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Background
- The two dominant software platforms for GPUs are CUDA (by NVIDIA) and 

OpenCL.
- CUDA is widely-used, but it is proprietary!
- Open-source compilers exist for CUDA, but they are not as powerful as 

NVIDIA’s proprietary compiler (which is itself limited).

There is almost no research on CUDA-based compiler optimizations.
This is a large bottleneck in GPU compiler research.
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gpucc

- gpucc is “a fully functional, open-source, high performance, 
CUDA-compatible toolchain, based on LLVM and Clang”

- Targets CUDA, and includes many general and CUDA-specific optimizations

- Compared to NVIDIA’s proprietary nvcc compiler:
- Significantly faster compile time
- On-par runtime performance
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IR-Level Optimizations

- gpucc includes many optimizations for runtime performance
- Standard optimizations (e.g. -O3 in LLVM) are intended for CPUs
- The optimizations here target GPUs, and the CUDA platform specifically

- All optimizations are done within LLVM
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Optimization 1/6: Loop Unrolling / Function Inlining
- Jumps are expensive on GPUs

- Multiple “small” simultaneous threads (SIMD execution)
- Little or no out-of-order execution
- Pass-in-memory calling adds delay

- gpucc performs more aggressive unrolling and inlining
- Reduces number of jumps, improving performance
- Also promotes stack variables to registers (due to constant propagation / SROA)

- Manual options: #pragma unroll and __forceinline__
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Optimization 2/6: Inferring Memory Spaces
- gpucc can “propagate” memory spaces 

from initial definition to users

- This knowledge allows for performance 
optimizations (e.g. ld.shared 
instruction instead of generic ld 
instruction)

Points to 
shared 
memory

Also must 
point to 
shared 
memory (for 
every 
iteration)!
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Optimization 3/6: Memory-Space Alias Analysis
- Two pointers to different memory spaces won’t access the same memory
- gpucc can detect this! (using memory-space inference)

- This improves dead-store elimination
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Optimization 4/6: Bypassing 64-Bit Division
- NVIDIA GPUs don’t have a “divide” unit
- They perform division using a long sequence of simpler instructions

- ~20 instructions for 32-bit division
- ~70 instructions for 64-bit division

- Most division can be done in 32 bits (divisor and dividend are small)
- 64-bit division is automatically converted to 32-bit division when possible

9



Optimization 5/6: Straight-Line Scalar Optimizations
● Eliminate Partial Redundancy:

○ (b+1)*n -> b*n + n

● Useful for Array accesses with unrolled loops
○ Matrix Multiplication
○ Dot product
○ Back Propagation

● Adopted by other backends in LLVM:
○ AMDGPU
○ PowerPC
○ ARM64
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Optimization 5/6: Straight-Line Scalar Optimizations

Loads a 3x3 submatrix at indices 
(b,c) in the array a
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Optimization 5/6: Straight-Line Scalar Optimizations
● Inefficiencies:

○ Partial Redundancy:
■ (b)*n,(b+1)*n,(b+2)*n
■ =>(b)*n,(b)*n+n,(b)*n+n+n

○ Doesn’t use var+immOff  addressing:
■ var -> stored in register
■ immOff -> 32-bit immediate
■ c+2+(b+2)*n => (c+(b+2)*n)+2

● 3 optimizations under this class
○ Pointer Arithmetic Reassociation: to map loads to var+immOff
○ Straight-Line Strength Reduction & Global Reassociation: Eliminate partial redudancy
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Optimization 5/6: Straight-Line Scalar Optimizations

p1..p8 take 1 cycle

p1..p8 can be 
folded to 
reg+immOff mode 
and free up 
registers
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Optimization 5.1/6: Pointer Arithmetic Reassociation
● PAR tries to extract extract additive integer constant from pointer address 

expression.
○ variable part + constant offset

● NVPTX codegen folds to reg+immOff using simple pattern matching

● PAR promotes better CSE
○ &a[c+1+b*n] -> &a[c+b*n] + 1 -> &p0[1] -> ld.f32 [%rd1+4]
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Optimization 5.1/6: Pointer Arithmetic Reassociation
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Optimization 5.2/6: Straight-Line Strength Reduction

● Works on dominator paths instead of loops.
● b,s integer variables. C0,C1 are integer constants.
● SLSR identifies candidates in the same form and replaces them
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Optimization 5.2/6: Straight-Line Strength Reduction

● C1-C0 is often -1 or 1 or a fixed stride
● Increases dependencies and could hurt ILP

○ NVIDIA K40 doesn’t use out-of-order execution and has 2 integer units
○ Not so much of a problem as scheduling window is small
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Optimization 5.1/6: Straight-Line Strength Reduction
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Optimization 5.3/6: Global Reassociation
● Reorders commutative operations for better redundancy elimination
● Similar to 

○ Enhanced Scalar Replacement but linear time complexity
○ Reassociative pass but “global”
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Optimization 5.3/6: Global Reassociation
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Optimization 5.3/6: Global Reassociation
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Stack of dominating 
instructions that 
compute E

Pre-order traversal 
guarantees all 
dominators of I than 
computer E are in the 
stack

Keeps popping until top of 
the stack dominates I

● Pruning guarantees linear time
● Safe due to pre-order traversal 



Optimization 6/6: Speculative Execution
● Straight-Line Scalar Optimizations do not work on non dominating instructions
● Solution: Hoist side effect free instructions from conditional basic blocks
● Increases dominance and likelihood of SLSO
● Also promotes predication

○ Reduces conditional basic blocks small which in turn triggers predicated execution
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Evaluation
Benchmarks:

- Rodinia: based on various “real-world” 
applications (data mining, medical 
imaging, etc.)

- SHOC: scientific computing benchmarks
- Tensor: benchmarks using the Tensor 

module in Eigen 3.0 (C++ linear algebra 
library)

Metrics:

- Runtime performance comparison
- Compilation time
- Effects of optimizations
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Performance on End-to-End Benchmarks
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Performance on Open-Source Benchmarks
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Effects of Optimizations
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Conclusion
● gpucc

○ Open Source
○ High performance
○ CUDA compiler

● Faster (or on-par) Code w.r.t nvcc
● Faster or comparable compilation times
● Now part of clang/LLVM
● Research Opportunities:

○ Frontend: more language extensions? Other languages?
○ Backend: more architectures (e.g., CUDA on AMDGPU)? Target SASS?
○ Debugging: better profiling? Static analysis?
○ Optimizer: more optimizations?
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Questions?
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