
Tapir: Embedding Fork-Join Parallelism
into LLVM’s Intermediate Representation

Tao B. Schardl William S. Moses Charles E. Leiserson
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139

neboat@mit.edu wmoses@mit.edu cel@mit.edu

Abstract
This paper explores how fork-join parallelism, as supported
by concurrency platforms such as Cilk and OpenMP, can
be embedded into a compiler’s intermediate representa-
tion (IR). Mainstream compilers typically treat parallel lin-
guistic constructs as syntactic sugar for function calls into
a parallel runtime. These calls prevent the compiler from
performing optimizations across parallel control constructs.
Remedying this situation is generally thought to require an
extensive reworking of compiler analyses and code transfor-
mations to handle parallel semantics.

Tapir is a compiler IR that represents logically parallel
tasks asymmetrically in the program’s control flow graph.
Tapir allows the compiler to optimize across parallel con-
trol constructs with only minor changes to its existing anal-
yses and code transformations. To prototype Tapir in the
LLVM compiler, for example, we added or modified about
6000 lines of LLVM’s 4-million-line codebase. Tapir en-
ables LLVM’s existing compiler optimizations for serial
code — including loop-invariant-code motion, common-
subexpression elimination, and tail-recursion elimination —
to work with parallel control constructs such as spawning
and parallel loops. Tapir also supports parallel optimizations
such as loop scheduling.

Keywords Cilk; compiling; control-flow graph; fork-join
parallelism; LLVM; multicore; OpenMP; optimization; par-
allel computing; serial semantics; Tapir.

1. Introduction
Mainstream compilers, such as GCC [68], ICC [24], and
LLVM [32], now support fork-join parallelism [17, 18, 23,
40], where subroutines can be spawned in parallel and itera-

tions of a parallel loop can execute concurrently on modern
multicore machines. In particular, these compilers provide
support for the Cilk Plus [21] and OpenMP [5, 54] linguis-
tic extensions for fork-join parallelism.1 The execution of
a fork-join program generates a series-parallel dag [14] of
logically parallel tasks. The execution and synchronization
of parallel tasks is managed “under the covers” by a runtime
system, which typically implements a randomized work-
stealing scheduler [4, 8, 9, 16] to schedule and load-balance
the computation among parallel worker threads. Fork-join
programs provide serial semantics [16], and they admit ef-
ficient tools to detect “determinacy races” or validate their
absence [14, 15, 70].

But although these mainstream compilers support fork-
join parallelism, they fail to optimize parallel code as well
as they optimize serial code. Consider, for example, the
parallel cilk_for loop on lines 5–6 in Figure 1a, which
indicates that iterations of the loop are free to execute in
parallel. In a serial version of this loop, where the cilk_for
keyword is replaced by an ordinary for keyword, each of
the compilers GCC 5.3.0, ICC 16.0.3, and Cilk Plus/LLVM
3.9.0 observes that the call to norm on line 6 produces the
same value in every iteration of the loop, and they optimize
the loop by computing this value only once before the loop
executes. This optimization dramatically reduces the total
time to execute normalize from Θ(n2) to Θ(n). Although
this same optimization can, in principle, be performed on the
actual parallel loop in the figure, no mainstream compiler
performs this code-motion optimization. The same is true
when the parallel loop is written using OpenMP, as shown in
Figure 1b.

This failure to optimize stems from how these compilers
for serial languages implement parallel linguistic constructs.
The compiler for a serial language, such as C [28] or C++

[69], can be viewed as consisting of three phases: a front end,
a middle end, and a back end. The front end parses and type-
checks the input program and translates it to an intermediate

1 Unlike the other compilers, LLVM support for Cilk Plus is not in the main
branch, however, but in a separate Cilk Plus/LLVM branch [23].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PPoPP '17, February 04-08, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4493-7/17/02…$15.00
DOI: http://dx.doi.org/10.1145/3018743.3018758

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

249

a
01 __attribute__((const)) double norm(const double *A, int n);
02

03 void normalize(double *restrict out,
04 const double *restrict in, int n) {
05 cilk_for (int i = 0; i < n; ++i)
06 out[i] = in[i] / norm(in, n);
07 }

b
08 __attribute__((const)) double norm(const double *A, int n);
09

10 void normalize(double *restrict out,
11 const double *restrict in, int n) {
12 #pragma omp parallel for
13 for (int i = 0; i < n; ++i)
14 out[i] = in[i] / norm(in, n);
15 }

Figure 1. A function that GCC, ICC, and Cilk Plus/LLVM all
fail to optimize effectively. a A Cilk version of the code. The
cilk_for loop on lines 5–6 allows each iteration of the loop to
execute in parallel. The norm function computes the norm of a
vector in Θ(n) time. The call to norm on line 6 can be safely moved
outside of the loop, but none of these three mainstream compilers
perform this code motion, even though they all do so when the
cilk_for keyword is replaced with an ordinary for keyword.
b The corresponding OpenMP code.

representation (IR), which represents the control flow of the
program as a more-or-less language-independent control-
flow graph (CFG) [2, Sec. 8.4.3]. The middle end consists
of optimization passes that transform the IR into a more-
efficient form. These optimizations tend to be independent
of the instruction-set architecture of the target computer.
The back end translates the optimized IR into machine code,
performing low-level machine-dependent optimizations.

GCC, ICC, and Cilk Plus/LLVM all lower the parallel
constructs — transform the parallel constructs to a more-
primitive representation — in the front end. To compile the
code in Figure 1a, for example, the front-end translates the
parallel loop in lines 5–6 into IR in two steps. (The OpenMP
code in Figure 1b is handled similarly.) First, the loop body
(line 6) is lifted into a helper function. Next, the loop itself is
replaced with a call to a library function implemented by the
Cilk Plus runtime system, which takes as arguments the loop
bounds and helper function, and handles the spawning of the
loop iterations for parallel execution. Since this process oc-
curs in the front end, it renders the parallel loop unrecogniz-
able to middle-end loop-optimization passes, such as code
motion. In short, these compilers treat parallel constructs as
syntactic sugar for opaque runtime calls, which confounds
the many middle-end analyses and optimizations.

Previous approaches
This paper aims to enable middle-end optimizations involv-
ing fork-join control flow by embedding parallelism directly
into the compiler IR, an endeavor that has historically been
challenging [36, 38]. For example, it is well documented

[47] that traditional compiler transformations for serial pro-
grams can jeopardize the correctness of parallel programs.
In general, four types of approaches have been proposed to
embed parallelism in a mainstream compiler IR.

First, the compiler can use metadata to delineate logical
parallelism. LLVM’s parallel loop metadata [41], for exam-
ple, is attached to memory accesses in a loop to indicate
that they have no dependence on other iterations of the same
loop. LLVM can only conclude that a loop is parallel if all
its memory accesses are labeled with this metadata. Unfortu-
nately, encoding parallel loops in this way is fragile, since a
compiler transformation that moves code into a parallel loop
risks serializing the loop from LLVM’s perspective.

Second, the compiler can use intrinsic functions to de-
mark parallel tasks. (For examples, see [37, 55, 72].) Often,
either existing serial analyses and optimizations must be shut
down when code contains these intrinsics, or the intrinsics
offer minimal opportunities for compiler optimization.

Third, the compiler can use a separate IR to encode log-
ical parallelism in the program. The HPIR [7, 72], SPIRE
[29], and INSPIRE [27] representations, for instance, model
parallel constructs using an alternative IR, such as one based
on the program’s abstract syntax tree [2, Sec. 2.5.1]. Such an
IR can support optimizations involving parallel constructs
without requiring changes to existing middle-end optimiza-
tions. But adopting a separate IR into a mainstream compiler
has historically been criticized [39] as requiring considerable
effort to engineer, develop, and maintain the additional IR to
the same standards as the compiler’s existing serial IR.

Fourth, the compiler can augment its existing IR to en-
code logical parallelism, which is the approach that Tapir
follows. Unlike Tapir, all prior research on parallel prece-
dence graphs [66, 67], parallel flow graphs [19, 65], con-
current control-flow graphs [34, 53], and parallel program
graphs [59, 60] represent parallel tasks as symmetric enti-
ties in a CFG. For the parallel fib function in Figures 2a
and 2b, for example, the parallel flow graph in Figure 2c il-
lustrates how forked subcomputations might be represented
symmetrically. Some of these approaches struggle to rep-
resent common parallel constructs, such as parallel loops
[29, 34], while others exhibit problems when subjected
to standard compiler analyses and transformations for se-
rial programs [19, 31, 34, 58, 59, 66, 67]. Existing serial-
program analyses in LLVM, for example, assume that a ba-
sic block with multiple predecessors can observe the vari-
ables of only one predecessor at runtime. For the parallel
flow graph in Figure 2c, however, instructions in the join
block must observe the values of x and y from both of its pre-
decessors, as has been observed by [34]. Parallel loops exac-
erbate this problem by allowing a dynamic number of tasks
to join at the same basic block. Previous research [1, 58] has
proposed solutions to these problems, including additional
representations of the program and augmented analyses that
account for interleavings of parallel instructions, but adopt-

250

a c d
16 int fib(int n) {
17 if (n < 2) return n;
18 int x, y;
19 x = cilk_spawn fib(n - 1);
20 y = fib(n - 2);
21 cilk_sync;
22 return x + y;
23 }

b
24 int fib(int n) {
25 if (n < 2) return n;
26 int x, y;
27 #pragma omp task shared(x)
28 x = fib(n - 1);
29 #pragma omp task shared(y)
30 y = fib(n - 2);
31 #pragma omp taskwait
32 return x + y;
33 }

br (n < 2), exit, if.elseentry:

parbeginif.else:

x = fib(n-1)
br join

y = fib(n-2)
br join

parend
add = x+y
br exit

join:

rv = φ([n,entry],[add,join])
return rv

exit:

F

T

x = alloca i64
br (n < 2), exit, if.else

entry:

detach det, contif.else:

x0 = fib(n-1)
store x0, x
reattach cont

det:
y = fib(n-2)
sync
x1 = load x
add = x1 + y
br exit

cont:

rv = φ([n,entry],[add,cont])
return rv

exit:

F

T

detach continue

reattach

Figure 2. Comparison between a traditional CFG with symmetric parallelism and Tapir’s CFG with asymmetric parallelism. a The Cilk
function fib computes Fibonacci numbers. The cilk_spawn on line 19 allows the two recursive calls to fib to execute in parallel, and the
cilk_sync on line 21 waits for the spawned call to return. A serial execution of fib executes fib(n-1) before fib(n-2). b A comparable
implementation of fib using OpenMP task parallelism. c A CFG for fib that encodes parallelism symmetrically. Rectangles denote basic
blocks, which contain C-like pseudocode for fib. Edges denote control flow between basic blocks. The parbegin and parend statements
create and synchronize the parallel calls to fib. The br instruction encodes either an unconditional or a conditional branch. True and false
edges from a conditional branch are labeled T and F, respectively. The φ instruction, used to support a static-single-assignment (SSA) form
of the program (see Section 2), takes as its arguments pairs that associate a value with each predecessor basic block of the current block. At
runtime the φ instruction returns the value associated with the predecessor basic block that executed immediately before the current block.
d The Tapir CFG for fib, which encodes parallelism asymmetrically. The alloca instruction allocates shared-memory storage on the call
stack for a local variable. Section 2 defines the detach, reattach, and sync instructions and the detach, reattach, and continue edge types.

ing these techniques into a mainstream compiler seems to
require extensive changes to the existing codebase.

The Tapir approach
This paper introduces Tapir, a compiler IR that represents
logical fork-join parallelism asymmetrically in the pro-
gram’s CFG. The asymmetry corresponds to the assumption
of serial semantics [16], which means it is always semanti-
cally correct to execute parallel tasks in the same order as an
ordinary serial execution.

Tapir adds three instructions — detach, reattach, and
sync — to the IR of an ordinary serial compiler to express
fork-join parallel programs with serial semantics. Figure 2d
illustrates the Tapir CFG for the fib function. As with the
symmetric parallel flow graph in Figure 2c, Tapir places
the logically parallel recursive calls to fib in separate ba-
sic blocks. But these blocks do not join at a synchroniza-
tion point symmetrically. Instead, one block connects to the
other, reflecting the serial execution order of the program.

The Tapir approach provides five advantages:
1. Introducing fork-join parallelism into the compiler is rel-

atively easy.
2. The IR is expressive and can represent fork-join control

constructs from different parallel-language extensions.
3. Tapir parallel constructs harmonize with the invariants

associated with existing representations of serial code.

4. Standard serial optimizations work on parallel code with
few modifications.

5. The optimizations enabled by Tapir’s parallelism con-
structs are effective in practice.

We discuss each of these advantages in turn.

Ease of implementation
Tapir’s asymmetric representation of logically parallel tasks
makes it relatively simple to integrate Tapir into an exist-
ing compiler’s intermediate representation such as LLVM
IR [41]. Figure 3 documents the lines of code added, modi-
fied, or deleted to implement a prototype of Tapir in LLVM.
As Figure 3 shows, Tapir/LLVM was implemented with
about 6000 lines, compared to LLVM’s roughly 4-million-
line codebase. Moreover, fewer than 2000 lines of code were
needed to adapt LLVM’s existing compiler analyses and
transformations to accommodate Tapir.

The breakdown of lines is as follows. The lines for “In-
structions” add Tapir’s instructions to LLVM IR and adapt
LLVM’s routines for reading and writing LLVM IR and bit-
code files. Conceptually, these changes allow LLVM to cor-
rectly compile a Tapir program to a serial executable with
no optimizations. The lines for “Memory Behavior” con-
trol how Tapir instructions may interact with memory oper-
ations, preventing the compiler from creating any races. The
lines for “Optimizations” perform any adjustments required

251

Compiler Component LLVM 4.0svn Tapir/LLVM

Instructions 105,995 943
1,768Memory Behavior 21,788 445

Optimizations 152,229 380
Parallelism Lowering 0 3,782
Other 3,803,831 460

Total 4,083,843 6,010

Figure 3. Breakdown of the lines of code added, modified, or
deleted in LLVM to implement the Tapir/LLVM prototype.
for LLVM analyses and transformations to compile a Tapir
program at optimization level -O3. Most of these modifica-
tions are not necessary for creating a correct executable but
are added to allow the compiler to perform additional op-
timizations, such as parallel tail-recursion elimination (de-
scribed in Section 4). The lines for “Parallelism Lowering”
translate Tapir instructions into Cilk Plus runtime calls and
allow the code to be race-detected with a provably good race
detector [14]. The lines for “Other” address a bug in LLVM’s
implementation of setjmp and implement useful features for
our development environment.

Expressiveness of Tapir
Tapir can express logical fork-join parallelism in parallel
programs that have serial semantics. For example, Figure 2
illustrates how Tapir can express the parallelism encoded
by the cilk_spawn and cilk_sync linguistics from Cilk++

[35] and Cilk Plus [21], as well as the parallelism encoded
by OpenMP task and taskwait clauses [5]. Similarly, Tapir
can express the parallelism encoded by OpenMP paral-
lel sections [54] and Habanero’s async and finish con-
structs [11]. Tapir can also express parallel loops, including
cilk_for loops and OpenMP parallel loops that have serial
semantics (described in Section 2). Other parallel constructs
can be represented as well, although parallel operations that
cannot be expressed in terms of fork-join parallelism, such
as OpenMP’s ordered clause, cannot be represented directly
using Tapir’s detach, reattach, and sync instructions.

Tapir makes minimal assumptions about the consistency
[10, 56] of concurrent memory accesses. Tapir assumes that
memory is shared among parallel tasks and that virtual-
register state is local to each task. Parallel instructions in
Tapir can exhibit a determinacy race2 [14] if they access
the same memory location concurrently and at least one in-
struction writes to that location. Tapir itself does not fully
define the possible outcomes of a determinacy race, and
instead defers to existing compiler mechanisms, such as
LLVM’s atomic memory-ordering constraints [41], to define
whichever memory model they choose. For any targeted run-
time system, Tapir relies on a correct implementation of low-
ering in order to implement the necessary synchronization,
but Tapir is oblivious to how that runtime system implements
the synchronization.

2 Determinacy races are also called general races [50] and are distinct from
data races, which involve nonatomic accesses to critical regions.

Serial semantics
By grounding its model of parallelism in serial semantics,
Tapir enables common compiler optimizations for serial
code to work on parallel code. Intuitively, because Tapir al-
ways allows parallel tasks to execute in their ordinary serial
execution order, the compiler can to optimize parallel code
in any manner that preserves the serial semantics of the pro-
gram and does not introduce new determinacy races. These
mild constraints support common optimizations on parallel
code, such as sequentialization, which can be invalid under
models of parallelism without serial semantics [71].
Optimizations
In practice, we have found that Tapir enables a wide vari-
ety of standard compiler optimizations to work with parallel
code. The prototype implementation of Tapir/LLVM, for ex-
ample, successfully moves the call to norm in Figure 1 out-
side of the loop, just as it would for a serial for loop. As Sec-
tion 4 discusses, Tapir enables other optimizations, including
common-subexpression elimination [48, Sec. 12.2], loop-
invariant-code motion [48, Sec. 13.2], and tail-recursion
elimination [48, Sec. 15.1], to work on parallel code. Tapir
also enables new optimizations on parallel control flow.
Evaluation of Tapir/LLVM
The compiler optimizations that Tapir enables are effective
in practice. We evaluated the Tapir approach by measuring
the performance of 20 Cilk application benchmarks com-
piled using Tapir/LLVM. We compared the performance of
these executables to those produced by a comparable ref-
erence compiler, called Reference. Conceptually, Reference
lowers parallel linguistic constructs directly into runtime
calls, as mainstream compilers do today, but otherwise per-
forms the same set of optimization passes as Tapir/LLVM.
Section 6 describes our experimental setup in detail, includ-
ing the design of Reference.

Figure 4 presents the results of comparing Tapir/LLVM
and Reference in terms of the “work efficiency” of the com-
piled benchmarks. To perform this comparison, we compiled
each benchmark using each compiler and then ran the exe-
cutable on a single processing core of a multicore machine
to measure its work, the 1-core running time, denoted T1. We
also used each compiler to compile, run, and measure the 1-
core running time of the serial elision [16] of each bench-
mark, denoted TS , in which the benchmark is converted
into a corresponding serial program by replacing all paral-
lel linguistic constructs with their serial equivalents. We then
computed the work efficiency of each compiled benchmark,
which is the ratio TS /T1 of the running time TS of the bench-
mark’s serial elision divided by the work T! of the bench-
mark. In theory, the maximum possible work efficiency is
TS /T1 = 1, but in practice, quirky behaviors of the com-
piler and multicore architecture can occasionally produce
work efficiencies greater than 1. As Figure 4 shows, for most
benchmarks, the executables compiled using Tapir/LLVM
achieve equal or higher work efficiency than those compiled

252

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TS
T1

Figure 4. Comparison of the work efficiency of 20 parallel application benchmarks compiled using Tapir/LLVM (X’s) and the comparable
Reference compiler (O’s), described in Section 6, which lowers parallelism in the compiler front end. Each point plots the work efficiency
TS /T1 of a compiled benchmark, where T1 is the work of the benchmark and Ts is the running time of the serial elision of the benchmark.
Higher values indicate better work efficiency. The horizontal line at 1.0 plots the theoretically maximum work efficiency TS /T1 = 1.
Benchmarks are sorted by decreasing difference in work efficiency between Tapir/LLVM- and Reference-compiled executables. Benchmarks
marked with an “L” use parallel loops, and benchmarks marked with an “S” use cilk_spawn.

using Reference. Moreover, for many benchmarks, and par-
ticularly those implemented using parallel loops, Tapir/L-
LVM produces executables that achieve nearly optimal work
efficiency. Section 6 elaborates on these experiments.

Contributions
This paper makes the following research contributions:
• The design of a compiler IR that represents fork-join

parallelism asymmetrically, which enables existing serial
optimizations to operate on parallel code and which also
enables parallel optimizations.
• The implementation of Tapir/LLVM in the LLVM com-

piler by modifying about 6000 source lines of code
(0.15% of the 4-million-line LLVM codebase).
• The implementation of parallel optimizations such as un-

necessary synchronization elimination and parallel-loop
scheduling.
• Experiments that demonstrate the advantage of embed-

ding fork-join parallelism into a compiler’s IR, as op-
posed to dealing with parallelism only in the compiler’s
front end.

Outline
The remainder of this paper is organized as follows. Sec-
tion 2 describes Tapir’s representation and properties. Sec-
tion 3 discusses how analysis passes can be adapted to op-
erate on Tapir programs. Section 4 describes various opti-
mizations on parallel control flow that Tapir enables. Sec-
tion 5 describes auxiliary software we developed to exercise
and test Tapir/LLVM. Section 6 discusses our evaluation of
the effectiveness of Tapir. Section 7 discusses related work.
Section 8 provides some concluding remarks. An appendix
describes how to set up Tapir/LLVM and how to download
and run our suite of application benchmarks.

2. Tapir
This section describes how Tapir represents logically par-
allel tasks asymmetrically in the CFG of a program. We
define Tapir’s three new instructions and how they inter-
act with LLVM’s static single-assignment (SSA) form [2,
Sec. 6.2.4]. Although we describe Tapir as an extension to
LLVM IR [41], we see no reason why other compilers can-
not gain similar advantages from Tapir-like instructions.

Like LLVM IR, Tapir treats a program function as a CFG
G = (V, E, v0), where

• the set V of vertices represents the function’s basic
blocks: sequences of LLVM instructions, where control
flow can only enter through the first instruction and leave
from the last instruction;
• the set E of edges denote control flow between (basic)

blocks; and
• the designated vertex v0 ∈ V represents the entry point of

the function.

Tapir instructions
Tapir extends LLVM IR with three instructions: detach,
reattach, and sync. The detach and reattach instruc-
tions together delineate logically parallel tasks, and the sync
instruction imposes synchronization on parallel tasks. The
three instructions have the following syntax, where b, c ∈ V:

detach label b, label c
reattach label c
sync

The label keywords indicate that b and c are (labels of)
basic blocks in V .

The detach and reattach instructions together delineate
a parallel task as follows. A detach instruction terminates

253

the block a that contains it and takes a detached block b
and a continuation block c as its arguments. The detach
instruction spawns the task starting at block b, allowing that
task to execute in parallel with block c. The control-flow
edge (a, b) ∈ E is a detach edge, and the edge (a, c) ∈ E
is a continue edge. A reattach instruction, meanwhile,
terminates the block a′ that contains it and takes a single
continuation block c as its argument, inducing a reattach
edge (a′, c) ∈ E in the CFG. The reattach terminates the
task spawned by a preceding detach instruction with the
same continuation block. Together, a detach instruction and
associated reattach instructions demark the start and end
of a parallel task and indicate that that task can execute in
parallel with their common continuation block.

For the example in Figure 2d, the detach in the if.else
block and the reattach in the det block share the same
continuation block cont. Together, this detach and this
reattach indicate that the det block is a parallel task which
can execute in parallel with the cont block. In general, a par-
allel task delineated by detach and reattach can consist of
many basic blocks in a single-entry subgraph.

The detach and reattach instructions in a CFG obey
several structural properties. We say a reattach instruction
j reattaches a detach instruction i if i and j share a common
continuation block and there is a path from the detached
block of i to j. Tapir assumes that every CFG G = (V, E, v0)
obeys the following invariants on every detach instruction i
and reattach instruction j in G:

1. A reattach instruction reattaches exactly one detach
instruction.

2. If j reattaches i, then every path from v0 to the block
terminated by j passes through the detach edge of i, that
is, the detach edge of i dominates j.

3. Every path starting from the detached block of i must
reach a block terminated by a reattach instruction that
reattaches i.

4. If j reattaches i and a path from i to j passes through
the detach edge of another detach instruction i′, then
it must also pass through a reattach instruction j′ that
reattaches i′.

5. Every cycle containing a detach instruction i must pass
through a reattach instruction that reattaches i.

6. The continuation block of j cannot contain any φ instruc-
tions [2, Sec 6.2.4].

These invariants imply that, at runtime, a detach instruction
i with detached block b and continuation block c spawns the
execution of a detached sub-CFG, which is the single entry
sub-CFG starting at b induced by all blocks on paths from b
to a reattach instruction that reattaches i.

The dynamic execution of the program organizes memory
as a tree of parallel contexts. A new parallel context is
created as a child of the current context when control enters
a function or follows a detach edge. When control executes
a reattach instruction or leaves a function, the context

is destroyed and the parent’s context becomes the current
context. An alloca instruction allocates shared memory in
the current context.

The sync instruction synchronizes tasks spawned within
its parallel context. At runtime, a sync instruction dynam-
ically waits for the set of sub-CFG’s detached in the same
parallel context or any of its descendant parallel contexts to
reach a reattach instruction. In the Tapir CFG illustrated
in Figure 2d, for example, the sync instruction in the cont
block simply waits for the execution of the det block to com-
plete. Unlike reattach instructions, sync instructions are
not explicitly associated with detach instructions, and they,
in fact, can be executed within conditionals. A sync instruc-
tion j syncs a detach instruction i if i and j belong to the
same parallel context and the CFG detached by i cannot be
guaranteed to have completed when j executes.
Static single-assignment form
LLVM’s static single-assignment (SSA) form [2, Sec. 6.2.4]
must be adapted for Tapir programs. SSA form ensures that
each virtual register is set at most once in a function. LLVM
IR employs the φ instruction [2, Sec 6.2.4] to combine def-
initions of a variable from different predecessors of a basic
block. In adapting SSA to Tapir, one concern is that a φ in-
struction might allow registers defined in the detached sub-
CFG to be used in the continuation. A basic block contain-
ing a φ instruction must avoid inheriting register definitions
from predecessors that are connected by reattach edges. Oth-
erwise, a register in the detached sub-CFG might not have
been computed by the time the continuation executes.

We implemented this constraint by simply forbidding
reattach edges from going into basic blocks with φ instruc-
tions. But what if the continuation c of a detach instruction
begins with a φ instruction? In this case, we create a new
basic block c′ containing only a branch instruction to c. We
reroute the reattach and continuation edges originally going
to c so that they go instead to c′. All other edges going to c
are left in place.

The reason this solution works is as follows. No reattach
edges in the resulting CFG go to blocks containing φ in-
structions. Because a detached sub-CFG does not dominate
any outside block, registers in the detached CFG can only
be used in φ instructions of the immediate successors of the
detached sub-CFG. Since the continuation is the only imme-
diate successor of the detached sub-CFG and it contains no
φ instructions, no registers from the detached sub-CFG may
be accessed in the continuation.
Asymmetry in Tapir
The detach and reattach instructions express parallel tasks
asymmetrically both syntactically in the structure of the
CFG and semantically in the way memory state is managed.
Both asymmetries are illustrated in Figure 2d.

First, the CFG detached by a detach instruction is con-
nected by a reattach edge to the continuation block of that
instruction, even though they can execute in parallel. For ex-

254

ample, the reattach edge between det and cont in Figure 2d
breaks the symmetry between them. Reattach edges reflect
the serial semantics of a Tapir program, which dictates that a
serial execution of the program executes the detached CFG
to completion before starting to execute the continuation
block. In fact, the parallel task delineated by a detach and
a reattach instruction can be serialized by replacing the
detach instruction with an unconditional branch to its de-
tached block and replacing the reattach with an uncondi-
tional branch to its continuation block. In contrast, parallel
flow graphs and similar previously explored representations
join logically parallel tasks in the CFG at a synchronization
point. By supporting separate reattach and sync instruc-
tions, Tapir decouples the termination of a parallel task from
its synchronization.

Second, although memory state is shared among all par-
allel tasks in Tapir, a virtual register defined in a detached
sub-CFG is not accessible in its parent parallel context. For
example, the continuation block cont in Figure 2d cannot
assume that the register value x0 returned by fib(n-1) in
block det is accessible, because the two basic blocks belong
to different parallel contexts. Thus, cont must load it again
after the sync instruction.

Parallel loops in Tapir
Figure 5 illustrates Tapir’s default representation of the par-
allel loops from Figure 1. As Figure 5 shows, Tapir can
represent a parallel loop in the CFG as an ordinary loop,
where the head block repeatedly spawns the body block,
and the exit block syncs the detached CFG’s. Section 4 de-
scribes how this representation of parallel loops allows ex-
isting compiler loop optimizations to operate on Tapir par-
allel loops with only minor modifications. Although this
loop structure can exhibit poor parallel performance when
the loop body is small, separate optimization passes in
Tapir/LLVM (see Section 4) transform this parallel-loop
representation into a divide-and-conquer form that exhibits
good performance.

3. Analysis passes
This section describes how LLVM’s analysis passes can
be adapted to operate on Tapir programs. We first discuss
constraints on how Tapir programs can be safely trans-
formed. Implementing these contraints on LLVM optimiza-
tion passes primarily involves adapting standard compiler
analyses — specifically alias analysis [2, Ch. 12], domina-
tor analysis [2, Ch. 9], and data-flow analysis [2, Ch. 9] —
to accomodate Tapir’s instructions. We describe how each of
these analyses was minimally modified to support Tapir.

Constraints on transformations
To be correct, a code transformation on a Tapir program must
preserve the program’s serial semantics, and it must not in-
troduce any new behaviors into the program’s set of behav-
iors. A program can exhibit more than one behavior if it con-
tains a determinacy race. In general, the result of a determi-

br (0 < n), head, exitentry:

i0 = φ([0,entry],[i1,inc])
detach body, inc

head:

norm0 = norm(in,n)
out[i0] = in[i0] / norm0
reattach inc

body:

i1 = i0 + 1
br (i1 < n), head, exit

inc:

sync
returnexit:

T

detach

continue

reattach

T

F

F

Figure 5. Tapir CFG for the parallel loops in Figure 1, using a
format similar to the CFG’s in Figure 2.

nacy race can vary nondeterministically from run to run de-
pending on the order in which the participating instructions
access the memory location. To avoid introducing new be-
haviors, code transformations must not create determinacy
races, although they can eliminate determinacy races. Many
existing serial optimizations can be adapted to respect these
properties by adapting the standard compiler analyses they
rely on. We now describe how LLVM’s alias, dominator, and
data-flow analyses were adapted for Tapir.

Alias analysis
LLVM uses alias analysis [2, Ch. 12] to determine whether
different instructions might reference the same locations in
memory, and in particular, to restrict the reordering of in-
structions that access the same memory. Tapir/LLVM mod-
ifies LLVM’s alias analysis to prevent optimizations that
move code around from introducing determinacy races. In
particular, Tapir adapts LLVM’s alias analysis to treat the in-
structions as if they access memory. For example, consider
an instruction k that performs a load or a store. There are four
cases to consider when moving k around either a detach in-
struction i or a sync instruction j:
1. The instruction k moves from before i to after i.
2. The instruction k moves from after i to before i.
3. The instruction k moves from before j to after j.
4. The instruction k moves from after j to before j.
Neither Case 2 nor Case 3 can introduce a determinacy
race, because both motions serialize the execution of k with
respect to the sub-CFG detached by i. Cases 1 and 4 might
introduce a determinacy race, however, if k loads or stores a
memory location that is also accessed by the CFG detached
by i. To handle Case 1, i is treated as if it were a function
call that accesses all memory locations accessed in the CFG
detached by i. Similarly, for Case 4, j is treated as if it were
a function call that accesses all memory locations accessed
by all instructions that j might sync. A reattach instruction
is treated as a compiler fence that prevents instructions from

255

moving across it. With these modifications, existing rules in
LLVM that restrict reordering of loads and stores properly
restrict memory reordering around Tapir’s instructions.
Dominator analysis
Optimization passes determine what values are available to
an instruction in part by using dominator analysis [2, Ch. 9],
which deduces the dominance relation between all basic
blocks and edges in a CFG. To handle Tapir programs cor-
rectly, optimization passes must not mistakenly cause in-
structions to use virtual registers that are defined in logically
parallel tasks. If instruction i dominates instruction j, than
an optimization pass might assume that the value produced
by i is always available when j executes.

The asymmetry of Tapir’s representation allows LLVM’s
dominator analysis to analyze Tapir programs correctly
without any changes. Ignoring the names of edges, the dif-
ference between the CFG G = (V, E, v0) of a Tapir program
and the CFG G′ = (V, E′, v0) of its serial elision is the set
E − E′ of continue edges, each of which connects a detach
instruction to its continuation. A continue edge short-cuts a
detached sub-CFG, changing the continuation’s immediate
dominator from the detached sub-CFG to the block contain-
ing the detach instruction itself. This configuration of de-
tach, reattach, and continue edges looks much like an ordi-
nary if construct in which the detached sub-CFG is condi-
tionally executed. As a result, dominator analysis never con-
cludes that an instruction in a detached sub-CFG can execute
before the corresponding continuation block.
Data-flow analysis
A wide class of code transformations, including those that
might move instructions across a reattach edge, rely on data-
flow analysis [2, Ch. 9] to examine the propagation of values
along different paths through a CFG G = (V, E, v0). Funda-
mental to data-flow analysis is an understanding of the set
of possible program states at the beginning and end of each
basic block b ∈ V , denoted in(b) and out(b), respectively.

To illustrate how LLVM’s data-flow analyses were
adapted to Tapir, let us examine the particular case of for-
ward data-flow analysis. (Backward data-flow analysis is
similar.) In an ordinary serial CFG, forward data-flow anal-
ysis evaluates in(b) as the union of out(a) for each predeces-
sor block a of b:

in(b) =
⋃

(a,b)∈E

out(a) .

To handle Tapir CFG’s, data-flow analyses must be
adapted specifically to handle reattach edges. Because
Tapir’s asymmetric representation propagates virtual regis-
ters and memory state differently across a reattach edge, the
modifications to LLVM data analyses consider registers and
memory separately.

For variables stored in shared memory, the standard data-
flow equations remain unchanged. Thus, LLVM need not be
modified to handle them for Tapir.

a
34 void search(int low, int high) {
35 if (low == high) search_base(low);
36 else {
37 cilk_spawn search(low, (low+high)/2);
38 search((low+high)/2 + 1, high);
39 cilk_sync;
40 } }

b
41 void search(int low, int high) {
42 if (low == high) search_base(low);
43 else {
44 int mid = (low+high)/2;
45 cilk_spawn search(low, mid);
46 search(mid + 1, high);
47 cilk_sync;
48 } }

Figure 6. Example of common-subexpression elimination on a
Cilk program. a The function search, which uses parallel divide-
and-conquer to apply the function search_base to every integer
in the closed interval [low, high]. b An optimized version of
search, where the common subexpression (low+high)/2 in lines
37 and 38 of the original version is computed only once and stored
in the variable mid in line 44 of the optimized version.

For register variables, however, LLVM’s data-flow analy-
ses must be modified to exclude the values in registers from
an immediate predecessor a of a basic block b if the edge
(a, b) ∈ E is a reattach edge. Denote the set of reattach edges
in E by ER. For a Tapir CFG, forward data-flow analyses
define in(b) for register variables as

in(b) =
⋃

(a,b)∈E−ER

out(a) ,

that is, they ignore predecessors across a reattach edge. With
this change, Tapir/LLVM correctly propagates register vari-
ables through the CFG, never allowing register values in a
basic block to use register values set in a logically parallel
detached sub-CFG.

4. Optimization passes
Tapir enables LLVM’s existing optimization passes [42] to
work across parallel control flow. It also enables new op-
timization passes that specifically target Tapir’s fork-join
parallel constructs. This section discusses four representa-
tive optimizations. Common-subexpression elimination [48,
Sec. 12.2] illustrates an optimization pass that “just works”
with the additional Tapir instructions. Loop-invariant code
motion [48, Sec. 13.2], and tail-recursion elimination [48,
Sec. 15.1] were the only two out of LLVM’s roughly 80 op-
timization passes that required any modification to work ef-
fectively on parallel code. Parallel-loop scheduling serves as
an example of a new optimization pass.

Common-subexpression elimination
The common-subexpression elimination (CSE) optimization
identifies redundant calculations and transforms the code so

256

that they are only computed once. For example, the expres-
sion (low+high)/2 in Figure 6a is computed in both line 37
and line 38. Tapir/LLVM performs CSE on this code, pro-
ducing code equivalent to that in Figure 6b. Existing main-
stream compilers that support fork-join parallelism do not
eliminate this common subexpression, however, and they
compute (low+high)/2 twice. Tapir/LLVM can perform
CSE across either a continue edge, as in the example, or a
detach edge. Like the vast majority of optimization passes in
Tapir/LLVM, CSE “just works” on Tapir code without any
modifications to LLVM’s CSE pass.
Loop-invariant code motion
The loop-invariant code motion (LICM) optimization [48,
Sec. 13.2] aims to move computations out of loop bodies if
they compute the same value on every iteration of the loop.
LICM is responsible, for example, for moving the call to
norm in the parallel loop in Figure 1a outside of the loop, as
described in Section 1. By adapting LICM to handle parallel
loops, Tapir/LLVM reduces the asymptotic serial running
time of this parallel loop from Θ(n2) to Θ(n).

Tapir/LLVM requires a minor change to LLVM’s LICM
pass to handle parallel loops. Consider the CFG illustrated in
Figure 5, which models the parallel loops in Figure 1. For the
serial elision of the loop, which would have a similar graph
structure except with the continue edge missing, LLVM at-
tempts to find candidate computations to move outside the
loop by looking for instructions in the basic blocks of the
loop body that dominate the exit block of the loop, such as
the block inc in Figure 5. (The block labeled exit is the exit
of the function, not the loop exit.) For a parallel loop, how-
ever, this analysis fails to identify any code to move due to
the existence of the continue edge. As Figure 5 shows, with
the continue edge, blocks in the loop body can never domi-
nate the exit block inc as they could for the serial elision.

Tapir/LLVM modifies LLVM’s LICM pass to handle a
parallel loop by analyzing the serial elision of the loop,
which essentially means ignoring continue edges. For sim-
ple parallel loop structures with a single continue edge, such
as that shown in Figure 5, this modification is implemented
by finding blocks in the loop body that dominate the prede-
cessors of the loop exit. The modification required changing
only 25 lines of LLVM’s LICM pass.
Tail-recursion elimination
Tail-recursion elimination (TRE) [48, Sec. 15.1] aims to
replace a recursive call at the end of a function with a branch
to the start of the function. By eliminating these recursive tail
calls, TRE can avoid function-call overheads and reduce the
stack space they consume. This optimization can especially
benefit fork-join parallel programs, as many parallel runtime
systems impose additional setup and cleanup overhead on a
spawned function.

LLVM’s existing TRE pass can perform the TRE opti-
mization on Tapir programs with just a minor modification.
Specifically, the modified TRE pass ignores sync instruc-

a
49 void pqsort(int* start, int* end) {
50 if (begin == end) return;
51 int* mid = partition(start, end);
52 swap(end, mid);
53 cilk_spawn pqsort(begin, mid);
54 pqsort(mid+1, end);
55 cilk_sync;
56 return;
57 }

b
58 void pqsort(int* start, int* end) {
59 if (begin == end) return;
60 int* mid = partition(start, end);
61 swap(end, mid);
62 cilk_spawn pqsort(begin, mid);
63

64 start = mid+1;
65 // Begin inlined code
66 if (begin == end) goto join;
67 mid = partition(start, end);
68 swap(end, mid);
69 cilk_spawn pqsort(begin, mid);
70 pqsort(mid+1, end);
71 cilk_sync;
72 // End inlined code
73

74 join:
75 cilk_sync;
76 return;
77 }

c
78 void pqsort(int* start, int* end) {
79 pqsort_start:
80 if (begin == end) {
81 cilk_sync;
82 return;
83 }
84 int* mid = partition(start, end);
85 swap(end, mid);
86 cilk_spawn pqsort(begin, mid);
87 start = mid+1;
88 goto pqsort_start;
89 }

Figure 7. Example of tail-recursion elimination on a parallel
quicksort program. a The Cilk function pqsort sorts an array of
integers in the range specified by the start and end pointers. b A
version of pqsort where the recursive tail call on line 54 has been
replaced by one round of inlining. c A version pqsort where tail-
recursion elimination has removed the recursive tail call on line 54.

tions after the tail-recursive call. Further, if TRE is applied
and ignores a sync instruction, it must then insert a sync in-
struction before any remaining returns. This modification to
LLVM’s TRE pass required changing only 68 lines.

To see why these sync instructions can be safely ignored,
consider Figure 7, which illustrates how Tapir/LLVM’s TRE
pass operates on the pqsort function, a parallel version of
Hoare’s quicksort algorithm [20]. The original tail-recursive
code is shown in Figure 7a. Figure 7b illustrates the result of
simply inlining the tail-recursive call. For the inlined code,
all return statements are replaced with branches to the join

257

label. Because there is a cilk_sync at the start of join, the
cilk_sync on line 71 can be eliminated. call an arbitrary
number of times, TRE can safely ignore a cilk_sync in-
struction after the final tail-recursive call, assuming that it
inserts a cilk_sync instruction before all remaining returns.

Parallel-loop scheduling and lowering
As discussed above and in Section 2, Tapir effectively rep-
resents a parallel loop as a serial loop over a body that is
spawned every iteration. Depending on the number of itera-
tions of the loop and the amount of work inside each loop,
however, statically scheduling loop iterations in this way
may be inefficient. For a parallel loop with a large number
of iterations, for instance, it is faster to schedule the itera-
tions in a recursive divide-and-conquer fashion, which pro-
duces more parallelism (see [46, Sec. 8.3]. For parallel loops
with few iterations, however, the additional function calls re-
quired to perform the parallel divide-and-conquer can make
the loop run slower than simply spawning off the iterations.

Tapir/LLVM implements a parallel optimization pass that
schedules the iterations of a parallel loop using recursive
divide-and-conquer, but only if that loop contains suffi-
ciently many iterations. This pass is implemented as part
of Tapir/LLVM’s 3800-line lowering pass, which translates
detach, reattach, and sync instructions into appropriate
Cilk Plus runtime calls [22]. In particular, Tapir/LLVM uses
the Cilk Plus runtime calls for cilk_for loops [22, Sec 10.7]
to schedule parallel loops. Although we could have sepa-
rated parallel-loop scheduling from lowering, we chose to
combine these two passes so that we could perform fair com-
parisons between Tapir/LLVM and compilers that lower par-
allel constructs in their front end. We plan to separate the
parallel-loop-scheduling and lowering passes in a future ver-
sion of Tapir/LLVM.

Other optimization passes
Tapir/LLVM implements two minor parallel optimization
passes: unnecessary-synchronization elimination and puny-
task elimination. Unnecessary-synchronization elimination
identifies and eliminates sync instructions that could not
possibly sync a detached sub-CFG. Puny-task elimination
serializes detached sub-CFG’s that perform little or no work.
If the runtime overhead of creating a parallel task outweighs
the work in the task, the task might as well be run serially.
Both of these optimization passes were implemented in 52
lines of code by augmenting LLVM’s SimplifyCFG pass.

5. Auxiliary software
This section describes auxiliary software that we developed
to exercise and test Tapir/LLVM. Although our research
focuses on the middle end of the compiler, we implemented
a front end for Cilk Plus. In addition, we developed compiler
instrumentation that allows the compiler to interface to a
race detector to verify the correctness of the Tapir/LLVM
implementation.

To create the front end, we created a modification of the
Clang front end called PClang, which translates Cilk Plus
codes to Tapir. We also created a version of Clang that
can handle some OpenMP codes. PClang handles most of
the fork-join control constructs specified by the Cilk Plus
programming model, and specifically, enough to run all the
benchmarks described in Section 6.

We augmented Tapir/LLVM in two ways to test the cor-
rectness of the implementation. First, we modified LLVM’s
internal verification pass to check that Tapir’s invariants are
also maintained. Second, we added an instrumentation pass
to Tapir/LLVM to allow parallel executables to be tested for
determinacy races using a provably good determinacy race
detector. This race detector, based on the SP-bags algorithm
[14], is guaranteed to find a determinacy race if an only if
one exists in the program execution. The verification pass
and race detector helped us locate and fix bugs in Tapir/L-
LVM, both within our code and within the underlying LLVM
codebase. Tapir/LLVM now passes all tests in LLVM’s re-
gression test suites and correctly compiles our own suite of
parallel test programs.

The instrumentation pass has proved useful for support-
ing other dynamic-analysis tools based on Tapir/LLVM.
Genghis Chau of MIT adapted the Cilkprof scalability pro-
filer [61] to use Tapir/LLVM and this instrumentation in or-
der to build an integrated development environment with
always-on race detection and scalability profiling facilities.

6. Evaluation
To evaluate the effectiveness of the Tapir approach, we eval-
uated Tapir/LLVM on 20 benchmarks. The experiments sup-
port the contention that Tapir’s approach of embedding par-
allelism in the IR is superior to lowering parallelism in
the compiler front end. We could not simply run Tapir/L-
LVM against another compiler, such as Cilk Plus/LLVM
[23], which lowers parallelism in the front end, because
Cilk Plus/LLVM and Tapir/LLVM differ in more ways than
just where they lower parallel constructs. Consequently, to
perform an apples-to-apples comparison of these two ap-
proaches, we implemented a compiler called “Reference,”
which is as close to identical to Tapir/LLVM as we could
muster, except for where lowering occurs. Figure 8 illus-
trates the compilation pipelines for Clang/LLVM, Tapir/L-
LVM, and Reference.

The first pipeline, Clang/LLVM, has the traditional three-
phase structure. The Clang front-end takes serial C/C++

code and emits LLVM IR. The -O3 middle-end optimizes the
IR, and the CodeGen back-end lowers LLVM IR to machine
code for a particular hardware platform.

The second pipeline shows how Tapir/LLVM is orga-
nized. The PClang front end takes parallel Cilk Plus code
as input and emits Tapir. The middle-end now consists of
three steps: -O3 optimization, a Lower pass to lower Tapir
to LLVM IR, and another pass at -O3 optimization. The first
-O3 pass performs optimizations on the Tapir representation,

258

Parallel
Code

Tapir/LLVM

PClang PClang

Parallel
Code

Reference

Tapir

Lower

LLVM

-O3

LLVM

Lower

LLVM

-O3

LLVM

CodeGen

EXE

-O3

Tapir

Tapir

Lower

LLVM

-O3

LLVM

CodeGen

EXE

Clang

Serial
Code

Clang/LLVM

-O3

LLVM

LLVM

CodeGen

EXE

Figure 8. The compilation pipelines for Clang/LLVM, Tapir/L-
LVM, and Reference. Each block represents a compiler transforma-
tion, and each oval designates the format of the code at that point
in the pipeline.

the lowering pass translates all the Tapir-specific constructs
to LLVM IR, and the second -O3 pass performs optimiza-
tions on the LLVM IR. Finally, the CodeGen back end low-
ers LLVM IR to machine code.

The third pipeline, called Reference, models how main-
stream compilers work today, where parallel constructs are
transformed into runtime calls before any optimization can
take place. The only difference between Reference and
Tapir/LLVM is that the Tapir code emitted by the PClang
front end is immediately lowered to LLVM IR before the
rest of the Tapir pipeline is invoked. (The second Lower
pass in the Reference pipeline therefore has no effect.) Al-
though Reference lowers the parallel constructs early, two
iterations of -O3 are included to ensure that the Tapir/L-
LVM gains no advantage from optimizing twice. Although
one might think that a second pass of -O3 would be redun-
dant, it is not. For example, a simple matrix-multiplication
code runs 13% faster after two rounds of optimization com-
pared to just one. And although most benchmarks run faster
after two -O3 passes, some actually run slower. Thus, we im-
plemented Reference with the same passes as Tapir/LLVM,
except for the initial Lower pass in Reference. This differ-
ence only affects parallel code. Serial code passes through
both pipelines identically.

Suite Benchmark Description

Cilk Cholesky Cholesky decomposition
FFT Fast Fourier transform

NQueens n-Queens solver
QSort Hoare quicksort

RectMul Rectangular matrix multiplication
Strassen Strassen matrix multiplication

Intel AvgFilter Averaging filter on an image
Mandel Mandelbrot set computation

PBBS CHull Convex hull
detBFS BFS, deterministic algorithm
incMIS MIS, incremental algorithm

incST Spanning tree, incremental algorithm
kdTree Performance test of a parallel k-d tree
ndBFS BFS, nondeterministic algorithm
ndMIS MIS, nondeterministic algorithm

ndST Spanning tree, nondeterministic algorithm
parallelSF Spanning-forest computation

pRange Compute ranges on a parallel suffix array
radixSort Radix sort

SpMV Sparse matrix-vector multiplication

Figure 9. Descriptions of the 20 benchmarks used to evaluate
Tapir/LLVM. These benchmarks were taken from the MIT Cilk
benchmark suite [16], Intel Cilk Plus example programs [25], and
the CMU Problem-Based Benchmark Suite [63]. “MIS” denotes
the computation of a maximal independent set of a graph. “BFS”
denotes the breadth-first search of a graph.

Benchmarking
To benchmark the compiler pipelines, we assembled a col-
lection of benchmark programs taken from the MIT Cilk
benchmark suite [16], Intel Cilk code samples [25], and
the CMU Problem-Based Benchmark Suite [63]. From these
collections, we selected stable programs that tend to exhibit
little performance difference when the number or order of
optimization passes is changed. Figure 9 describes the suite
of benchmarks tested.

We compiled each program in our benchmark suite with
both Tapir/LLVM and Reference, and we ran them on both 1
and 18 cores of our test machine. Additionally, we compiled
the serial elision of each benchmark with each compiler.
Each running time is the minimum of 10 runs on an Amazon
AWS c4.8xlarge spot instance, which is a dual-socket Intel
Xeon E5-2666 v3 system with a total of 60 GiB of memory.
Each Xeon is a 2.9 GHz 18-core CPU with a shared 25 MiB
L3-cache. Each core has a 32 KiB private L1-data-cache and
a 256 KiB private L2-cache. The system was “quiesced” to
permit careful measurements by turning off Turbo Boost,
dvfs, hyperthreading, extraneous interrupts, etc.

Overall performance
The results of our tests are given in Figure 10. For the first
pair of rows, Reference and Tapir/LLVM produce essentially
identical executables when compiling the serial elision of
a benchmark. Differences in running times in these rows

259

Cholesky FFT NQueens QSort RectMul Strasssen AvgFilter Mandel CHull detBFS

TS
Ref. 2.935 10.304 3.084 4.983 10.207 10.105 1.751 25.779 0.938 5.670
Tapir 2.933 10.271 3.083 4.984 10.207 10.119 1.750 25.780 0.935 5.666

T1
Ref. 4.572 11.919 3.409 6.581 10.413 10.196 2.355 30.520 1.316 6.596
Tapir 4.739 11.733 3.419 6.461 10.415 10.196 1.730 25.774 1.187 5.673

T18
Ref. 0.387 0.788 0.196 0.648 0.609 1.106 0.708 1.847 0.124 0.517
Tapir 0.396 0.774 0.197 0.709 0.611 1.124 0.615 1.559 0.120 0.467

TS

T1

Ref. 0.642 0.862 0.904 0.757 0.980 0.991 0.743 0.845 0.710 0.801
Tapir 0.619 0.875 0.902 0.771 0.980 0.991 1.012 1.000 0.788 0.992

TS

T18

Ref. 7.579 13.034 15.730 7.690 16.760 9.137 2.472 13.957 7.540 9.518
Tapir 7.407 13.270 15.650 7.028 16.705 8.990 2.846 16.536 7.792 10.942

incMIS incST kdTree ndBFS ndMIS ndST parallelSF pRange radixSort SpMV

TS
Ref. 4.993 4.190 5.473 3.950 9.210 4.069 5.136 2.564 3.775 1.780
Tapir 5.006 4.173 5.466 3.956 9.253 4.053 5.136 2.559 3.775 1.783

T1
Ref. 6.030 4.733 5.640 4.930 10.760 4.286 5.646 3.438 3.795 1.836
Tapir 5.043 4.203 5.546 3.980 9.246 4.063 5.183 3.083 3.800 1.786

T18
Ref. 0.559 0.352 0.342 0.415 0.774 1.925 0.414 0.348 0.284 0.118
Tapir 0.527 0.329 0.339 0.361 0.701 1.692 0.392 0.330 0.285 0.112

TS

T1

Ref. 0.828 0.882 0.969 0.801 0.856 0.946 0.910 0.744 0.995 0.969
Tapir 0.990 0.993 0.986 0.992 0.996 0.998 0.991 0.830 0.993 0.997

TS

T18

Ref. 8.932 11.855 15.982 9.518 11.899 2.105 12.406 7.353 13.292 15.085
Tapir 9.474 12.684 16.124 10.942 13.138 2.395 13.102 7.755 13.246 15.893

Figure 10. Comparison between executables compiled using Reference and using Tapir/LLVM. Each column refers to a different parallel
benchmark described in Figure 9. Rows labeled “Ref.” describe executables compiled using Reference, and rows labeled “Tapir” describe
executables compiled using Tapir/LLVM. Each measured running time is the minimum over 10 executions, measured in seconds. The pair
of rows labeled TS gives the running time of the executable compiled from the serial elision of each benchmark. The pair of rows labeled T1

gives the work of each benchmark. The pair of rows labeled T18 gives the 18-core running time of each benchmark. The pair of rows labeled
TS /T1 gives the work efficiency of each compiled benchmark, derived from the first and second pairs of rows. The pair of rows labeled
TS /T18 gives the parallel speedup of each compiled executable on 18 cores, derived from the first and third pairs of rows.

are due to system noise. The second pair of rows shows
that Tapir/LLVM produces executables with better work than
Reference on 15 of the benchmarks. Of the remaining 5
benchmarks, 4 demonstrate less than a 1% difference be-
tween their work relative to Tapir/LLVM or Reference. The
fourth pair of rows elaborates on the results in the second
pair to show that Tapir/LLVM produces executables with
nearly optimal work efficiency (within 1%) on 12 of the
benchmarks, whereas Reference does so on only 2. The third
and fifth pairs of row show that Tapir/LLVM generally pro-
duces executables with similar or better parallel speedups
than those produced by Reference.

The biggest slowdown created from Tapir/LLVM’s com-
pilation occurs on Cholesky, for which the executable pro-
duced by Tapir/LLVM has 4% more work than that produced
by Reference. In investigating this benchmark, we found that
LLVM runs a handful of optimizations on each function be-
fore the middle-end optimization and lowering passes in ei-
ther Tapir/LLVM or Reference. Although these early opti-
mizations have little effect on most programs, they reduce
the work of the Reference-compiled Cholesky executable by
approximately 20%. Although we experimented with several
ways to implement lowering in Reference before these early

optimizations, the resulting compilers consistently exhibited
bugs on other benchmarks in the suite. In our final design
for Reference, we placed the initial lowering pass as early
as we could muster while still ensuring that Reference could
compile all benchmarks correctly.

7. Related work
This section describes related work in representing paral-
lelism in a compiler IR and in analyzing and optimizing par-
allel programs.

Various prior research explores compiler optimizations
on unstructured parallel threads. For example, some re-
searchers have explored how to find and remove unneces-
sary synchronization in Java programs [3, 57]. Joisha et al.
[26] present a technique to detect instructions that are unaf-
fected by parallel threads and can be safely optimized across
unstructured parallel control flow. In contrast, our work on
Tapir focuses on compiler optimizations for structured par-
allelism, namely fork-join parallel programs with serial se-
mantics. Although fork-join parallelism may be more re-
stricted than unstructured parallel threads, Tapir demon-
strates that many of the optimizations for serial code easily
extend to fork-join parallelism. Enabling similar optimiza-

260

tions for unstructured parallel threads appears to be a much
harder problem.

Some previous work on compiler optimizations for fork-
join parallel programs evaluate which instructions can safely
execute in parallel [1] based on concurrency mechanisms
supported by a particular memory model. For example,
Barik et al. [6, 7] use interprocedural analysis to perform
various optimizations affecting critical sections of X10 and
Habanero-Java programs. Rather than dealing with the com-
plexities of general concurrency mechanisms, Tapir en-
ables compiler optimizations for an easy-to-understand sit-
uation: when the optimization respects the serial seman-
tics of the program and does not introduce determinacy
races. Compared with general concurrency mechanisms,
well-structured parallelism seems to offer a less onerous path
to performance.

Khaldi et al. [30] modify LLVM IR to support Open-
SHMEM parallel programs with the aim of achieving per-
formance in modern network interconnects that support ef-
ficient data transfers for partitioned global address spaces
(PGAS). Based on the SPIRE methodology [29] for repre-
senting parallel code, they augment functions, basic blocks,
instructions, identifiers, and types in LLVM IR with execu-
tion, synchronization, scheduling, and memory-layout infor-
mation. In contrast, Tapir models fork-join parallelism for
shared-memory multicores, a conceptually simpler context
than PGAS systems, and extends LLVM IR minimally us-
ing only three instructions. Once again, the Tapir’s strong
assumption of a fork-join programming model with serial
semantics that compiles to a flexible multicore architecture
seems to provide both performance and simplicity, albeit at
the cost of scalability to huge cluster-based supercomputers
that lack strong memory-consistency guarantees.

In contrast with much of the work referenced above,
Chatarasi et al. [12] focus, as Tapir does, on fork-join
programs with serial semantics. Specifically, they examine
polyhedral optimizations on OpenMP programs with serial
semantics. By combining dependency and happens-before
analyses, they manage to enable traditional polyhedral op-
timizers to work on parallel loops, much as Tapir enables
common middle-end compiler optimizations to work on par-
allel code.

8. Conclusion
To conclude, we would like to leave the reader with three
interesting considerations regarding the nature of asymme-
try in parallelism, the future of parallel optimizations, and
extensions of Tapir-like systems to other models of parallel
programming.

Reasoning about logically parallel tasks asymmetrically
based on serial semantics can sometimes simplify the un-
derstanding of a parallel program’s behavior. When a task
is spawned to execute in parallel with another, it is natu-
ral to reason about the logically parallel tasks as symmet-
ric, because their instructions can execute in any relative or-

der. For parallel programs with serial semantics, however,
it is always valid to execute the program on a single proces-
sor, which asymmetrically executes one parallel task to com-
pletion before starting the other. Serial semantics encourage
an asymmetric representation of parallel control flow that is
similar enough to its serial elision that most common analy-
ses and transformations for serial programs work on parallel
constructs with little or no modification. In particular, serial
semantics enables common optimizations on parallel code
that can be invalid under other models of parallelism [71].

One of the great benefits of Tapir is that its strategy for
representing parallelism makes it easy to write optimization
passes specifically for parallel code. Section 4 briefly men-
tioned some parallel optimization passes we implemented,
including parallel-loop scheduling and unnecessary-sync
elimination. In addition to helping close the performance gap
between serial and parallel versions of code, we hope that the
introduction of Tapir will encourage the development and
implementation of many more parallel-optimization passes.

Finally, Tapir allows fork-join parallel programs to bene-
fit from both serial and parallel optimizations. Moving for-
wards, it is natural to wonder whether other models of par-
allelism, such as pipeline parallelism [13, 33, 49] or data-
graph computations [43–45, 51, 52, 62, 64], can take advan-
tage of the Tapir approach.

Acknowledgments
William S. Moses was supported in part by an MIT EECS
SuperUROP. This research was supported in part by NSF
Grants 1314547 and 1533644, in part by a MIT CSAIL
grant from Foxconn, and in part by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via Depart-
ment of Interior/ Interior Business Center (DoI/IBC) con-
tract number D16PC00002. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/IBC, or the U.S.
Government.

Many thanks to our master bug-finder Tim Kaler of MIT,
who also helped us with cloud technology for the artifact
evaluation. Shahin Kamali of MIT and Bradley Kuszmaul,
formerly of MIT and now of Oracle, were involved in many
helpful discussions. Thanks to Johannes Doerfert and Simon
Moll of Saarland University, Germany, for their feedback
and insights. Thanks to Larry Hardesty of the MIT News Of-
fice for asking questions that helped us to simplify Figure 3.
We are grateful to the students and staff of the Fall 2016 MIT
class 6.172/6.871 Performance Evaluation of Software Sys-
tems for their patience in using the Tapir/LLVM compiler
throughout the semester and reporting bugs. We thank the
reviewers for their feedback.

261

References
[1] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar.

May-happen-in-parallel analysis of X10 programs. In PPoPP,
pages 183–193, 2007.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, second
edition, 2006.

[3] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static
analyses for eliminating unnecessary synchronization from
Java programs. In A. Cortesi and G. Filé, editors, Static
Analysis, volume 1694 of Lecture Notes in Computer Science,
pages 19–38. 1999.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In SPAA,
pages 119–129, 1998.

[5] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The design
of OpenMP tasks. IEEE Transactions on Parallel and Dis-
tributed Systems, 20(3):404–418, 2009.

[6] R. Barik and V. Sarkar. Interprocedural load elimination for
dynamic optimization of parallel programs. In PACT, pages
41–52, 2009.

[7] R. Barik, J. Zhao, and V. Sarkar. Interprocedural strength
reduction of critical sections in explicitly-parallel programs.
In PACT, pages 29–40, 2013.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM, 46(5):
720–748, 1999.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Comput-
ing, 37(1):55–69, 1996.

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concur-
rency memory model. In PLDI, pages 68–78, 2008.

[11] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java:
the new adventures of old X10. In PPPJ, pages 51–61, 2011.

[12] P. Chatarasi, J. Shirako, and V. Sarkar. Polyhedral optimiza-
tions of explicitly parallel programs. In PACT, pages 213–226,
2015.

[13] W. Du, R. Ferreira, and G. Agrawal. Compiler support for
exploiting coarse-grained pipelined parallelism. In SC, pages
8–21, 2003.

[14] M. Feng and C. E. Leiserson. Efficient detection of determi-
nacy races in Cilk programs. Theory of Computing Systems,
32(3):301–326, 1999.

[15] J. T. Fineman and C. E. Leiserson. Race detectors for Cilk
and Cilk++ programs. In D. Padua, editor, Encyclopedia of
Parallel Computing, pages 1706–1719. 2011.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[17] GCC Team. GCC 4.9 release series changes, new features,
and fixes. Available at https://gcc.gnu.org/gcc-4.9/
changes.html, 2014.

[18] GCC Team. GOMP — an OpenMP implementation for GCC.
Available at https://gcc.gnu.org/projects/gomp/, 2015.

[19] D. Grunwald and H. Srinivasan. Data flow equations for
explicitly parallel programs. In PPoPP, pages 159–168, 1993.

[20] C. A. R. Hoare. Algorithm 64: Quicksort. CACM, 4(7):321,
1961. ISSN 0001-0782.

[21] Intel Corporation. Intel Cilk Plus Language Specifica-
tion, 2010. Document Number: 324396-001US. Avail-
able from http://software.intel.com/sites/products/
cilk-plus/cilk_plus_language_specification.pdf.

[22] Intel Corporation. Intel Cilk Plus Application Binary In-
terface Specification, 2010. Document Number: 324512-
001US. Available from https://software.intel.com/
sites/products/cilk-plus/cilk_plus_abi.pdf.

[23] Intel Corporation. Cilk Plus/LLVM. Available from http:
//cilkplus.github.io/, 2013.

[24] Intel Corporation. Intel C++ Compiler 16.0 User and Refer-
ence Guide, 2015.

[25] Intel Corporation. Intel Cilk Plus samples. Available
from https://software.intel.com/en-us/code-
samples/intel-compiler/intel-compiler-features/
intelcilkplus, 2016.

[26] P. G. Joisha, R. S. Schreiber, P. Banerjee, H. J. Boehm, and
D. R. Chakrabarti. A technique for the effective and automatic
reuse of classical compiler optimizations on multithreaded
code. In POPL, pages 623–636, 2011.

[27] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and
T. Fahringer. INSPIRE: The Insieme parallel intermediate rep-
resentation. In PACT, pages 7–18, 2013.

[28] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall, Inc., second edition, 1988.

[29] D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin. SPIRE,
a sequential to parallel intermediate representation extension.
Technical report, Technical Report CRI/A-487, MINES Paris-
Tech, 2012.

[30] D. Khaldi, P. Jouvelot, F. Irigoin, C. Ancourt, and B. Chap-
man. LLVM parallel intermediate representation: Design and
evaluation using OpenSHMEM communications. In LLVM,
pages 2:1–2:8, 2015.

[31] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free:
Efficient and optimal bitvector analyses for parallel programs.
ACM TOPLAS, pages 268–299, 1996.

[32] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In CGO,
pages 75–87, 2004.

[33] I.-T. A. Lee, C. E. Leiserson, T. B. Schardl, Z. Zhang, and
J. Sukha. On-the-fly pipeline parallelism. ACM TOPC, 2(3):
17:1–17:42, 2015.

[34] J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent static sin-
gle assignment form and constant propagation for explicitly
parallel programs. In LCPC, pages 114–130, 1997.

[35] C. E. Leiserson. The Cilk++ concurrency platform. Journal
of Supercomputing, 51(3):244–257, 2010.

[36] LLVM Developer List. LLVMdev discussions on
Intel OpenMP proposal. Available from http:

262

//lists.llvm.org/pipermail/llvm-dev/2012-
September/053861.html, September 2012.

[37] LLVM Developer List. LLVMdev Parallelization meta-
data and intrinsics in LLVM (for OpenMP, etc.). Avail-
able from http://lists.llvm.org/pipermail/llvm-dev/
2012-September/053792.html, September 2012.

[38] LLVM Developer List. LLVMdev discussions on OpenCL
SPIR proposal. Available from http://lists.llvm.org/
pipermail/llvm-dev/2012-September/053293.html,
September 2012.

[39] LLVM Developer List. LLVMdev discussions on parallel
IR. Available from http://lists.llvm.org/pipermail/
llvm-dev/2015-March/083314.html, March 2015.

[40] LLVM Project. OpenMP®: Support for the OpenMP lan-
guage. Available at http://openmp.llvm.org/, 2015.

[41] LLVM Project. LLVM Language Reference Manual, 2015.
Available from http://llvm.org/docs/LangRef.html.

[42] LLVM Project. LLVM’s Analysis and Transform Passes, 2015.
Available from http://llvm.org/docs/Passes.html.

[43] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A new framework for parallel
machine learning. In UAI, pages 340–349, 2010.

[44] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed GraphLab: a framework for
machine learning and data mining in the cloud. Proceedings
of the VLDB Endowment, pages 716–727, 2012.

[45] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In SIGMOD, pages 135–146, 2010.

[46] M. McCool, A. D. Robison, and J. Reinders. Structured
Parallel Programming: Patterns for Efficient Computation.
Elsevier Science, 2012.

[47] S. P. Midkiff and D. A. Padua. Issues in the optimization of
parallel programs. In ICPP, pages 105–113, 1990.

[48] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[49] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical
modeling of pipeline parallelism. In PACT, pages 281–290,
2009.

[50] R. H. B. Netzer and B. P. Miller. What are race conditions?
ACM Letters on Programming Languages and Systems, 1(1):
74–88, 1992.

[51] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infras-
tructure for graph analytics. In SOSP, pages 456–471, 2013.

[52] D. Nguyen, A. Lenharth, and K. Pingali. Deterministic Galois:
On-demand, portable and parameterless. In ASPLOS, pages
499–512, 2014.

[53] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent SSA form
in the presence of mutual exclusion. In ICPP, pages 356–364,
1998.

[54] OpenMP Architecture Review Board. OpenMP Ap-
plication Program Interface, Version 4.0, July 2013.
Available from http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf.

[55] A. Pop and A. Cohen. Preserving high-level semantics of
parallel programming annotations through the compilation
flow of optimizing compilers. In CPC, 2010. URL https:
//hal.inria.fr/inria-00551518.

[56] W. Pugh. Fixing the Java memory model. In JAVA, pages
89–98, 1999.

[57] E. Ruf. Effective synchronization removal for Java. In PLDI,
pages 208–218, 2000.

[58] R. Rugina and M. C. Rinard. Pointer analysis for structured
parallel programs. TOPLAS, pages 70–116, Jan. 2003.

[59] V. Sarkar. Analysis and optimization of explicitly parallel
programs using the parallel program graph representation. In
LCPC, pages 94–113, 1998.

[60] V. Sarkar and B. Simons. Parallel program graphs and their
classification. In LCPC, pages 633–655, 1994.

[61] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson,
and C. E. Leiserson. The Cilkprof scalability profiler. In
SPAA, pages 89–100, 2015.

[62] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In PPoPP, pages
135–146, 2013.

[63] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Ky-
rola, H. V. Simhadri, and K. Tangwongsan. Brief announce-
ment: the Problem Based Benchmark Suite. In SPAA, pages
68–70, 2012.

[64] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In
DCC, pages 403–412, 2015.

[65] H. Srinivasan and D. Grunwald. An efficient construction of
parallel static single assignment form for structured parallel
programs. Technical report, Technical Report CU-CS-564-91,
University of Colorado at Boulder, 1991.

[66] H. Srinivasan and M. Wolfe. Analyzing programs with ex-
plicit parallelism. In LCPC, pages 405–419, 1991.

[67] H. Srinivasan, J. Hook, and M. Wolfe. Static single assign-
ment for explicitly parallel programs. In POPL, pages 260–
272, 1993.

[68] R. M. Stallman and the GCC Developer Community. Using
the GNU Compiler Collection (for GCC version 6.1.0). Free
Software Foundation, 2016.

[69] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 4th edition, 2013.

[70] R. Utterback, K. Agrawal, J. T. Fineman, and I.-T. A. Lee.
Provably good and practically efficient parallel race detection
for fork-join programs. In SPAA, pages 83–94, 2016.

[71] V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and
F. Zappa Nardelli. Common compiler optimisations are in-
valid in the C11 memory model and what we can do about it.
In POPL, pages 209–220, 2015.

[72] J. Zhao and V. Sarkar. Intermediate language extensions for
parallelism. In SPLASH, pages 329–340, 2011.

263

A. Artifact description

A.1 Abstract
This guide describes how to set up Tapir/LLVM and how

to download and run our suite of application benchmarks. In
particular, this guide focuses on setting up and running three
software components:
• the Tapir/LLVM compiler,
• the PClang front end to Tapir/LLVM, and
• the suite of 20 Cilk application benchmarks described in

Figure 9.
We provide instructions to download and build Tapir/LLVM
and PClang. We also provide instructions to download the
application benchmark suite and run the Tapir/LLVM com-
piler on that suite.

We have built and tested Tapir/LLVM, PClang, and
the test suite on an x86_64 shared-memory multicore ma-
chine running Linux. We provide instructions for obtain-
ing Tapir/LLVM and PClang from our GitHub repositories
and setting up the compiler on such a machine. Due to the
complexity of the LLVM compiler on which Tapir/LLVM is
based, building Tapir/LLVM requires significant computa-
tional resources: approximately 50 GiB of disk, 12 GiB of
RAM, and anywhere from a few minutes to a couple of
hours, depending on the machine. We also provide instruc-
tions for obtaining a copy of our test suite from a tarball.

We provide scripts to run all application benchmarks
and evaluate the performance results to produce a table of
Tapir/LLVM results similar to those in Figure 10. Running
all of the tests takes approximately 7 hours. Because we are
continuing to develop the Tapir/LLVM compiler, the perfor-
mance results will not precisely match those in Figure 10.

A.2 Description
Check-list (artifact meta information):

• Program: The application benchmark suite includes the 20
Cilk programs described in Figure 9. Packaged with this suite
are scripts for compiling and running the tests using the
Tapir/LLVM compiler and PClang front end. This suite is pub-
licly available through a tarball, which is approximately 12 GiB
in size.

• Compilation: Our main software artifact is the Tapir/LLVM
compiler. The source code for both Tapir/LLVM and its associ-
ated PClang front end are publicly available from GitHub. Due
to the complexity of the underlying LLVM and Clang code-
bases, building Tapir/LLVM and PClang from source requires
significant computational resources, even though the changes
to implement Tapir/LLVM amount to only about 6000 lines of
code.

• Data set: The application benchmark suite includes all neces-
sary data sets to run the applications.

• Run-time environment: Both Tapir/LLVM and the benchmark
suite employ the Intel Cilk Plus runtime system, which is avail-
able on several modern Linux distributions via a mainstream
package. The evaluation also employs several Linux commands

which are similarly available through mainstream packages. We
have built and tested Tapir/LLVM on Ubuntu 16.04 and Fe-
dora 24. Root accesses is not required to install Tapir/LLVM,
PClang, or the application benchmark suite, but it is required to
install the Intel Cilk Plus runtime system and auxiliary Linux
commands.

• Hardware: We have built and tested Tapir/LLVM on an x86_64
system. A shared-memory multicore system is required to exe-
cute the compiled benchmarks in parallel.

• Output: Running the benchmark tests produces a table of per-
formance results similar to Figure 10. These performance re-
sults are likely to vary between machines. Moreover, because
we are continuing to develop Tapir/LLVM and PClang, these
performance results will not perfectly match the values in Fig-
ure 10.

• Experiment workflow: We provide scripts with the application
benchmark suite to run the tests and aggregate the results.
The total running time of this experiment is approximately 7
hours on an AWS c4.8xlarge instance, but can vary between
machines.

• Experiment customization: You can run separate sets of tests
within the benchmark suite. You can also write your own pro-
grams to compile using Tapir/LLVM and PClang. The PClang
front end supports a variant of the Cilk programming language
and produces Tapir code that can be processed and optimized
by Tapir/LLVM.

• Publicly available?: Tapir/LLVM and PClang are publicly
available on GitHub. The test suite is publicly available via a
tarball.

How delivered: You can download and build Tapir/L-
LVM and PClang from our GitHub repositories, and you
can download the application benchmark test suite from a
tarball. Although Tapir represents a relatively small mod-
ification to the LLVM compiler, it inherits a good deal of
complexity from the underlying LLVM software infrastruc-
ture. The instructions below aim to streamline the process of
building and testing Tapir/LLVM in spite of this complexity.

Hardware dependencies: Tapir/LLVM, PClang, and the
test suite have been built and tested to run on x86_64.
A shared-memory multicore system is needed to evalu-
ate the parallel performance of programs compiled using
Tapir/LLVM.

Software dependencies: We have tested Tapir/LLVM,
PClang, and the test suite on Ubuntu 16.04 and on Fedora
24. Building Tapir/LLVM and PClang requires cmake and a
C/C++ compiler. The test script uses taskset and numactl
to quiesce the system for running each benchmark, specifi-
cally, to mitigate the effects of hyperthreading and NUMA
on the execution of the tests. The test script also uses bc to
calculate derived values from the measured running times of
the tests.

Datasets: The tarball of application benchmarks includes
all necessary data sets to execute these applications.

A.3 Building Tapir/LLVM from source

264

This section describes how to download the source code
for Tapir/LLVM and PClang from GitHub and build them.
These instructions assume you are building Tapir/LLVM on
an x86_64 system running Linux.

System requirements. Building Tapir/LLVM and
PClang involves building the LLVM and Clang systems
that they extend. Because of the size of the underlying
LLVM and Clang codebases, you need a relatively pow-
erful machine in order to build the compiler in a timely
fashion. Approximately 50 GiB of disk space and 12 GiB
of memory are needed to compile LLVM and Clang. A
fresh build of LLVM and Clang can take substantial time
to complete, e.g., approximately an hour on one processor
of an AWS c4.8xlarge instance. The build script will
attempt to use parallel processors to speed up compila-
tion. See http://llvm.org/docs/CMake.html for more
information on building LLVM and Clang.

1. Install the requisite software to build Tapir/LLVM and
PClang, namely, cmake, gcc, and git.

2. Download the sources of Tapir/LLVM and PClang from
GitHub:

$ git clone --recursive \
> https://github.com/wsmoses/Tapir-Meta.git

The source is approximately 800 MiB in size.

3. Compile Tapir/LLVM and PClang:

$ cd Tapir-Meta/
$ bash ./build.sh

This script will build Tapir/LLVM and PClang and store
the compiled binaries in Tapir-Meta/tapir/build. If
the build succeeds, the final line of output will be
Installation successful.

4. Set up your environment variables to use Tapir/LLVM
and PClang:

$ source ./setup-env.sh

This script will add the Tapir-Meta/tapir/build/bin/
subdirectory to your path, so that the clang command
will refer to Tapir/LLVM and PClang.

A.4 Running the benchmark suite
This section describes how you can download the applica-

tion benchmark suite described in Figure 9 and test Tapir/L-
LVM on these benchmarks.

1. Install the requisite software to download and run
the tests, namely, bc, libcilkrts, numactl, python,
taskset, and wget.

2. Download the tarball containing the application bench-
mark suite and unpack it:

$ wget http://tinyurl.com/TapirLLVMTesting -O testing.tar
$ tar -xvf testing.tar

This tarball is approximately 12 GiB in size. Unpack-
ing the tarball creates the testing/ subdirectory of the
current working directory that contains the application
benchmark suite.

3. Run the test script:

$ cd testing
$./test.sh

The test script takes approximately 7 hours to run. The
script compiles each benchmark in the test suite twice
using Tapir/LLVM: once as a parallel program, and once
as the program’s serial elision. All compilations use op-
timization level -O3. The test script runs each compiled
executable 10 times using 1 worker thread and 10 times
using 18 worker threads.

A.5 Evaluation and expected result
Once the test script finishes running, the results can be

summarized into a table similar to Figure 10 as follows:
$./results.sh > results.csv

This command will produce results.csv, a table of tab-
separated values that contains the minimum running time
from each set of 10 runs of a particular executable on a par-
ticular worker count. The table also contains derived work-
efficiency and parallel speedup values for each benchmark
program.

Because these results are performance measurements,
they are likely to vary from run to run and from sys-
tem to system. Moreover, we are continuing to develop the
Tapir/LLVM compiler and PClang, meaning that your re-
sults will not pecisely match those in Figure 10.

A.6 Experiment customization
We provide scripts for running individual sets of tests

within the test suite. The testCilk.sh, testIntel.sh, and
testPBBS.sh scripts recompiles and reruns all tests from the
MIT Cilk benchmark suite, the set of Intel Cilk Plus example
programs, and the CMU Problem-Based Benchmark Suite,
respectively. Running any of these scripts updates the perfor-
mance results for the designated subset of tests. Rerunning
the results.sh script produces a new table with the latest
test results from each subset.

You can write your own programs and compile them us-
ing PClang and Tapir/LLVM. The PClang front end is not
a fully featured Cilk front end, however. For more informa-
tion on the source language parsed by PClang, please see
testing/PClang-README.txt.

265

