Milepost GCC: Machine Learning
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Background

New processor architectures

e Higher performance
e Lower power
e Time to market as short as possible

Static compilers fail to deliver satisfactory levels of performance

e Cannot keep pace with hardware evolution

e Fixed heuristics based on simplistic hardware models and lack of run-time
information means that much manual retuning of the compiler is needed

e Systems have multiple heterogeneous reconfigurable cores



Classical Approach - lterative Compilation

Applying automatic compiler tuning based on feedback-directed compilation
Iterative search of optimization space to find most profitable solutions to improve:

execution time
compilation time
code size

power use

arbitrary metrics
Usable only within relatively narrow search spaces

e excessive compile time needed to optimize each program, too slow in most cases



Motivation - 1000 Random Trials
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Pareto Optimality

Execution time speedup
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Pareto Best

-0O1 -fcse-follow-jumps -fno-tree-ter -ftree-vectorize

-O1 -fno-cprop-registers -fno-dce -fno-move-loop-invariants -frename-registers -fno-tree-copy-
prop -fno-tree-copyrename

-O1 -freorder-blocks -fschedule-insns -fno-tree-ccp -fno-tree-dominator-opts

-02

-02 -falign-loops -fno-cse-follow-jumps -fno-dce -fno-gcse-lm -fno-inline-functions-called-once
-fno-schedule-insns2 -fno-tree-ccp -fno-tree-copyrename -funroll-all-loops

-02 -finline-functions -fno-omit-frame-pointer -fschedule-insns -fno-split-ivs-in-unroller -fno-
tree-sink -funroll-all-loops

-02 -fno-align-jumps -fno-early-inlining -fno-gcse -fno-inline-functions-called-once -fno-move-
loop-invariants -fschedule-insns -fno-tree-copyrename -fno-tree-loop-optimize -fno-tree-ter -
fno-tree-vrp

-02 -fno-caller-saves -fno-guess-branch-probability -fno-ira-share-spill-slots -fno-tree-reassoc
-funroll-all-loops -fno-web

-O2 -fno-caller-saves -fno-ivopts -fno-reorder-blocks -fno-strict-overflow -funroll-all-loops
-02 -fno-cprop-registers -fno-move-loop-invariants -fno-omit-frame-pointer -fpeel-loops

-02 -fno-dce -fno-guess-branch-probability -fno-strict-overflow -fno-tree-dominator-opts -fno-
tree-loop-optimize -fno-tree-reassoc -fno-tree-sink

-02 -fno-ivopts -fpeel-loops -fschedule-insns

-O2 -fno-tree-loop-im -fno-tree-pre

-0O3 -falign-loops -fno-caller-saves -fno-cprop-registers -fno-if-conversion -fno-ivopts -freorder-
blocks-and-partition -fno-tree-pre -funroll-all-loops

-03 -falign-loops -fno-cprop-registers -fno-if-conversion -fno-peephole2 -funroll-all-loops

-03 -falign-loops -fno-delete-null-pointer-checks -fno-gcse-lm -fira-coalesce -floop-interchange
-fsched2-use-superblocks -fno-tree-pre -fno-tree-vectorize -funroll-all-loops -funsafe-loop-
optimizations -fno-web

-03 -fno-gcse -floop-strip-mine -fno-move-loop-invariants -fno-predictive-commoning -ftracer
-03 -fno-inline-functions-called-once -fno-regmove -frename-registers -fno-tree-copyrename

-O3 -fno-inline-functions -fno-move-loop-invariants

Table 1 Best found combinations of Milepost GCC flags to improve execution time, code
size and compilation time after iterative compilation (1000 iterations) across all evaluated
benchmarks and platforms.



Number of Iterations
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Fig. 5 Number of iterations needed to obtain 95% of the available speedup using iterative

compilation with uniform random distribution.



Solution - Machine Learning

Allows for the potential of reusing knowledge across iterative
compilation runs

e benefits of iterative compilation
e reducingthe number of execution trials needed to achieve
good solution



Milepost

optimizes programs for configurable heterogeneous processors from correlation
between program features, run-time behavior, optimizations

Interactive Compilation Interface separates optimization from compiler

e middleware between compilers (GCC) and user definable research plugins
e allows feature extraction module, selecting arbitrary optimization passes
e compilerindependent, will allow transfer of Milepost to other compilers

Connected Milepost GCC to cTuning.org

e continuously updated training data from multiple users, environments



GCC

Mature and popular open-source optimizing compiler
Supports many languages, competitive with best commercial compilers
Features large number of program transformation techniques

Developed techniques are not compiler dependent



Milepost Schema
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Features (Expert Intuition)

ft1

ft2

ft3

ft4

ft5

ft6

ft7

ft8

ft9

ft10
ft11
ft12
ft13
ft14
ft15
ft16
ft17
ft18
ft19
ft20
ft21
ft22
ft23
ft24
ft25
ft26
ft27
ft28
ft29
ft30
ft31
ft32

Number of basic blocks in the method

Number of basic blocks with a single successor

Number of basic blocks with two successors

Number of basic blocks with more then two successors

Number of basic blocks with a single predecessor

Number of basic blocks with two predecessors

Number of basic blocks with more then two predecessors

Number of basic blocks with a single predecessor and a single successor
Number of basic blocks with a single predecessor and two successors
Number of basic blocks with a two predecessors and one successor

Number of basic blocks with two successors and two predecessors

Number of basic blocks with more then two successors and more then two predecessors
Number of basic blocks with number of instructions less then 15

Number of basic blocks with number of instructions in the interval [15, 500]
Number of basic blocks with number of instructions greater then 500
Number of edges in the control flow graph

Number of critical edges in the control flow graph

Number of abnormal edges in the control flow graph

Number of direct calls in the method

Number of conditional branches in the method

Number of assignment instructions in the method

Number of binary integer operations in the method

Number of binary floating point operations in the method

Number of instructions in the method

Average of number of instructions in basic blocks

Average of number of phi-nodes at the beginning of a basic block

Average of arguments for a phi-node

Number of basic blocks with no phi nodes

Number of basic blocks with phi nodes in the interval [0, 3]

Number of basic blocks with more then 3 phi nodes

Number of basic block where total number of arguments for all phi-nodes is in greater then 5
Number of basic block where total number of arguments for all phi-nodes is in the interval [1, 5]




Probabilistic Model vs Transductive Model

Two machine learning techniques to select combinations of optimization passes

Probabilistic model

e Assumes each attribute is independent
e Finds closest program from the training set to the test program

Transductive model

e Analyzes interdependencies between attributes
e generalizes and identifies good combinations of flags, program attributes



Probabilistic Inference over Distributions

set the predictive

distribution q(x|t, 0) to P(x|T7) =
be the distribution ¢
corresponding to the

training program that «* = argmax q(x[t, 0)
is closest in feature x o
space to the new (test)

program.
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Transductive inference

® Vvariables:

o X (compiler settings vector)
o t (task vector)

o Yy (optimizer target e.g. run time)
e trainregression tree model y = f(concat(x,t))



Results

Upper bound (iterative compilation) ———
Predicted optimization using probabilistic ML model ©

Predicted optimization using transductive ML model e
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