: /* the check is killed */
end case

Modification Algorithm: backward Function

backward(C_OUT[B],B) {
S=0@
for each check C € C_ OUT[B]do
case C of
b <v:
case AFFECT(B ,v)|of
unchanged: S=S {lb <v}
increment: /* the check is killed */
decrement: S=S y {lb <v]
multiply: /* the check is killed */
div>1: S=Sflb<v)
div<1: /* the check is killed */
changed: /* the check is killed */
end case

Modification Algorithm: backward Function

backward(C_OUT[B],B) {
S=0@
for each check C € C_OUT[B] do
case C of
b <v:
case AFFECT(B ,v) of
unchanged:|S=S {lb <v}
increment: |/* the check is killed */
decrement: S=Sy {lb <v]
multiply: /* the check is killed */
div>1: S=Sflb<v)
div<1: /* the check is killed */
changed: /* the check is killed */
end case

Redundancy Algorithm: forward Function

forward(|C_IN[B],B|) {
S=0
for each check C € C_IN([B] do
case C of
lb<v:
case AFFECT(B ,v) of
unchanged: S=S {lb <v}
increment: S=S {lb <v)
decrement: /* the check is killed */
multiply: S=Sy{lb <v}
div>1: /* the check is killed */
div<1: S=Sylibsv)
changed: /* the check is killed */
end case

Redundancy Algorithm: forward Function

forward(C IN[B],B) {
S=0
for each check C € C_IN([B] do
case C of
lb<v:
case AFFECT(B ,v) of
unchanged: S=S {lb <v}
increment: S=S {lb <v)
decrement: /* the check is killed */
multiply: S=Sy{lb <v}
div>1: /* the check is killed */
div<1: S=Sylibsv)
changed: /* the check is killed */
end case

Redundancy Algorithm: forward Function

forward(C _IN[B],B) {
S=0
for each check C € C_IN([B] do
case C of
lb<v:
case AFFECT(B ,v) of
unchanged: S=S {lb <v}
increment: S=S {lb <v)
decrement: /* the check is killed */
multiply: S=Sy{lb <v}
div>1: /* the check is killed */
div<1: S=Sylibsv)
changed: /* the check is killed */
end case

Redundancy Algorithm: forward Function

forward(C _IN[B],B) {
S=0
for each check C € C_IN([B] do
case C of
lb<v:
case AFFECT(B ,v) of
unchanged: S=S {lb <v)
increment: |S=S {lb <v)
decrement: | /* the check is killed */
multiply: S=Sy{lb <v}
div>1: /* the check is killed */
div<1: S=Sylibsv)
changed: /* the check is killed */
end case

Algorithm to Hoist Checks Out of Loops

hoist {
ND = {n: block n does not dominate all loop exits}
for each block n do
C(n) = {c: at the entry to n we can assert that candidate check ¢ will be executed in n }
od
change = true
while change do
change = false
for each block n = Succ (n)ND #J A n is the umque predecessor of nodes in Succ (n) do
prop= Se.SOcc(n) c©)
if prop + & then
change = true
hoist checks in prop to n
for each check ¢ € prop do

ifc €5, SeSucc(n) then elimmate ¢ from § fi
od

od
od

Propagation Out of Loops: Unknown Bounds

while
-- MIN(a) <1< MAX(a)
-- MIN(a) <)< MAX(a)
afi] # a[j]

do
i=1+1
j=j-1

od

Before Propagation

-- MIN(a) £1,] £ MAX(a)
while
--i<MAX(a)
-- MIN(a) £}
afi] # a[j]
do
1=1+1
j=j-1
od

After Propagation

Propagation Out of Loops: Known Bounds

for i « min to max do -- MIN(a) € min, max £ MAX(a)
if (inc) then -- MIN(a) <1< MAX(a) for 1 « min to max do
sum ¢« sum + afi} if (inc) then
else -- MIN(a) <1< MAX(a) sum <« sum + a[i]
sum <« sum - a[i] else sum <« sum - a[1}
fi fi
od od

Before Propagation After Propagation

