
Pixy: A Static Analysis Tool for
Detecting Web Application

Vulnerabilities
By Nenad Jovanovic, Christopher Kruegel, Engin Kirda

Presented for EECS 583 by Colin Nizielski, Lloyd Shatkin, Nick Adams

Outline
1. Problem Introduction
2. Data Flow Analysis
3. Taint Analysis
4. Empirical Results

Motivation
 Why care about website vulnerabilities?

Taint-style Web Vulnerabilities
● All user input is considered tainted data

● Vulnerable parts of a program are sensitive sinks

● Tainted data can be sanitized for safe use

● Example attacks exploiting tainted data
○ Path Traversal

○ Command Injection

○ SQL Injection

○ Cross Site Scripting

‘DELETE * FROM everything; --

Cross Site Scripting (XSS)
● Allows malicious JavaScript to be run in users’ browsers

● Easy to avoid but easy to miss

● One possible scenario

1. Attacker submits malicious content containing executable code

2. Normal user views content and unknowing runs malicious code

3. Code sends user information back to the attacker

How to prevent XSS attacks
● Understand the tainted inputs to a web service

○ GET/POST requests

○ Cookies

○ Databases of user generated content

● Run sanitizing routines on data
○ Remove any executable code

○ Escape special characters

● Confirm anything returned to the user is untainted

What is Pixy?
● An open source static, data flow analysis tool for PHP

● Focused on detecting taint-style vulnerabilities, specially XSS

● Multi step analysis:
○ Constants and literals analysis

○ Aliased value analysis

○ Taint analysis

Outline
1. Problem Introduction
2. Data Flow Analysis
3. Taint Analysis
4. Empirical Results

Intermediate Representation: P-Tac
● Each statement is converted to three-address code

○ Contains at most 3 addresses: x = y {op} z

var = b + c + d

t1 = b + c

t2 = t1 + c

var = t2

P-Tac: CFG Nodes
● P-Tac condenses the potentially infinite description of statements

Literal Analysis
● Purpose: Find the literal value that a

variable or constant can hold

● Utilizes Control flow graphs of atomic
operations

● Iterative analysis that is flow and context
sensitive as well as interprocedural

Literal Analysis: Carrier Lattice

● Provides mappings for all variables and constants at any execution point

● Ω signifies unknown value

Literal Analysis: Transfer Functions
● Transfer functions define how information is affected by each CFG node

Simple Assignment: Binary Assignment:

var = b

b: 2

b: 2
var: 2

var = b + c

b: 2
c: Ω

b: 2
c: Ω

var: Ω

Literal Analysis in Action
● Variable v is initially unknown

● Simple assignment transfer function
updates carrier lattice

● Simple assignment transfer function
updates carrier lattice

● End node merges different parent lattices
for variable v into unknown (Ω)

Literal Analysis: Aliases
● Currently literal analysis would not be able to detect that instruction 4 also

affects variable b

Alias Analysis

● Carrier Lattice structures now
include alias sets

● Conservative All-Path merge

Outline
1. Problem Introduction
2. Data Flow Analysis
3. Taint Analysis
4. Empirical Results

Taint Analysis - Basics
● A variable is tainted if it can hold

malicious values
○ Originates from user input

● For carrier lattice, map to values
tainted and untainted

● Conservative approach
○ “Might be tainted”
○ “Must be untainted”

Taint Analysis - Clean Array Flag
● Literal analysis treats non-literal array elements pessimistically

○ $a[$i]
● Leads to false positives in taint analysis
● Track Clean Array Flag (CA Flag)

○ Overrides taint analysis declaring non-literal elements as tainted

Taint Analysis - Transfer Functions
● Same process as literal analysis except the addition of CA Flag

Taint Analysis - Limitations
● Does not support object oriented features of PHP

○ Treated optimistically - malicious data can never arise
● Files included with “include” are not scanned automatically

○ File inclusions in PHP are dynamic
○ Names of included files can be constructed at run-time and can even return values
○ Hard to analyze, so treated pessimistically

Outline
1. Problem Introduction
2. Data Flow Analysis
3. Taint Analysis
4. Empirical Results

Empirical Results
Method:

● Pixy was run on 6 open-source
PHP programs

● Manually resolved “include”
relationships by simply
providing function definitions

● Each program was analyzed in
less than 1 minute
○ 3.0 GHz Pentium 4 processor

with 1 GB RAM

False Positives (47 Total)
● 14 caused by dynamically initialized global variables in included files

○ Can get better by automatically processing “include” files

False Positives (47 Total)
● 14 caused by dynamically initialized global variables in included files

○ Can get better by automatically processing “include” files
● 13 caused by file reads

○ Can be improved by tracking files for which an attacker could inject tainted
values

False Positives (47 Total)
● 14 caused by dynamically initialized global variables in included files

○ Can get better by automatically processing “include” files
● 13 caused by file reads

○ Can be improved by tracking files for which an attacker could inject tainted values
● 7 caused by global arrays

○ Due to not covering alias relationships for arrays

False Positives (47 Total)
● 14 caused by dynamically initialized global variables in included files

○ Can get better by automatically processing “include” files
● 13 caused by file reads

○ Can be improved by tracking files for which an attacker could inject tainted values
● 7 caused by global arrays

○ Due to not covering alias relationships for arrays
● Others due to more complex reasons with no solution presented

False Positives (47 Total)
● 14 caused by dynamically initialized global variables in included files

○ Can get better by automatically processing “include” files
● 13 caused by file reads

○ Can be improved by tracking files for which an attacker could inject tainted values
● 7 caused by global arrays

○ Due to not covering alias relationships for arrays
● Others due to more complex reasons with no solution presented

Questions?

Extra Slides: Arrays
● Each index referenced is stored in an array tree

● Allows for nested arrays as well

