
Tapir: Embedding Fork-Join Parallelism
into LLVM’s Intermediate Representation

Best paper at PPoPP 2017

Authors: Schardl, T. B., Moses, W. S., & Leiserson, C. E.

Presenters: Tiancheng Ge, Fanzhong Kong, Zihan Li

Motivation

● Optimize parallel programs.

● If the code is serial, this optimization is very easily using
LLVM.

● But the program is parallel...

Motivation

Mainstream compilers

● At front end, parallel code → other representations.
● cannot recognize the new representation at middle end →

hard to do optimization.

Previous approaches do to optimization:

● Intrinsic functions to mark parallelism. LLVM support ✘

● Use separate IR for parallel code. Too much work ✘

● Augment existing IR for parallel code, and reuse existing
optimizations in LLVM.

Overview: Tapir (Task-based Asymmetric Parallel IR)

● Tapir uses three additional LLVM IR instructions:

● detach detached block, continuation block

○ Create a detached thread

● reattach, continuation block

○ Terminate the thread

● sync (thread.join())

○ Wait other threads to finish
● Example:

Execute two pieces of code

in parallel.

Symmetry vs. Asymmetry

● Tapir uses asymmetric parallel tasks.

● Symmetrical parallel assume all the control flow edges
must be taken before the join block, which is bad...

Symmetric Asymmetric

Asymmetry

● In asymmetrical parallel setting, we don't need to have a
joining point.

● Allows LLVM’s dominator
analysis to analyze Tapir
programs correctly without
any changes.

● Reuse most optimizations in
LLVM.

Analysis Pass

Constraints on transformations

● must preserve the program’s serial
semantics

● must not introduce any new behaviors

Alias analysis

k - load or store
i - detach
j - sync

1. k moves from before i to after i
2. k moves from after i to before i
3. k moves from before j to after j
4. k moves from after j to before j

Reattach is treated as a compiler fence

Analysis Pass

Dominator analysis

No modification required

Data-flow analysis

For variables stored in shared memory

For register variables

E_R is the set of reattach edges in E

Optimization Pass

Common-subexpression elimination

Loop-invariant code motion

Tail-recursion elimination

Parallel-loop scheduling and lowering

● No modification required
● Modification required
● New optimizations

Common-subexpression
elimination

Optimization Pass

Loop-invariant code motion

● Src(X) not modified in loop body
● X is the only op to modify dest(X)
● If X is a load or store, then there are no

writes to address(X) in loop
● ...
● If X not executed on every iteration, then

X must provably not cause exceptions

Problem:

Continue edge shortcuts all body instructions

Solution:

Analyzing the serial version of the loop

Optimization Pass

Tail-recursion elimination

Replace a recursive call at the end of a function
with a branch to the start of the function.

In the example: replace function call at line 54
with goto at line 88

Move sync to just before function return

Optimization Pass

Tail-recursion elimination

Why is it safe to move sync?

Figure b is one level inlining of Figure a

Redundant call to sync at line 71 and line 75

Optimization Pass

Parallel-loop scheduling and lowering

For a parallel loop with a large number of iterations

● schedule the iterations in a recursive divide-and-conquer fashion

For parallel loops with few iterations

● simply spawning off the iterations

Model Pipeline - Legend

Entity: Code status

Action: Code Trans.

3 Tapir Instr. →LLVM IR

Benchmarking

20 Benchmark programs in total

● From Intel/MIT/CMU Cilk code Sample

Run over AWS c4.8xlarge spot instance

Run 10 times and take the minimum (not average)

Data Evaluation

Speed up
Want this larger Different benchmarks

Data Evaluation

● Red part: Tapir behaves much better (normal case)
● Blue part: Tapir behaves even worse

○ Some additional llvm optimizations before
○ Fixed this issue in 2019

● The same pattern holds for 18 cores experiment

Discussion & Conclusion

Pros

● Ease of implementation (0.15 % code to modify)
● No extra efforts for developer
● Extensible (easy to add pass)

Cons

● No comparison with other implementations
● Can only be applied to static compilation (No JIT, dynamic)

Q & A

Model Pipeline

2 x O3 > 1 x O3

● Counter-intuitive, but true
● 13% faster for mtx. mult.
● Keep consistent

The second Lower Trans.

● Useless
● Keep consistent

Model Pipeline

Front End

Middle End

Back End

Review Pipeline

Additional optimization

● Happened before Lower
● Not useful for most cases

