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Background

New processor architectures

● Higher performance
● Lower power
● Time to market as short as possible

Static compilers fail to deliver satisfactory levels of performance

● Cannot keep pace with hardware evolution
● Fixed heuristics based on simplistic hardware models and lack of run-time 

information means that much manual retuning of the compiler is needed
● Systems have multiple heterogeneous reconfigurable cores



Classical Approach - Iterative Compilation

Applying automatic compiler tuning based on feedback-directed compilation

Iterative search of optimization space to find most profitable solutions to improve:

● execution time
● compilation time
● code size
● power use
● arbitrary metrics

Usable only within relatively narrow search spaces

● excessive compile time needed to optimize each program, too slow in most cases



Motivation - 1000 Random Trials

Random Search can beat GCC -O3



Pareto Optimality
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Solution - Machine Learning

Allows for the potential of reusing knowledge across iterative 
compilation runs

● benefits of iterative compilation
● reducing the number of execution trials needed to achieve 

good solution



Milepost

optimizes programs for configurable heterogeneous processors from correlation 
between program features, run-time behavior, optimizations

Interactive Compilation Interface separates optimization from compiler

● middleware between compilers (GCC) and user definable research plugins
● allows feature extraction module, selecting arbitrary optimization passes 
● compiler independent, will allow transfer of Milepost to other compilers 

Connected Milepost GCC to cTuning.org

● continuously updated training data from multiple users, environments



GCC

Mature and popular open-source optimizing compiler

Supports many languages, competitive with best commercial compilers

Features large number of program transformation techniques

Developed techniques are not compiler dependent



Milepost Schema
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Probabilistic Model vs Transductive Model

Two machine learning techniques to select combinations of optimization passes

Probabilistic model

● Assumes each attribute is independent
● Finds closest program from the training set to the test program

Transductive model

● Analyzes interdependencies between attributes
● generalizes and identifies good combinations of flags, program attributes



Probabilistic Inference over Distributions

set the predictive 
distribution q(x|t, θ) to 
be the distribution 
corresponding to the 
training program that 
is closest in feature 
space to the new (test) 
program.



Transductive inference

● variables:
○ x (compiler settings vector) 
○ t (task vector) 
○ y (optimizer target e.g. run time)

● train regression tree model y = f(concat(x,t))



Results


