Practical Aggregation of Semantical Program
Properties for Machine Learning Based
Optimization

Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, Ari Freund

Presented by: Ziyang Wang, Ruoyao Wang, Likai Sheng, Junjie Xing

Overview

Introduction and Related Work
Terminology Definition

Feature Extraction
Methodology

Evaluation and Conclusion

Introduction and Related Work

Previous work:

e |terative Compilation: Try different sets and orders of optimization
o Optimization-Space Exploration: ldentify the most relevant optimization
o Expert System for Tuning Optimization(ESTO)

Timing Consuming!
Restrictive in Practice
(excessive recomplies and run)

General ML compiler phases

Training Phase
Prediction Phase

=

Buuea)
AL

/ Optimization tools \

Extracting program
features

/ Predictive Model

\

Bullding associations |

Program,,

Applying different
combinations of

optimizations

/

&

between program
features and speedups

v

>/

Improve exec. time,

[Predicting “good”
code slze, etc

l\

/ Optimization tools \

—

optimizations to
-

~/

N

M‘uﬁhdland]
optimizations

-

Prediction for “good”
optimizations

Figure 1: Typical machine learning scenario to predict “good” optimizations for programs. During a training phase (from left to
right) a predictive model is built to correlate complex dependencies between program structure and candidate optimizations. In the
prediction phase (from right to left), features of a new program are passed to the learned model and used to predict combinations of

optimizations.

Related Terminologies

e Entities:
functions basic blocks
instructions and operands loops
variables compiler-generated temporaries
types

constants

Related Terminologies

Relations:

A relation over one or more sets of entities is a subset of their Cartesian Product

EX. in € 1xB, in={(i_k,b_l)|instruction i k is in basic block b_/}

call graph dominator tree anticipatibility information
CFG data dependence graph alias information
Loop Hierarchy liveness information

Control dependence graph availability information

Related Terminologies

Datalog:

e a Prolog-like language with more restricted semantics, suitable for expressing relations and
operations
Elements of Datalog are called atoms of form p(X_1, ..., X_n) P: predicates, X: variable or constants
Datalog database consist of a listof rules: H:-B_1, B 2, ..., B_.n Facts: bodyless rule
Datalog query: -B 1, ..., B n
Datalog is capable of performing operations on relations to generate new relation
o Ex.st_in(l, B): - store(l), in(l, B)

Automatic Inference of New Relations

e Complex relations can be inferred from basic relations
e Two relations can be joined on their shared variables

Example:

r(E,, E,E,), p(F,,F,, F,),E,=F,E,=F,
rel1(E,, E,, E,, F,, F,)

rel2(E,, E,, E,, F,, F,)

rel3(E,, E,, E,, F,)

Extracting Features from Relations

e Features: quantitative measurement of a program

e Convert relations to features
Relations with numerical value entities
Relations with categorical value entities
Binary relations

K-arity relations

O O O O

Relations with Numerical Value Entities

e \alues can be aggregated into their sum, average, variance, max, min, etc.
e Example:

count = {(b,n) | b 1s a basic block
whose estimated number of executions is n}

Relations with Categorical Value Entities

e Categorical values: Usually symbols like instructions, basic blocks
e Apply num to each entity:

Example:
st_in_block={(i, b) | i is a store instruction in basic block b}
num(st_in_block[0]) : # of store instructions in all basic blocks

num(st_in_block[1]) : # of basic blocks that contains store instructions

Binary Relations & K-arity Relations

e r< E xE, e€E, r(e) denotes the set of pairs in r that contains e.
e Features are extracted by aggregating the numerical values of (e, num(r(e)))
e |.e. Consider st _in_block again. Aggregate (b, num(st_in_blocks(b))).

e K-arity relations can be converted to binary relations

Structural Code Patterns

Problem:

Properties like # of edges, avg # of neighbors for a vertex present poorly for
graph structures with small number of labels for vertices and nodes (e.g. CFG,
DDG, dominator tree)

How to solve?

Characterize such graphs by a number of subgraph patterns

Structural Code Patterns

An example

Control Flow Graph can be considered as a relation over B x B, where B is
the set of basic blocks.

bb ifthen(B1,B3) :-
bb edge(B1,B3), bb edge(Bl,B2), bb edge(B2,B3).

bb ifthen else(B1l,B4) :-
bb edge(B1,B2), bb edge(Bl,B3),
bb edge(B2,B4), bb edge(B3,B4).

Structural Code Patterns

Use these code patterns to iteratively induce new patterns

bb ifthen n(B1,B4) :-
bb edge(B1,B4), bb edge(Bl1,B2),
bb ifthen(B2,B3), bb edge(B3,B4).

This approach can be applied to other patterns in graphs such as cycles (loop
structure) and bipartite graph (def-use relation).

Exploring the Structural Pattern Space

Problem:
Arbitrary complex patterns can be derived from the initial patterns.

Need to limit the pattern space for efficiency with constraints (by compiler
expert).

Exploring the Structural Pattern Space

An example with CFG. Constraint (m,n):
m = maximal number of occurrences of the variable as the first argument

n = maximal number of occurrences of the variable as the second argument

constraint(Bl) = (2,2)
constrains(B2) = (1,1)
constrains(B3) = (1,2)

Before extension
:- bb edge(Bl1,B2), bb edge(Bl,B3).

After extension
:- bb edge(Bl1,B2), bb edge(Bl,B3), bb edge(B2,B3).

Evaluation

1. Use state-of-the-art predictive model
e Compared with all similar features of other programs using a nearest
classifier
2. Compile a new program & extract features
e 56 features extracted after performing principal component
analysis(PCA)
3. Recompiled the program with the combination of optimizations for the most
similar program encountered so ar

Evaluation

Feature # | Description: ft29 Number of basic blocks with no phi nodes

ftl Number of basic blocks in the method ft30 Number of basic blocks with phi nodes in the interval [0, 3]

ft2 Number of basic blocks with a single successor ft31 Number of basic blocks with more than 3 phi nodes

ft3 Number of basic blocks with two successors ft32 Number of basic block where total number of arguments for all phi-nodes is in greater than 5
ft4 Number of basic blocks with more than two successors ft33 Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]
ftS Number of basic blocks with a single predecessor ft34 Number of switch instructions in the method

ft6 Number of basic blocks with two predecessors ft35 Number of unary operations in the method

ft7 Number of basic blocks with more than two predecessors ft36 Number of instruction that do pointer arithmetic in the method

ft8 Number of basic blocks with a single predecessor and a single successor ft37 Number of indirect references via pointers ("*" in C)

ft9 Number of basic blocks with a single predecessor and two successors ft38 Number of times the address of a variables is taken ("&" in C)

ft10 Number of basic blocks with a two predecessors and one successor ft39 Number of times the address of a function is taken ("&" in C)

ftl1 Number of basic blocks with two successors and two predecessors ft40 Number of indirect calls (i.e. done via pointers) in the method

ft12 Number of basic blocks with more than two successors and more than two predecessors ft41 Number of assignment instructions with the left operand an integer constant in the method
ft13 Number of basic blocks with number of instructions less than 15 ft42 Number of binary operations with one of the operands an integer constant in the method
ft14 Number of basic blocks with number of instructions in the interval [15, 500] ft43 Number of calls with pointers as arguments

ft15 Number of basic blocks with number of instructions greater than 500 ft44 Number of calls with the number of arguments is greater than 4

ft16 Number of edges in the control flow graph ft45 Number of calls that return a pointer

ft17 Number of critical edges in the control flow graph ft46 Number of calls that return an integer

ft18 Number of abnormal edges in the control flow graph ft47 Number of occurrences of integer constant zero

ft19 Number of direct calls in the method ft48 Number of occurrences of 32-bit integer constants

ft20 Number of conditional branches in the method ft49 Number of occurrences of integer constant one

ft21 Number of assignment instructions in the method ft50 Number of occurrences of 64-bit integer constants

ft22 Number of unconditional branches in the method ft51 Number of references of local variables in the method

ft23 Number of binary integer operations in the method ft52 Number of references (def/use) of static/extern variables in the method

ft24 Number of binary floating point operations in the method ft53 Number of local variables referred in the method

ft25 Number of instructions in the method ft54 Number of static/extern variables referred in the method

ft26 Average of number of instructions in basic blocks ft55 Number of local variables that are pointers in the method

ft27 Average of number of phi-nodes at the beginning of a basic block ft56 Number of static/extern variables that are pointers in the method

ft28 Average of arguments for a phi-node

Table 1: List of program features produced using our technique to be able to predict good optimizations

Evaluation

1.4]
1.3 +
2 12 U
%1.2
o 1.1 +
a
5 171
0.9 H]:
0.8 +
T 0o o © 0o vV & & T © TV © & O T N £ 5 =~ Q2
g 5 O [~ 3] T € O
s § 5§58 P55 5L 85 E ¢
_swmw,&.a::mi:'gg'g § § o c g £
53 2 2 2 S v Q2 c .£ o T 9 <
2 @ B & & § 5 7 & 3
S 9 £
S
1/

O Iterative compilation
H Predicted optimization passes using static feature extractior and nearest neighbour classifier

Figure 3: Speedups when predicting best optimizations based on program features in comparison with the achievable speedups after
iterative compilation based on 500 runs per benchmark (ARC processor)

Strengths & Weakness

+ Systematically generating numerical features from a program for ML purposes

+ Using ML model to select optimizations takes less time than iterative compilation

- Limited amount of features from auto-generation

- The speedups obtained from extracted features are still far from optimal

Conclusion

e Though obtaining strong speedups, the iterative compilation process is very
time-consuming and impractical in production

e Building a systematic method to construct features is an important step

towards generalizing machine learning techniques to tackle the complexity of
present and future computing system

Questions?

