
Practical Aggregation of Semantical Program
Properties for Machine Learning Based

Optimization
Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, Ari Freund

Presented by: Ziyang Wang, Ruoyao Wang, Likai Sheng, Junjie Xing

Overview
Introduction and Related Work

Terminology Definition

Feature Extraction

Methodology

Evaluation and Conclusion

Introduction and Related Work
Previous work:

● Iterative Compilation: Try different sets and orders of optimization
○ Optimization-Space Exploration: Identify the most relevant optimization
○ Expert System for Tuning Optimization(ESTO)

Timing Consuming!
Restrictive in Practice

(excessive recomplies and run)

General ML compiler phases
● Training Phase
● Prediction Phase

Related Terminologies
● Entities:

functions basic blocks

instructions and operands loops

variables compiler-generated temporaries

types

constants

Related Terminologies
Relations:

A relation over one or more sets of entities is a subset of their Cartesian Product

call graph dominator tree anticipatibility information

CFG data dependence graph alias information

Loop Hierarchy liveness information

Control dependence graph availability information

Ex. in ⊆ I ×B, in = {(i_k,b_l) | instruction i_k is in basic block b_l}

Related Terminologies
Datalog:

● a Prolog-like language with more restricted semantics, suitable for expressing relations and
operations

● Elements of Datalog are called atoms of form p(X_1, ..., X_n)
● Datalog database consist of a list of rules: H: - B_1, B_2, …, B_n
● Datalog query: - B_1, …, B_n
● Datalog is capable of performing operations on relations to generate new relation

○ Ex. st_in(I, B): - store(I), in(I, B)

P: predicates, X: variable or constants
Facts: bodyless rule

Automatic Inference of New Relations
● Complex relations can be inferred from basic relations
● Two relations can be joined on their shared variables

Example:

r(E1, E2, E3), p(F1, F2, F3), E2 = F1, E3= F2

rel1(E1, E2, E3, F2, F3)

rel2(E1, E2, E3, F1, F3)

rel3(E1, E2, E3, F3)

Extracting Features from Relations
● Features: quantitative measurement of a program
● Convert relations to features

○ Relations with numerical value entities
○ Relations with categorical value entities
○ Binary relations
○ K-arity relations

Relations with Numerical Value Entities
● Values can be aggregated into their sum, average, variance, max, min, etc.
● Example:

Relations with Categorical Value Entities
● Categorical values: Usually symbols like instructions, basic blocks
● Apply num to each entity:

Example:

st_in_block={(i, b) | i is a store instruction in basic block b}

num(st_in_block[0]) : # of store instructions in all basic blocks

num(st_in_block[1]) : # of basic blocks that contains store instructions

Binary Relations & K-arity Relations
● r ⊆ E1 ×E2, e∈Ei, r(e) denotes the set of pairs in r that contains e.

● Features are extracted by aggregating the numerical values of (e, num(r(e)))

● I.e. Consider st_in_block again. Aggregate (b, num(st_in_blocks(b))).

● K-arity relations can be converted to binary relations

Structural Code Patterns
Problem:

Properties like # of edges, avg # of neighbors for a vertex present poorly for
graph structures with small number of labels for vertices and nodes (e.g. CFG,
DDG, dominator tree)

How to solve?

Characterize such graphs by a number of subgraph patterns

Structural Code Patterns
An example

Control Flow Graph can be considered as a relation over B x B, where B is
the set of basic blocks.

Structural Code Patterns
Use these code patterns to iteratively induce new patterns

This approach can be applied to other patterns in graphs such as cycles (loop
structure) and bipartite graph (def-use relation).

Exploring the Structural Pattern Space
Problem:

Arbitrary complex patterns can be derived from the initial patterns.

Need to limit the pattern space for efficiency with constraints (by compiler
expert).

Exploring the Structural Pattern Space
An example with CFG. Constraint (m,n):

m = maximal number of occurrences of the variable as the first argument

n = maximal number of occurrences of the variable as the second argument

(1,2)

Evaluation
1. Use state-of-the-art predictive model

● Compared with all similar features of other programs using a nearest
classifier

2. Compile a new program & extract features
● 56 features extracted after performing principal component

analysis(PCA)
3. Recompiled the program with the combination of optimizations for the most

similar program encountered so ar

Evaluation

Evaluation

Strengths & Weakness
+ Systematically generating numerical features from a program for ML purposes

+ Using ML model to select optimizations takes less time than iterative compilation

- Limited amount of features from auto-generation

- The speedups obtained from extracted features are still far from optimal

Conclusion
● Though obtaining strong speedups, the iterative compilation process is very

time-consuming and impractical in production
● Building a systematic method to construct features is an important step

towards generalizing machine learning techniques to tackle the complexity of
present and future computing system

Questions?

