gpucc: An Open-Source GPGPU Compiler

Authors: Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,
Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Wang, Robert Hundt

Presenters: Bryce Messmann, Rohit Kandula

Date: 11 December 2019

Background

- The two dominant software platforms for GPUs are CUDA (by NVIDIA) and
OpenCL.

- CUDA is widely-used, but it is proprietary!
- Open-source compilers exist for CUDA, but they are not as powerful as
NVIDIA's proprietary compiler (which is itself limited).

There is almost no research on CUDA-based compiler optimizations.
This is a large bottleneck in GPU compiler research.

gpucc

- gpucc is “a fully functional, open-source, high performance,
CUDA-compatible toolchain, based on LLVM and Clang”

- Targets CUDA, and includes many general and CUDA-specific optimizations

- Compared to NVIDIA's proprietary nvcc compiler:
Significantly faster compile time
On-par runtime performance

IR NVPTX code

optimizer generator
Device IR \pTX
Input file clang + CUDA | HostIR
(code) frontend Host code Host
generator compiler

Fat Binary
(multi-ISA
support)

(Green indicates a contribution
specific to this paper)

IR-Level Optimizations

- gpucc includes many optimizations for runtime performance
- Standard optimizations (e.g. —-03 in LLVM) are intended for CPUs
- The optimizations here target GPUs, and the CUDA platform specifically

- All optimizations are done within LLVM

Optimization 1/6: Loop Unrolling / Function Inlining

- Jumps are expensive on GPUs
- Multiple “small” simultaneous threads (SIMD execution)
- Little or no out-of-order execution
- Pass-in-memory calling adds delay

- gpucc performs more aggressive unrolling and inlining
- Reduces number of jumps, improving performance
- Also promotes stack variables to registers (due to constant propagation / SROA)

- Manual options: #pragma unrolland forceinline

Optimization 2/6: Inferring Memory Spaces

float a[1024];
Points to

- gpucc can “propagate” memory spaces sarea 2 £loaT Fp = a;
memory ~ 3 float *end = a + 1024;

from initial definition to users o 4 while (p != end) {
gﬁg‘rﬁ 5 float v = *p;
memory (for // use "v"

- This knowledge allows for performance every 7 ++D;
8 }

iteration)!

optimizations (e.g. 1d.shared
instruction instead of generic 1d
instruction)

Optimization 3/6: Memory-Space Alias Analysis

- Two pointers to different memory spaces won’t access the same memory
- gpucc can detect this! (using memory-space inference)

- This improves dead-store elimination

Optimization 4/6: Bypassing 64-Bit Division

NVIDIA GPUs don’t have a “divide” unit

They perform division using a long sequence of simpler instructions
~20 instructions for 32-bit division
~70 instructions for 64-bit division

Most division can be done in 32 bits (divisor and dividend are small)
64-bit division is automatically converted to 32-bit division when possible

Optimization 5/6: Straight-Line Scalar Optimizations

e Eliminate Partial Redundancy:
o (b+1)*n -> b*n + n

e Useful for Array accesses with unrolled loops
o Matrix Multiplication
o Dot product
o Back Propagation

e Adopted by other backends in LLVM:

o AMDGPU
o PowerPC
o ARM64

10

Optimization 5/6: Straight-Line Scalar Optimizations

#pragma unroll for (long x = 0; x < 3; ++x) {

#pragma unroll for (long y = 0; y < 3;

float *p = &al[(c + y) + (b + x) * nl;

. // load from p

Loads a 3x3 submatrix at indices
(b,c) in the array a

++y) {

N

p®
pl
p2

p3
p4
p5

po6
p7
p8

&a[c + b *n];
&a[c+1+ b *n];
&a[c+2+ b *n];

&a[c +(b+1)*n];
&a[c+1+(b+1)*n];
&a[c+2+(b+1)*n];

&a[c +(b+2)*n];
&a[c+1+(b+2)*n];
&a[c+2+(b+2)*n];

after unrolling

11

Optimization 5/6: Straight-Line Scalar Optimizations

e Inefficiencies:

o Partial Redundancy:
] (b) *n, (b+1) *n, (b+2) *n
m =>(b)*n, (b)*n+n, (b) *n+n+n

o Doesn’tuse var+immOff addressing:
m var -> stored in register
m immOff -> 32-bitimmediate
B ct+2+(b+2)*n => (c+ (b+2) *n)+2

e 3 optimizations under this class
o Pointer Arithmetic Reassociation: to map loads to var+immOff
o Straight-Line Strength Reduction & Global Reassociation: Eliminate partial redudancy

12

Optimization 5/6

p0®
pl
p2

p3
p4
p5

po6
p7
p8

&af[c + b *nls
&a[c+1+ b *n];
&al[c+2+ b *n];

&a[c +(b+1)*n];
&a[c+1+(b+1)*n];
&a[c+2+(b+1)*n];

&a[c +(b+2)*n];
&a[c+1+(b+2)*n];
&a[c+2+(b+2)*n];

after unrolling

. Straight-Line Scalar Optimizations

p0®
1

p2

p3

p4 ;
P> ;

p6 F
p7 |=
p8/=

= &alc+b*nl; | p1.p8 take 1 cycle
= &pO[1];
&p0[2]; p1..p8 can be
folded to
reg+immOff mode
and free up
registers

| i 1)
Ro o o
T T T
o O W
| o B o [l e |
N =B
el b bd

13

Optimization 5.1/6: Pointer Arithmetic Reassociation

e PAR tries to extract extract additive integer constant from pointer address

expression.
o variable part + constant offset

e NVPTX codegen folds to reg+immOff using simple pattern matching

e PAR promotes better CSE
o &a[c+1+b*n] -> &a[c+b*n] + 1 -> &pO[1] -> Id.f32 [%rd1+4]

o o
=g Nn=0 &
OO OO OO

14

Optimization 5.1/6: Pointer Arithmetic Reassociation

p®
pl
p2

p3
p4
p5

po6
p7
p8

&al[c + b *n];
&a[c+1+ b *n];
&al[c+2+ b *n];

&a[c +(b+1)*n];
&a[c+1+(b+1)*n];
&a[c+2+(b+1)*n];

&a[c +(b+2)*n];
&a[c+1+(b+2)*n];
&a[c+2+(b+2)*n];

after unrolling

p0®
pl
p2

p3
p4
p5

= &a[c+b*n];
= &pO[1];
= &pO[2];

= &a[c+(b+1)*n];
= &p3[1];
= &p3[2];

= &a[c+(b+2)*n];
= &p6[1];
= &p6[2];

after PAR+CSE

15

Optimization 5.2/6: Straight-Line Strength Reduction

(b+C0) *s;
(b+Cl) *s;

X b+CO0*s;
y b+Cl*s;

y = x+(C1-C0)*s

&b[CO*s];
&b[Cl*s];

X
y

b

<
i

Strength reduction forms and replacements.

e \Works on dominator paths instead of loops.
e D, s integer variables. C0, C1 are integer constants.
e SLSR identifies candidates in the same form and replaces them

16

Optimization 5.2/6: Straight-Line Strength Reduction

b
|

= (b+CO)*s;
y = (b+Cl)*s;

X = b+C0*s;
y = b+Cl*s;

x+(C1-CO)*s

x = & [CO*s];
y = &b[C1%*s];

y

Strength reduction forms and replacements.

e C1-COisoften-1or 1 or a fixed stride

e Increases dependencies and could hurt ILP
o NVIDIA K40 doesn’t use out-of-order execution and has 2 integer units
o Not so much of a problem as scheduling window is small

17

Optimization 5.1/6: Straight-Line Strength Reduction

p0®
pl
p2

p3
p4
p5

pb6
p7
p8

&al[c+b*n];
&p0[1];
&pO[2];

&a[c+(b+1)*n];
&p3[1];
&p3[2];

&a[c+(b+2)*n];
&p6[1];
&p6[2];

after PAR+CSE

4

X8 = b*n;

p® = &a[c+x0];
pl = &pO[1];
p2 = &p®[2];
p3 = &a[c+x1l];
p4 = &p3[1];
p5 = &p3[2];
p6 = &al[c+x2];
p7 = &p6[1];
p8 = &p6[2];

after SLSR

18

Optimization 5.3/6: Global Reassociation

e Reorders commutative operations for better redundancy elimination

e Similarto
o Enhanced Scalar Replacement but linear time complexity
o Reassociative pass but “global”

jO = c + x0;
x1=x0 +n; = x
j1 =(c + n) + x0;
jO = ¢ + x0;
x1=x0+n;
j1=c+x1,
jO = c + x0; jO = ¢ + x0;
x1=x0 +n; —> | X1=x0+n;

j1=(c +x0) + n; j1=j0+n;

Optimization 5.3/6: Global Reassociation

x0 = b*n;

p® = &a[c+x0]; p® = &a[c+b*n];
pl = &pO[1]; pl = &pO[1];
p2 = &p0[2]; p2 = &pO[2];
x1 i x0+n; - o5 = Bo6nls
p3 = &al[c+x1l]; pd = &p3[1];
pe = &pa Ll pS = &p3[2];
p5> = &p3[2];

x2 = x1l+n; p6 = &p3[n];
p6 = &al[c+x2]; p7 = &pb6[1];
p7 = &p6[1]; p8 = &p6[2];
p8 = &p6[2]; global reassociation

after SLSR

Optimization 5.3/6: Global Reassociation

Pruning guarantees linear time
Safe due to pre-order traversal

Stack of dominating
instructions that
compute E

Pre-order traversal
guarantees all
dominators of / than
computer E are in the
stack

Algorithm : Global reassociation.

Data: dominators() maintains a list of observed
instructions that compute
Input : the original program P and a schedule S
Output: the specialized program
GlobalReassociation(F’)
foreach instruction I in pre-order of domtree(F') do
// + is used to represent any commutative operator.
if I = a + b then
E < expr(])
dominators[E] <— dominators[E] 4+
if I = (a+b) + cand a + b is used only once then
Ey < expr(a + ¢)
D < ClosestMatchingDom(E', I)
if D # nil then
Rewrite / to D + b
else
Es + expr(b + ¢)
D <« ClosestMatchingDom(FE>, I)
if D # nil then
Rewrite [to D + a
ClosestMatchingDom (E, I)
D < dominators[E)]
while D # () and ~dominate(D, I') do

Keeps popping until top of
the stack dominates /

popback(D)
/f' D = () then

return nil

return back(D)

21

Optimization 6/6: Speculative Execution

Straight-Line Scalar Optimizations do not work on non dominating instructions
Solution: Hoist side effect free instructions from conditional basic blocks
Increases dominance and likelihood of SLSO

Also promotes predication
o Reduces conditional basic blocks small which in turn triggers predicated execution

p = &a[il; p = &a[il;
if (b) if (b)
if (b) u = *p; u = *p;
u = alil; q = &al[i+jl; q = &pljl;
if (o) if (o) if (o)
v = al[i+j]; v = *q; v = *q;
(a) original (b) speculative (c) straight-line opti-
execution mizations

22

Evaluation

Benchmarks:

- Rodinia: based on various “real-world”
applications (data mining, medical
imaging, etc.)

- SHOC: scientific computing benchmarks

- Tensor: benchmarks using the Tensor
module in Eigen 3.0 (C++ linear algebra
library)

Metrics:

- Runtime performance comparison
- Compilation time
- Effects of optimizations

23

Performance on End-to-End Benchmarks

60% [

Geomean
8 50% |
E 40% | Metric: (nvee / gpucc) - 1
>
0, E
§ S 22.9%
o 20%

& 10% |

0%

ict ic2 nip1 nlp2 mnist

Performance on Open-Source Benchmarks

Tensor: 3.7%
Rodinia: 0.8%
SHOC: -0.5%

Geomean speedup
®
[
®

Tensor mmmmm

Rodinia geomean

Rodinia s
SHOC mmmmm

SHOC geomean
Tensor geomean

20%
15%
10%

]
S
Hh & b o

. =i

00AU SA dnpaads

25

Effects of Optimizations

e |U: inline and unroll

U e MSI: memory space
5% inference
3 9 e SL.: straight-line scalar
= 0% optimizations
c e AA: memory-space alias
‘é’ -5% | analysis
© | Gima | B eneemtne s e bypass: bypassing 64-
g “10% | L bit divides
o -15% + -~
% 20% Opt Benchmark Speedup
=N o z;“” I
% & U ic1 ~10x
Bl Rodinia —=
© -30% | SHOC P MSI ic1 ~3x
@ == T TR | e s ‘
=2 359, L Tensor bypass | ic2 50%
SL ic1 28.1%

26

Conclusion

® Jgpucc
o Open Source

o High performance
o CUDA compiler

Faster (or on-par) Code w.r.t nvcc
Faster or comparable compilation times
Now part of clang/LLVM

Research Opportunities:
o Frontend: more language extensions? Other languages?
o Backend: more architectures (e.g., CUDA on AMDGPU)? Target SASS?
o Debugging: better profiling? Static analysis?
o Optimizer: more optimizations?

27

Questions?

28

