
EECS 583 – Class 7

More Dataflow Analysis

University of Michigan

September 25, 2019

- 1 -

Announcements & Reading Material

 HW 2 is posted, Due Wed Oct 16, midnight

» Please start early

» Take a look at Sung’s template code

» Go through his slides from Monday’s class more closely

 Today’s class

» Compilers: Principles, Techniques, and Tools,

A. Aho, R. Sethi, and J. Ullman, Addison-Wesley, 1988.

(Sections: 10.5, 10.6, 10.9, 10.10 Edition 1; 9.2, 9.3 Edition 2)

 Material for Monday

» “Practical Improvements to the Construction and Destruction of

Static Single Assignment Form,” P. Briggs, K. Cooper, T.

Harvey, and L. Simpson, Software--Practice and Experience,

28(8), July 1998, pp. 859-891.

- 2 -

Liveness Homework Problem Answer

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

GEN = r3, r4

KILL = r1, r2

GEN = r1, r2

KILL = r7

GEN = r2, r3

KILL = r4

GEN = r4

KILL = NULL

GEN = NULL

KILL = r8

GEN = r7, r8

KILL = r9

OUT = NULL

IN = r7, r8

OUT = r7, r8  OUT = r1, r2, r3, r4, r7, r8

OUT = r7  OUT = r1, r2, r3, r4, r7

OUT = r2, r3, r4, r7  OUT = r1, r2, r3, r4, r7

OUT = r1, r2, r3, r4

OUT = r7  OUT = r1, r2, r3, r4, r7

IN = r7  IN = r1, r2, r3, r4, r7

IN = r2, r3, r7  IN = r1, r2, r3, r7

IN = r1, r2, r3, r4  IN = r1, r2, r3, r4 (same!)

IN = r3, r4

IN = r4, r7  IN = r1, r2, r3, r4, r7

Blue sets are the first iteration,

Red sets are the second iteration

- 3 -

Reaching Definition Analysis (rdefs)

 A definition of a variable x is an operation that assigns, or
may assign, a value to x

 A definition d reaches a point p if there is a path from the
point immediately following d to p such that d is not
“killed” along that path

 A definition of a variable is killed between 2 points when
there is another definition of that variable along the path
» r1 = r2 + r3 kills previous definitions of r1

 Liveness vs Reaching defs

» Liveness  variables (e.g., virtual registers), don’t care about
specific users

» Reaching defs  operations, each def is different

» Forward dataflow analysis as propagation occurs from defs
downwards (liveness was backward analysis)

- 4 -

Compute Rdef GEN/KILL Sets for each BB

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

for each destination operand of op, dest, do

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

endfor

GEN = set of definitions created by an operation

KILL = set of definitions destroyed by an operation

- Assume each operation only has 1 destination for simplicity

so just keep track of “ops”..

- 5 -

Example GEN/KILL Rdef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

- 6 -

Compute Rdef IN/OUT Sets for all BBs

initialize IN(X) = 0 for all basic blocks X

initialize OUT(X) = GEN(X) for all basic blocks X

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_OUT = OUT(X)

IN(X) = Union(OUT(Y)) for all predecessors Y of X

OUT(X) = GEN(X) + (IN(X) – KILL(X))

if (old_OUT != OUT(X)) then

change = 1

endif

endfor

endfor

IN = set of definitions reaching the entry of BB

OUT = set of definitions leaving BB

- 7 -

Example Rdef Calculation

1. r1 = MEM[r2+0]

2. r2 = MEM[r1 + 1]

3. r8 = r1 * r2

4. r1 = r1 + 5

5. r3 = r5 – r1

6. r7 = r3 * 2

7. r2 = 0

8. r7 = r1 + r2

9. r3 = 4

10. r3 = r3 + r7

11. r1 = r2 – r8

12. r3 = r1 * 2

BB1

BB2 BB3

BB4

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

- 8 -

Homework Problem

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3 + r2

8. r8 = 8

9. r9 = r7 + r8

Compute reaching defs

Calculate GEN/KILL for each BB

Calculate IN/OUT for each BB

- 9 -

DU/UD Chains

 Convenient way to access/use reaching defs info

 Def-Use chains

» Given a def, what are all the possible consumers of the

operand produced

» Maybe consumer

 Use-Def chains

» Given a use, what are all the possible producers of the

operand consumed

» Maybe producer

- 10 -

Example – DU/UD Chains

1. r1 = 3

2. r2 = r3

3. r3 = r4

4. r1 = r1 + 1

5. r7 = r1 * r2

6. r4 = r4 + 1 7. r4 = r3

8. r8 = 8

9. r9 = r7 + r8

- 11 -

Generalizing Dataflow Analysis

 Transfer function
» How information is changed by “something” (BB)

» OUT = GEN + (IN – KILL) /* forward analysis */

» IN = GEN + (OUT – KILL) /* backward analysis */

 Meet function
» How information from multiple paths is combined

» IN = Union(OUT(predecessors)) /* forward analysis */

» OUT = Union(IN(successors)) /* backward analysis */

 Generalized dataflow algorithm
» while (change)

 change = false

 for each BB

 apply meet function

 apply transfer functions

 if any changes  change = true

- 12 -

What About All Path Problems?

 Up to this point

» Any path problems (maybe relations)

 Definition reaches along some path

 Some sequence of branches in which def reaches

 Lots of defs of the same variable may reach a point

» Use of Union operator in meet function

 All-path: Definition guaranteed to reach

» Regardless of sequence of branches taken, def reaches

» Can always count on this

» Only 1 def can be guaranteed to reach

» Availability (as opposed to reaching)

 Available definitions

 Available expressions (could also have reaching expressions, but not

that useful)

- 13 -

Reaching vs Available Definitions

1:r1 = r2 + r3

2:r6 = r4 – r5

3:r4 = 4

4:r6 = 8

5:r6 = r2 + r3

6:r7 = r4 – r5
1,2,3,4 reach

1 available

1,2 reach

1,2 available

1,3,4 reach

1,3,4 available

1,2 reach

1,2 available

- 14 -

Available Definition Analysis (Adefs)

 A definition d is available at a point p if along all paths

from d to p, d is not killed

 Remember, a definition of a variable is killed between 2

points when there is another definition of that variable

along the path

» r1 = r2 + r3 kills previous definitions of r1

 Algorithm

» Forward dataflow analysis as propagation occurs from defs

downwards

» Use the Intersect function as the meet operator to guarantee the

all-path requirement

» GEN/KILL/IN/OUT similar to reaching defs

 Initialization of IN/OUT is the tricky part

- 15 -

Compute GEN/KILL Sets for each BB (Adefs)

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

for each destination operand of op, dest, do

G = op

K = {all ops which define dest – op}

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

endfor

Exactly the same as reaching defs !!!

- 16 -

Compute IN/OUT Sets for all BBs (Adefs)

U = universal set of all operations in the Procedure

IN(0) = 0

OUT(0) = GEN(0)

for each basic block in procedure, W, (W != 0), do

IN(W) = 0

OUT(W) = U – KILL(W)

change = 1

while (change) do

change = 0

for each basic block in procedure, X, do

old_OUT = OUT(X)

IN(X) = Intersect(OUT(Y)) for all predecessors Y of X

OUT(X) = GEN(X) + (IN(X) – KILL(X))

if (old_OUT != OUT(X)) then

change = 1

endif

endfor

endfor

- 17 -

Available Expression Analysis (Aexprs)

 An expression is a RHS of an operation
» r2 = r3 + r4, r3+r4 is an expression

 An expression e is available at a point p if along all paths
from e to p, e is not killed

 An expression is killed between 2 points when one of its
source operands are redefined
» r1 = r2 + r3 kills all expressions involving r1

 Algorithm
» Forward dataflow analysis as propagation occurs from defs

downwards

» Use the Intersect function as the meet operator to guarantee the
all-path requirement

» Looks exactly like adefs, except GEN/KILL/IN/OUT are the
RHS’s of operations rather than the LHS’s

- 18 -

Computation of Aexpr GEN/KILL Sets

for each basic block in the procedure, X, do

GEN(X) = 0

KILL(X) = 0

for each operation in sequential order in X, op, do

K = 0

for each destination operand of op, dest, do

K += {all ops which use dest}

endfor

if (op not in K)

G = op

else

G = 0

GEN(X) = G + (GEN(X) – K)

KILL(X) = K + (KILL(X) – G)

endfor

endfor

We can also formulate the GEN/KILL slightly differently so you do not

need to break up instructions like “r2 = r2 + 1”.

- 19 -

Class Problem - Aexprs Calculation

1: r1 = r6 * r9

2: r2 = r2 + 1

3: r5 = r3 * r4

4: r1 = r2 + 1

5: r3 = r3 * r4

6: r8 = r3 * 2

7: r7 = r3 * r4

8: r1 = r1 + 5

9: r7 = r1 - 6

10: r8 = r2 + 1

11: r1 = r3 * r4

12: r3 = r6 * r9

- 20 -

Dataflow Analyses in 1 Slide

OUT = Union(IN(succs))

IN = GEN + (OUT – KILL)

Liveness Reaching Definitions/DU/UD

IN = Union(OUT(preds))

OUT = GEN + (IN – KILL)

Bottom-up dataflow

Any path

Keep track of variables/registers

Uses of variables  GEN

Defs of variables  KILL

Top-down dataflow

Any path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL

Available Definitions

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

Top-down dataflow

All path

Keep track of instruction IDs

Defs of variables  GEN

Defs of variables  KILL

Available Expressions

IN = Intersect(OUT(preds))

OUT = GEN + (IN – KILL)

Top-down dataflow

All path

Keep track of instruction IDs

Expressions of variables  GEN

Defs of variables  KILL

- 21 -

Some Things to Think About

 Liveness and rdefs are basically the same thing
» All dataflow is basically the same with a few parameters

 Meaning of gen/kill – src vs dest, variable vs operation

 Backward / Forward

 All paths / some paths (must/may)

 What other dataflow analysis problems can be formulated?

 Dataflow can be slow
» How to implement it efficiently?

 Forward analysis – DFS order

 Backward analysis – PostDFS order

» How to represent the info?

 Predicates
» Throw a monkey wrench into this stuff

» So, how are predicates handled?

