
Milepost GCC: Machine Learning 
Enabled Self-tuning Compiler
Presented by Kartikeya Kandula and Tarun Gogineni



Background

New processor architectures

● Higher performance
● Lower power
● Time to market as short as possible

Static compilers fail to deliver satisfactory levels of performance

● Cannot keep pace with hardware evolution
● Fixed heuristics based on simplistic hardware models and lack of run-time 

information means that much manual retuning of the compiler is needed
● Systems have multiple heterogeneous reconfigurable cores



Classical Approach - Iterative Compilation

Applying automatic compiler tuning based on feedback-directed compilation

Iterative search of optimization space to find most profitable solutions to improve:

● execution time
● compilation time
● code size
● power use
● arbitrary metrics

Usable only within relatively narrow search spaces

● excessive compile time needed to optimize each program, too slow in most cases



Motivation - 1000 Random Trials

Random Search can beat GCC -O3



Pareto Optimality



Pareto Best



Number of Iterations 



Solution - Machine Learning

Allows for the potential of reusing knowledge across iterative 
compilation runs

● benefits of iterative compilation
● reducing the number of execution trials needed to achieve 

good solution



Milepost

optimizes programs for configurable heterogeneous processors from correlation 
between program features, run-time behavior, optimizations

Interactive Compilation Interface separates optimization from compiler

● middleware between compilers (GCC) and user definable research plugins
● allows feature extraction module, selecting arbitrary optimization passes 
● compiler independent, will allow transfer of Milepost to other compilers 

Connected Milepost GCC to cTuning.org

● continuously updated training data from multiple users, environments



GCC

Mature and popular open-source optimizing compiler

Supports many languages, competitive with best commercial compilers

Features large number of program transformation techniques

Developed techniques are not compiler dependent



Milepost Schema



Features (Expert Intuition)



Probabilistic Model vs Transductive Model

Two machine learning techniques to select combinations of optimization passes

Probabilistic model

● Assumes each attribute is independent
● Finds closest program from the training set to the test program

Transductive model

● Analyzes interdependencies between attributes
● generalizes and identifies good combinations of flags, program attributes



Probabilistic Inference over Distributions

set the predictive 
distribution q(x|t, θ) to 
be the distribution 
corresponding to the 
training program that 
is closest in feature 
space to the new (test) 
program.



Transductive inference

● variables:
○ x (compiler settings vector) 
○ t (task vector) 
○ y (optimizer target e.g. run time)

● train regression tree model y = f(concat(x,t))



Results


