
gpucc: An Open-Source GPGPU Compiler
Authors: Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,

Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Wang, Robert Hundt

Presenters: Bryce Messmann, Rohit Kandula

Date: 11 December 2019

1

Background
- The two dominant software platforms for GPUs are CUDA (by NVIDIA) and

OpenCL.
- CUDA is widely-used, but it is proprietary!
- Open-source compilers exist for CUDA, but they are not as powerful as

NVIDIA’s proprietary compiler (which is itself limited).

There is almost no research on CUDA-based compiler optimizations.
This is a large bottleneck in GPU compiler research.

2

gpucc

- gpucc is “a fully functional, open-source, high performance,
CUDA-compatible toolchain, based on LLVM and Clang”

- Targets CUDA, and includes many general and CUDA-specific optimizations

- Compared to NVIDIA’s proprietary nvcc compiler:
- Significantly faster compile time
- On-par runtime performance

3

Input file
(code)

Input file
(code)

clang + CUDA
frontend

Fat Binary
(multi-ISA
support)

IR
optimizer

NVPTX code
generator

Host code
generator

Host
compiler

Device IR

Host IR

PTX

(Green indicates a contribution
specific to this paper)

4

IR-Level Optimizations

- gpucc includes many optimizations for runtime performance
- Standard optimizations (e.g. -O3 in LLVM) are intended for CPUs
- The optimizations here target GPUs, and the CUDA platform specifically

- All optimizations are done within LLVM

5

Optimization 1/6: Loop Unrolling / Function Inlining
- Jumps are expensive on GPUs

- Multiple “small” simultaneous threads (SIMD execution)
- Little or no out-of-order execution
- Pass-in-memory calling adds delay

- gpucc performs more aggressive unrolling and inlining
- Reduces number of jumps, improving performance
- Also promotes stack variables to registers (due to constant propagation / SROA)

- Manual options: #pragma unroll and __forceinline__

6

Optimization 2/6: Inferring Memory Spaces
- gpucc can “propagate” memory spaces

from initial definition to users

- This knowledge allows for performance
optimizations (e.g. ld.shared
instruction instead of generic ld
instruction)

Points to
shared
memory

Also must
point to
shared
memory (for
every
iteration)!

7

Optimization 3/6: Memory-Space Alias Analysis
- Two pointers to different memory spaces won’t access the same memory
- gpucc can detect this! (using memory-space inference)

- This improves dead-store elimination

8

Optimization 4/6: Bypassing 64-Bit Division
- NVIDIA GPUs don’t have a “divide” unit
- They perform division using a long sequence of simpler instructions

- ~20 instructions for 32-bit division
- ~70 instructions for 64-bit division

- Most division can be done in 32 bits (divisor and dividend are small)
- 64-bit division is automatically converted to 32-bit division when possible

9

Optimization 5/6: Straight-Line Scalar Optimizations
● Eliminate Partial Redundancy:

○ (b+1)*n -> b*n + n

● Useful for Array accesses with unrolled loops
○ Matrix Multiplication
○ Dot product
○ Back Propagation

● Adopted by other backends in LLVM:
○ AMDGPU
○ PowerPC
○ ARM64

10

Optimization 5/6: Straight-Line Scalar Optimizations

Loads a 3x3 submatrix at indices
(b,c) in the array a

11

Optimization 5/6: Straight-Line Scalar Optimizations
● Inefficiencies:

○ Partial Redundancy:
■ (b)*n,(b+1)*n,(b+2)*n
■ =>(b)*n,(b)*n+n,(b)*n+n+n

○ Doesn’t use var+immOff addressing:
■ var -> stored in register
■ immOff -> 32-bit immediate
■ c+2+(b+2)*n => (c+(b+2)*n)+2

● 3 optimizations under this class
○ Pointer Arithmetic Reassociation: to map loads to var+immOff
○ Straight-Line Strength Reduction & Global Reassociation: Eliminate partial redudancy

12

Optimization 5/6: Straight-Line Scalar Optimizations

p1..p8 take 1 cycle

p1..p8 can be
folded to
reg+immOff mode
and free up
registers

13

Optimization 5.1/6: Pointer Arithmetic Reassociation
● PAR tries to extract extract additive integer constant from pointer address

expression.
○ variable part + constant offset

● NVPTX codegen folds to reg+immOff using simple pattern matching

● PAR promotes better CSE
○ &a[c+1+b*n] -> &a[c+b*n] + 1 -> &p0[1] -> ld.f32 [%rd1+4]

14

Optimization 5.1/6: Pointer Arithmetic Reassociation

15

Optimization 5.2/6: Straight-Line Strength Reduction

● Works on dominator paths instead of loops.
● b,s integer variables. C0,C1 are integer constants.
● SLSR identifies candidates in the same form and replaces them

16

Optimization 5.2/6: Straight-Line Strength Reduction

● C1-C0 is often -1 or 1 or a fixed stride
● Increases dependencies and could hurt ILP

○ NVIDIA K40 doesn’t use out-of-order execution and has 2 integer units
○ Not so much of a problem as scheduling window is small

17

Optimization 5.1/6: Straight-Line Strength Reduction

18

Optimization 5.3/6: Global Reassociation
● Reorders commutative operations for better redundancy elimination
● Similar to

○ Enhanced Scalar Replacement but linear time complexity
○ Reassociative pass but “global”

19

j0 = c + x0;
x1 = x0 + n;
j1 = c + x1;

j0 = c + x0;
x1 = x0 + n;
j1 = (c + n) + x0;

j0 = c + x0;
x1 = x0 + n;
j1 = (c + x0) + n;

j0 = c + x0;
x1 = x0 + n;
j1 = j0 + n;

Optimization 5.3/6: Global Reassociation

20

Optimization 5.3/6: Global Reassociation

21

Stack of dominating
instructions that
compute E

Pre-order traversal
guarantees all
dominators of I than
computer E are in the
stack

Keeps popping until top of
the stack dominates I

● Pruning guarantees linear time
● Safe due to pre-order traversal

Optimization 6/6: Speculative Execution
● Straight-Line Scalar Optimizations do not work on non dominating instructions
● Solution: Hoist side effect free instructions from conditional basic blocks
● Increases dominance and likelihood of SLSO
● Also promotes predication

○ Reduces conditional basic blocks small which in turn triggers predicated execution

22

Evaluation
Benchmarks:

- Rodinia: based on various “real-world”
applications (data mining, medical
imaging, etc.)

- SHOC: scientific computing benchmarks
- Tensor: benchmarks using the Tensor

module in Eigen 3.0 (C++ linear algebra
library)

Metrics:

- Runtime performance comparison
- Compilation time
- Effects of optimizations

23

Performance on End-to-End Benchmarks

24

Performance on Open-Source Benchmarks

25

Effects of Optimizations

26

Conclusion
● gpucc

○ Open Source
○ High performance
○ CUDA compiler

● Faster (or on-par) Code w.r.t nvcc
● Faster or comparable compilation times
● Now part of clang/LLVM
● Research Opportunities:

○ Frontend: more language extensions? Other languages?
○ Backend: more architectures (e.g., CUDA on AMDGPU)? Target SASS?
○ Debugging: better profiling? Static analysis?
○ Optimizer: more optimizations?

27

Questions?

28

