
EECS 583 – Class 9

Classic Optimization

University of Michigan

October 2, 2019

- 1 -

Announcements & Reading Material

 HW2 – Get busy on it ASAP!

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988,

9.9, 10.2, 10.3, 10.7 Edition 1; 8.5, 8.7, 9.1, 9.4, 9.5 Edition 2

 Material for Wednesday

» “Compiler Code Transformations for Superscalar-Based High-

Performance Systems,” S. Mahlke, W. Chen, J. Gyllenhaal, W.

Hwu, P. Chang, and T. Kiyohara, Proceedings of

Supercomputing '92, Nov. 1992, pp. 808-817

» And if you want more on ILP optimizations: D. J. Kuck, The

Structure of Computers and Computations. New York, NY: John

Wiley and Sons, 1978. (optional!)

- 2 -

Class Problem From Last Time – Answer

c2 = b1 + a1
b2 = a1 + 1

a2 = b1 * c1

b4 = c3 – a3

a5 = a4 – c4

c5 = b5 * c4

a0 =

b0 =

c0 =
BB0

BB1

BB2

BB3

BB4

BB5

BB DF

0 -

1 -

2 4

3 4, 5

4 5

5 1

Rename the variables

a4 = Phi(a2,a3)

b5 = Phi(b2,b4)

c4 = Phi(c1,c3)

a1 = Phi(a0,a5)

b1 = Phi(b0,b5)

c1 = Phi(c0,c5)

a3 = Phi(a1,a2)

b3 = Phi(b1,b2)

c3= Phi(c2,c1)

Dominance frontier

BB0

BB1

BB2 BB3 BB4 BB5

Dominator tree

- 3 -

Code Optimization

 Make the code run faster on the target processor

» My (Scott’s) favorite topic !!

» Other objectives: Power, code size

 Classes of optimization

» 1. Classical (machine independent)

 Reducing operation count (redundancy elimination)

 Simplifying operations

 Generally good for any kind of machine

» 2. Machine specific

 Peephole optimizations

 Take advantage of specialized hardware features

» 3. Parallelism enhancing

 Increasing parallelism (ILP or TLP)

 Possibly increase instructions

- 4 -

A Tour Through the Classical Optimizations

 For this class – Go over concepts of a small subset of the

optimizations

» What it is, why its useful

» When can it be applied (set of conditions that must be satisfied)

» How it works

» Give you the flavor but don’t want to beat you over the head

 Challenges

» Register pressure?

» Parallelism verses operation count

- 5 -

Dead Code Elimination

 Remove any operation who’s
result is never consumed

 Rules

» X can be deleted

 no stores or branches

» DU chain empty or dest
register not live

 This misses some dead code!!

» Especially in loops

 Better Algorithm

» Critical operation

 store or branch operation

» Any operation that does not
directly or indirectly feed a
critical operation is dead

» Trace UD chains backwards
from critical operations

» Any op not visited is dead

1. r1 = 3

2. r2 = 10

3. r4 = r4 + 1

4. r7 = r1 * r4

5. r2 = 0 6. r3 = r3 + 1

7. r3 = r2 + r1

8. store (r1, r3)

BB1

BB2

BB3 BB4

BB5

BB6

- 6 -

Local Constant Propagation

 Forward propagation of moves

of the form

» rx = L (where L is a literal)

» Maximally propagate

 Consider 2 ops, X and Y in a

BB, X is before Y

» 1. X is a move

» 2. src1(X) is a literal

» 3. Y consumes dest(X)

» 4. There is no definition of

dest(X) between X and Y

1. r1 = 5

2. r2 = ‘_x’

3. r3 = 7

4. r4 = r4 + r1

5. r1 = r1 + r2

6. r1 = r1 + 1

7. r3 = 12

8. r8 = r1 - r2

9. r9 = r3 + r5

10. r3 = r2 + 1

11. r10 = r3 – r1

Note, ignore operation format issues, so

all operations can have literals in either

operand position

BB1

- 7 -

Global Constant Propagation

 Consider 2 ops, X and Y in

different BBs

» 1. X is a move

» 2. src1(X) is a literal

» 3. Y consumes dest(X)

» 4. X is in a_in(BB(Y))

» 5. Dest(x) is not modified between

the top of BB(Y) and Y

1. r1 = 5

2. r2 = ‘_x’

3. r1 = r1 + r2 4. r7 = r1 – r2

5. r8 = r1 * r2

6. r9 = r1 + r2

BB1

BB2 BB3

BB4

BB5

- 8 -

Constant Folding

 Simplify 1 operation based on values of src operands

» Constant propagation creates opportunities for this

 All constant operands

» Evaluate the op, replace with a move

 r1 = 3 * 4  r1 = 12

 r1 = 3 / 0  ??? Don’t evaluate excepting ops !, what about floating-point?

» Evaluate conditional branch, replace with BRU or noop

 if (1 < 2) goto BB2  BRU BB2

 if (1 > 2) goto BB2  convert to a noop

 Algebraic identities

» r1 = r2 + 0, r2 – 0, r2 | 0, r2 ^ 0, r2 << 0, r2 >> 0

 r1 = r2

» r1 = 0 * r2, 0 / r2, 0 & r2

 r1 = 0

» r1 = r2 * 1, r2 / 1

 r1 = r2

- 9 -

Class Problem

1. r1 = 0

2. r2 = 10

3. r3 = 0

4. r4 = 1

5. r7 = r1 * 4

6. r6 = 8

7. if (r3 > 0)

17. store (r1, r3)

Optimize this applying

1. constant propagation

2. constant folding

8. r2 = 0

9. r6 = r6 * r7

10. r3 = r2 / r6

11. r3 = r4

12. r3 = r3 + r2

13. r1 = r6

14. r2 = r2 + 1

15. r1 = r1 + 1

16. if (r1 < 100)

BB1

BB2

BB3 BB4

BB5

BB6

- 10 -

Forward Copy Propagation

 Forward propagation of the RHS

of moves

» r1 = r2

» …

» r4 = r1 + 1  r4 = r2 + 1

 Benefits

» Reduce chain of dependences

» Eliminate the move

 Rules (ops X and Y)

» X is a move

» src1(X) is a register

» Y consumes dest(X)

» X.dest is an available def at Y

» X.src1 is an available expr at Y

1. r1 = r2

2. r3 = r4

3. r2 = 0 4. r6 = r3 + 1

5. r5 = r2 + r3

BB1

BB2 BB3

BB4

- 11 -

CSE – Common Subexpression Elimination

 Eliminate recomputation of an

expression by reusing the previous

result

» r1 = r2 * r3

»  r100 = r1

» …

» r4 = r2 * r3  r4 = r100

 Benefits

» Reduce work

» Moves can get copy propagated

 Rules (ops X and Y)

» X and Y have the same opcode

» src(X) = src(Y), for all srcs

» expr(X) is available at Y

» if X is a load, then there is no store

that may write to address(X) along

any path between X and Y

1. r1 = r2 * r6

2. r3 = r4 / r7

3. r2 = r2 + 1 4. r6 = r3 * 7

5. r5 = r2 * r6

6. r8 = r4 / r7

7. r9 = r3 * 7

if op is a load, call it redundant

load elimination rather than CSE

BB1

BB2 BB3

BB4

- 12 -

Class Problem

Optimize this applying

1. dead code elimination

2. forward copy propagation

3. CSE

1. r4 = r1

2. r6 = r15

3. r2 = r3 * r4

4. r8 = r2 + r5

5. r9 = r3

6. r7 = load(r2)

7. if (r2 > r8)

8. r5 = r9 * r4

9. r11 = r2

10. r12 = load(r11)

11. if (r12 != 0)

12. r3 = load(r2)

13. r10 = r3 / r6

14. r11 = r8

15. store (r11, r7)

16. store (r12, r3)

BB1

BB2 BB3

BB4

- 13 -

Class Problem Solution
Optimize this applying

1. dead code elimination

2. forward copy propagation

3. CSE

r4 = r1

r6 = r15

r2 = r3 * r4

r8 = r2 + r5

r9 = r3

r7 = load(r2)

if (r2 > r8)

r5 = r9 * r4

r11 = r2

r12 = load(r11)

if (r12 != 0)

r3 = load(r2)

r10 = r3 / r6

r11 = r8

store (r11, r7)

store (r12, r3)

r2 = r3 * r1

r8 = r2 + r5

r7 = load(r2)

if (r2 > r8)

if (r7 != 0)

r3 = r7

store (r8, r7)

store (r12, r3)

- 14 -

Loop Invariant Code Motion (LICM)

 Move operations whose source
operands do not change within
the loop to the loop preheader

» Execute them only 1x per
invocation of the loop

» Be careful with memory
operations!

» Be careful with ops not
executed every iteration

1. r1 = 3

2. r5 = &A

3. r4 = load(r5)

4. r7 = r4 * 3

5. r8 = r2 + 1

6. r7 = r8 * r4
7. r3 = r2 + 1

8. r1 = r1 + r7

9. store (r1, r3)

BB1

BB2

BB3 BB4

BB5

BB6

- 15 -

LICM (2)

 Rules

» X can be moved

» src(X) not modified in loop body

» X is the only op to modify dest(X)

» for all uses of dest(X), X is in the
available defs set

» for all exit BB, if dest(X) is live on the
exit edge, X is in the available defs set on
the edge

» if X not executed on every iteration, then
X must provably not cause exceptions

» if X is a load or store, then there are no
writes to address(X) in loop

1. r1 = 3

2. r5 = &A

3. r4 = load(r5)

4. r7 = r4 * 3

5. r8 = r2 + 1

6. r7 = r8 * r4
7. r3 = r2 + 1

8. r1 = r1 + r7

9. store (r1, r3)

BB1

BB2

BB3 BB4

BB5

BB6

- 16 -

Global Variable Migration

 Assign a global variable

temporarily to a register for the

duration of the loop

» Load in preheader

» Store at exit points

 Rules

» X is a load or store

» address(X) not modified in the

loop

» if X not executed on every

iteration, then X must provably

not cause an exception

» All memory ops in loop whose

address can equal address(X)

must always have the same

address as X

1. r4 = load(r5)

2. r4 = r4 + 1

3. r8 = load(r5)

4. r7 = r8 * r4
5. store(r5, r4)

6. store(r5,r7)

BB1

BB2

BB3 BB4

BB5

BB6

- 17 -

Induction Variable Strength Reduction

 Create basic induction

variables from derived

induction variables

 Induction variable

» BIV (i++)

 0,1,2,3,4,...

» DIV (j = i * 4)

 0, 4, 8, 12, 16, ...

» DIV can be converted into a

BIV that is incremented by 4

 Issues

» Initial and increment vals

» Where to place increments

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 18 -

Induction Variable Strength Reduction (2)

 Rules

» X is a *, <<, + or – operation

» src1(X) is a basic ind var

» src2(X) is invariant

» No other ops modify dest(X)

» dest(X) != src(X) for all srcs

» dest(X) is a register

 Transformation

» Insert the following into the preheader

 new_reg = RHS(X)

» If opcode(X) is not add/sub, insert to the
bottom of the preheader

 new_inc = inc(src1(X)) opcode(X) src2(X)

» else

 new_inc = inc(src1(X))

» Insert the following at each update of
src1(X)

 new_reg += new_inc

» Change X  dest(X) = new_reg

1. r5 = r4 - 3

2. r4 = r4 + 1

3. r7 = r4 * r9

4. r6 = r4 << 2

BB1

BB2

BB3 BB4

BB5

BB6

- 19 -

Class Problem

Optimize this applying

induction var str reduction

3. r5 = r5 + 1

4. r11 = r5 * 2

5. r10 = r11 + 2

6. r12 = load (r10+0)

7. r9 = r1 << 1

8. r4 = r9 - 10

9. r3 = load(r4+4)

10. r3 = r3 + 1

11. store(r4+0, r3)

12. r7 = r3 << 2

13. r6 = load(r7+0)

14. r13 = r2 - 1

15. r1 = r1 + 1

16. r2 = r2 + 1

1. r1 = 0

2. r2 = 0

r13, r12, r6, r10

liveout

BB1

BB2

BB3

- 20 -

Class Problem Solution

Optimize this applying

induction var str reduction

r5 = r5 + 1

r11 = r5 * 2

r10 = r11 + 2

r12 = load (r10+0)

r9 = r1 << 1

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r2 - 1

r1 = r1 + 1

r2 = r2 + 1

r1 = 0

r2 = 0

r13, r12, r6, r10

liveout

r5 = r5 + 1

r111 = r111 + 2

r11 = r111

r10 = r11 + 2

r12 = load (r10+0)

r9 = r109

r4 = r9 - 10

r3 = load(r4+4)

r3 = r3 + 1

store(r4+0, r3)

r7 = r3 << 2

r6 = load(r7+0)

r13 = r113

r1 = r1 + 1

r109 = r109 + 2

r2 = r2 + 1

r113 = r113 + 1

r1 = 0

r2 = 0

r111 = r5 * 2

r109 = r1 << 1

r113 = r2 -1

r13, r12, r6, r10

liveout

Note, after copy

propagation, r10

and r4 can be

strength reduced

as well.

